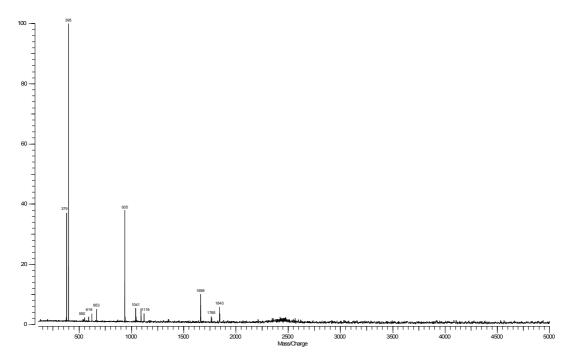
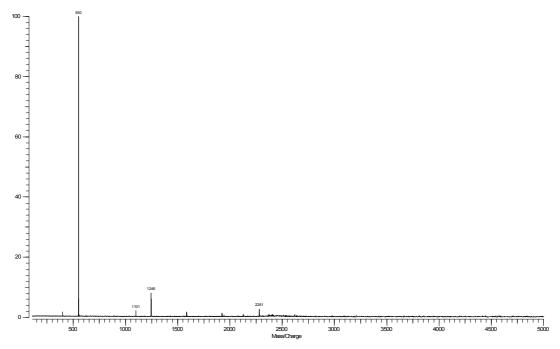
S1: NMR and MS spectra of the corresponding complexes

Supporting Information

for


Templated versus non-templated synthesis of benzo-21-crown-7 and the influence of substituents on its complexing properties

Wei Jiang and Christoph A. Schalley*


Address: Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany

E-mail: Christoph A. Schalley - christoph@schalley-lab.de

* Corresponding author

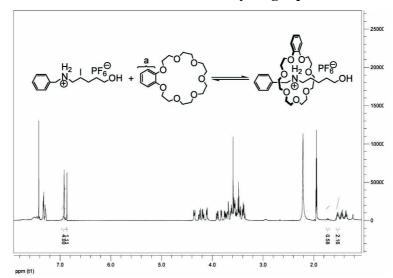


Figure S1: ESI-FTICR Mass spectrum of (C7+KPF₆) sprayed from DCM. The peaks at m/z 379, 395, and 935 are assigned to [C7+Na]⁺, [C7+K]⁺, and [2C7+K+KPF₆]⁺, respectively. Since we didn't deliberately add KPF₆ into this solution, KPF₆ should be from the template used in the reaction which could not be removed after extraction and column chromatography. This result is in agreement with NMR results.

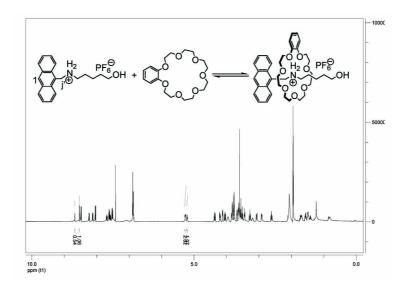
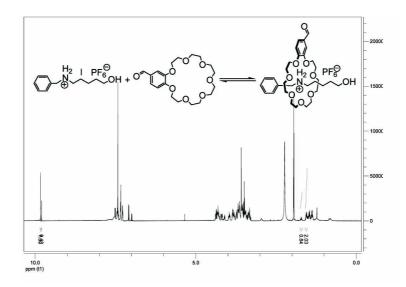


Figure S2: ESI-FTICR Mass spectrum of (C7+KPF₆) in the presence of **6-H·PF**₆. The peak at m/z 550 is assigned to [**6-H@C7**]⁺. The only intense peak suggests that C7 is the dominant organic compound in (C7+KPF₆) and **6-H·PF**₆ fits better to C7 than KPF₆.


