Supporting Information

for

Benzyne arylation of oxathiane glycosyl donors

Martin A. Fascione and W. Bruce Turnbull*

School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.

* Corresponding author

E-mail: W. Bruce Turnbull – <u>w.b.turnbull@leeds.ac.uk</u>

Experimental data for the synthesis of compounds 16-19, 22, 23 and 25.

Experimental

General Methods: All solvents were dried prior to use, according to standard methods [1]. Where appropriate anhydrous quality material was purchased. All solvents used for flash chromatography were GPR grade, except hexane and ethyl acetate, when HPLC grade was used. All concentrations were performed in vacuo, unless otherwise stated. All reactions were performed in oven dried glassware under a N₂(g) atmosphere, unless otherwise stated. ¹H NMR spectra were recorded at 500 MHz on a Bruker avance 500 instrument or at 300 MHz on a Bruker avance 300 instrument. ¹³C NMR spectra were recorded at 75 MHz on a Bruker avance 300 instrument. Chemical shifts are given in parts per million downfield from tetramethylsilane. The following abbreviations are used in ¹H NMR analysis: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doubledoublet, dt = double triplet, td = triple doublet, ddd = double doublet doublet. Electrospray (ES+) ionisation mass spectra were obtained on a Micromass LCT-KA111 mass spectrometer, and high resolution ES+ were performed on a Bruker Daltonics MicroTOF mass spectrometer. Melting points were obtained on a Reichert hot-stage apparatus and are uncorrected. Optical rotations were measured at the sodium D-line with an Optical Activity AA-1000 polarimeter. $[\alpha]_D$ values are given in units of 10⁻¹ deg cm² g⁻¹. Analytical T.L.C. was performed on silica gel 60-F²⁵⁴ (Merck) with detection by fluorescence and/or charring following immersion in a 5% H₂SO₄/methanol solution, unless otherwise stated.

2-(S)-Phenyl-(1,2-dideoxy-β-D-glucopyranoso)[1,2-e]-1,4-oxathiane (16)

TMSOTf (2.56 mL, 14.2 mmol) was added dropwise to a solution of 2-methoxy-2-(*S*)-phenyl-(1,2dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **13** (3.11 g, 9.4 mmol) in C₂H₄Cl₂ (30 mL) at 0 °C, followed by addition of triethylsilane (2.29 mL, 14.2 mmol). After 1 h 25 min the reaction mixture was quenched with methanol (5 mL), and neutralised with triethylamine. The reaction mixture was concentrated to leave a colourless foam. The crude foam was purified by flash column chromatography (silica; 96:4 (v/v) CH₂Cl₂-methanol \rightarrow 9:1 (v/v) CH₂Cl₂-methanol) to afford **16** (2.5 g, 89%) as a colourless foam; [α]_D²³+68.3 (*c* 1.2, CHCl₃); *R_F* 0.28 (9:1 (v/v) CH₂Cl₂-methanol); IR (v_{max}/cm⁻¹): 3374 (OH); ¹H-NMR (500 MHz, CDCl₃); 7.38-7.32 (m, 5H, ArH), 4.69 (dd, 1H, *J*_{PhCH,SCHax} 10.8 Hz, *J*_{PhCH,SCHeq} 1.6 Hz, PhCH), 4.47 (d, 1H, *J*_{1,2} 8.9 Hz, H-1), 3.94 (dd, 1H, *J*_{6,6} 12.0 Hz, *J*_{5,6} 3.3 Hz, H-6), 3.83 (dd, 1H, *J*_{6,6} 12.0 Hz, *J*_{5,6} 4.9 Hz, H-6'), 3.73 (dd, 1H, *J*_{2,3} 9.2 Hz, *J*_{3,4} 9.0 Hz, H-3), 3.67 (dd, 1H, *J*_{3,4} 9.0 Hz, *J*_{4,5} 8.9 Hz, H-4), 3.55 (m, 1H, H-5), 3.53 (dd, 1H, *J*_{2,3} 9.2 Hz, *J*_{1,2} 8.9 Hz, H-2), 3.06 (dd, 1H, *J*_{SCHax-eq} 14.1 Hz, *J*_{PhCH,SCHax} 10.8 Hz, SCH_{ax}), 2.82 (br s, 1H, OH), 2.75 (dd, 1H, *J*_{SCHax-eq} 14.1 Hz, *J*_{PhCH,SCHeq}), 2.09 (br s, 1H, OH), 1.59 (br s, 1H, OH); ¹³C-NMR (75 MHz, CDCl₃); 140.1, 128.8, 128.6, 126.0 (ArC), 83.3 (C-2), 80.4 (C-5), 80.2 (PhCH), 75.5 (C-1), 75.4 (C-3), 70.6 (C-4), 62.3 (C-6), 35.4 (SCH₂); HRMS: Found [M+Na]⁺ 321.0772, C₁₄H₁₈O₅SNa requires 321.0767.