The association constants which were calculated by single-point method:

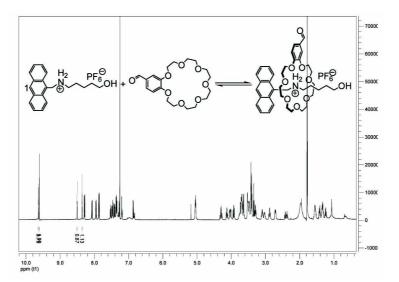

Figure S3: ¹H NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 1.0 mM) of the equimolar mixture of **6-**H·PF₆ and **C7**. From complexed and uncomplexed H_a of **C7**, $K_a(H_a) = [(4.00/5.11) \times 1.0 \times 10^{-3}] / [(1.11/5.11) \times 1.0 \times 10^{-3}]^2 M^{-1} = 16590 M^{-1}$; From complexed and uncomplexed H₁ of **6-**H·PF₆, $K_a(H_1) = [(2.16/2.74) \times 1.0 \times 10^{-3}] / [(0.58/2.74) \times 1.0 \times 10^{-3}]^2 M^{-1} = 17590 M^{-1}$. Finally, $K_a = (16590 + 17590)/2 = 17090 (\pm 500) M^{-1}$.

Figure S4: ¹H NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 1.0 mM) of the equimolar mixture of 7-H·PF₆ and C7. From complexed and uncomplexed H₁ of 7-H·PF₆, $K_a(H_1) = [(1.06/1.60) \times 1.0 \times 10^{-3}] / [(0.54/1.60) \times 1.0 \times 10^{-3}]^2 \text{ M}^{-1} = 5820 \text{ M}^{-1}$; From complexed and uncomplexed H_j of 7-H·PF₆, $K_a(H_{j'}) = [(2.02/3.09) \times 1.0 \times 10^{-3}] / [(1.07/3.09) \times 1.0 \times 10^{-3}]^2 \text{ M}^{-1} = 5450 \text{ M}^{-1}$. Finally, $K_a = (5820+5450)/2 = 5640 \text{ (± 190) M}^{-1}$.

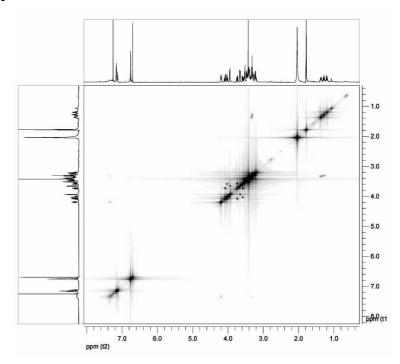


Figure S5: ¹H NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 1.0 mM) of the equimolar mixture of **6-**H·PF₆ and **4**. From complexed and uncomplexed CHO of **4**, K_a (CHO) = $[(1.00/1.43) \times 1.0 \times 10^{-3}] / [(0.43/1.43) \times 1.0 \times 10^{-3}]^2 \text{ M}^{-1} = 7730 \text{ M}^{-1}$; From complexed and uncomplexed H₁ of **6-**H·PF₆, K_a (H₁) = $[(2.03/2.87) \times 1.0 \times 10^{-3}] / [(0.84/2.87) \times 1.0 \times 10^{-3}]^2 \text{ M}^{-1} = 8260 \text{ M}^{-1}$. Finally, $K_a = (7730+8260)/2 = 8000 (\pm 270) \text{ M}^{-1}$.

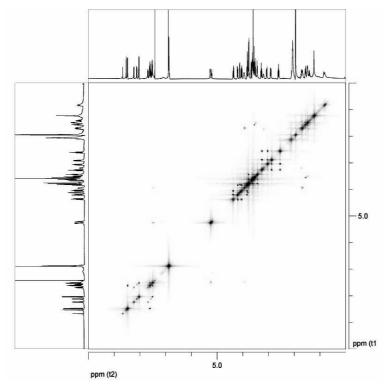
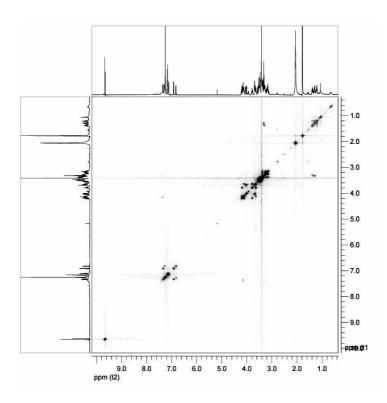
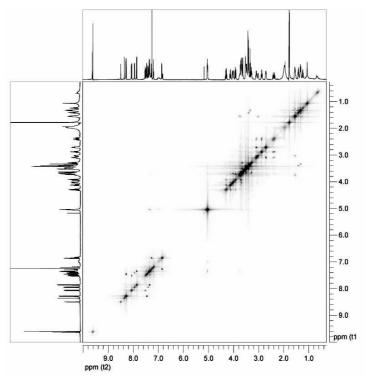


Figure S6: ¹H NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 1.0 mM) of the equimolar mixture of **7-**H·PF₆ and **4**. From complexed and uncomplexed CHO of **4**, K_a (CHO) = $[(1.00/1.75) \times 1.0 \times 10^{-3}] / [(0.75/1.75) \times 1.0 \times 10^{-3}]^2 M^{-1} = 3110 M^{-1}$; From complexed and uncomplexed H₁ of **7-**H·PF₆, K_a (H₁) = $[(1.13/2.00) \times 1.0 \times 10^{-3}] / [(0.87/2.00) \times 1.0 \times 10^{-3}]^2 M^{-1} = 2990 M^{-1}$. Finally, $K_a = (3110+2990)/2 = 3050 (\pm 60) M^{-1}$.


¹H-¹H COSY Spectra:


Figure S7: 1 H- 1 H COSY spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of the equimolar mixture of **6-**H·PF₆ and **C7**. The COSY spectrum supports the assignments of the peaks in Figure 5b.

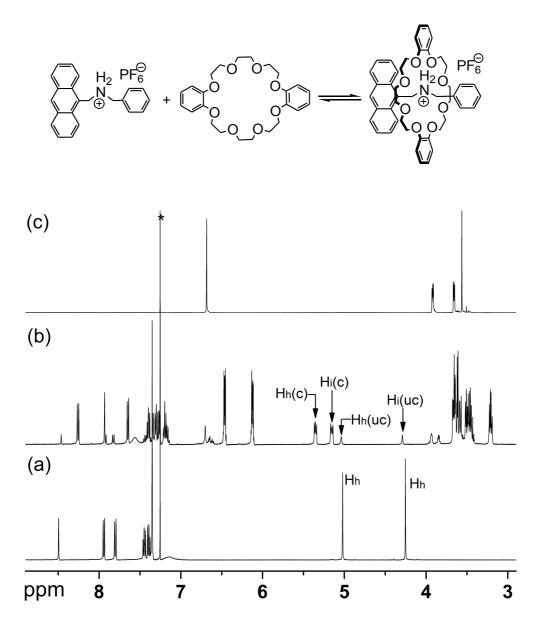

Figure S8: ¹H-¹H COSY spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of the equimolar mixture of **7-**H·PF₆ and **C7**. The COSY spectrum supports the assignments of the peaks in Figure 5e.

Figure S9: ¹H-¹H COSY spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of the equimolar mixture of **6**-H·PF₆ and **4**. The COSY spectrum supports the assignments of the peaks in Figure 5c.

Figure S10: ¹H-¹H COSY spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of the equimolar mixture of **7-**H·PF₆ and **4**. The COSY spectrum supports the assignments of the peaks in Figure 5d.

Figure S11: Top: complexation of **5**-H·PF₆ and DB24C8; Bottom: ¹H NMR spectra (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of (a) **5**-H·PF₆, (c) DB24C8, and (b) the equimolar mixture of **5**-H·PF₆ and DB24C8. Asterisk = residual solvent. The descriptors "c" and "uc" in the parentheses denote signals arising from protons that are complexed and uncomplexed, respectively. After complexation with DB24C8, H_h and H_i of **5**-H·PF₆ are shifted by +0.90 and +0.34 ppm, respectively, indicating DB24C8 is flexible enough to complex H_h and experiences no obvious hindrance from anthracene of **5**-H·PF₆.