2-(S)-Phenyl-(3,4,6-tri-*O***-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-***e***]-1,4-oxathiane (17) Acetic anhydride (1.05 mL, 11.07 mmol) was added to a solution of 2-(***S***)-phenyl-(1,2-dideoxy-β-D-glucopyranoso)[1,2-***e***]-1,4-oxathiane 16** (1 g, 3.35 mmol) in pyridine (10 mL), at 0 °C. The reaction mixture was stirred, allowing the temperature to rise to r.t. After 14 h 30 min, the reaction mixture was concentrated. The residue was redissolved in CH₂Cl₂ (25 mL) and washed with 1M HCl (25 mL), aq. NaHCO₃ (25 mL) and aq. NaCl (25 mL). The organic phase was dried (Na₂SO₄) and concentrated to afford an orange foam. The crude foam was recrystallised from methanol to afford **17** (1.01 g, 72%) as colourless needles, m.p. 128.8-132.3 °C; $[\alpha]_D^{25}$ –24.0 (*c* 0.45, CHCl₃); *R_F* 0.47 (1:1 (v/v) hexane-ethyl acetate); IR (v_{max}/cm⁻¹): 1747 (C=O); ¹H-NMR (500 MHz, CDCl₃); 7.36-7.26 (m, 5H, ArH), 5.28 (dd, 1H, *J*_{2,3} 9.5 Hz, *J*_{3,4} 9.5 Hz, H-3), 5.15 (dd, 1H, *J*_{3,4} 9.5 Hz, *J*_{4,5} 9.7 Hz, H-4), 4.70 (dd, 1H, *J*_{5,6} 5.0 Hz, H-6'), 4.15 (dd, 1H, *J*_{6,6} 12.5 Hz, *J*_{5,6} 5.0 Hz, H-6'), 4.15 (dd, 1H, *J*_{1,2} 9.0 Hz, *J*_{2,3} 9.5 Hz, H-2), 2.98 (dd, 1H, *J*_{4,5} 9.7 Hz, *J*_{5,6} 5.0 Hz, *J*_{5,6} 2.1 Hz, H-5), 3.75 (dd, 1H, *J*_{3,2} 9.5 Hz, *J*_{2,3} 9.5 Hz, H-2), 2.98 (dd, 1H, *J*_{3,5} 9.7 Hz, *J*_{5,6} 5.0 Hz, *J*_{5,6} 5.0 Hz, NCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 2.1 Hz, H-2), 2.98 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 2.1 Hz, H-2), 2.98 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, H-2), 2.98 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2.82 (dd, 1H, *J*_{5,2} 9.7 Hz, *J*_{5,6} 14.1 Hz, *J*_{5,6} 5.0 Hz, SCH_{av}), 2. 2.10 (s, 3H, C(O)CH₃), 2.05 (s, 3H, C(O)CH₃), 2.00 (s, 3H, C(O)CH₃); ¹³C-NMR (75 MHz, CDCl₃); 169.5 (C=O), 139.5, 128.5, 127.9, 125.3 (ArC), 81.0 (C-2), 79.5 (PhCH), 76.6 (C-1), 75.8 (C-5), 72.9 (C-3), 68.5 (C-4), 62.1 (C-6), 35.6 (SCH₂), 20.8, 20.7, 20.7 (C(O)<u>C</u>H₃); HRMS: Found [M+Na]⁺ 447.1069, C₂₀H₂₄O₈SNa requires 447.1084.

2-(S)-Phenyl-(3,4,6-tri-O-benzyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-e]-1,4-oxathiane (18)

Sodium hydride (60% dispersion in oil, 560 mg, 14 mmol) was added in portions to a solution of 2-(S)-phenyl-(1,2-dideoxy- β -D-glucopyranoso)[1,2-e]-1,4-oxathiane 16 (1.1 g, 3.69 mmol) in DMF (15 mL), at 0 °C. The reaction mixture was stirred for 5 min before benzyl bromide (1.67 mL, 14 mmol) was added dropwise. The reaction mixture was stirred, allowing the temperature to rise to r.t. After 14 h 30 min, the reaction mixture was guenched with methanol (10 mL) and concentrated. The residue was redissolved in CH₂Cl₂ (30 mL), washed with aq. NaCl (2 x 30 mL), dried (Na₂SO₄) and concentrated to leave a yellow solid. The crude solid was purified by flash chromatography (silica; 3:1 hexane-ethyl acetate \rightarrow 1:1 (v/v) hexane-ethyl acetate) to afford 18 as colourless needles (1.74 g, 83%), m.p. 102.9-104.5 (from 1:1 (v/v) hexane-ethyl acetate); $[\alpha]_D^{23} + 33.6$ (c 1.14, CHCl₃); $R_F 0.71$ (1:1 (v/v) hexane-ethyl acetate); IR (v_{max}/cm⁻¹): 3029 (C-H), 1090 (C-OR); ¹H-NMR (500 MHz, CDCl₃); 7.40-7.15 (m, 20H, ArH), 4.92 (d, 1H, J 11.2 Hz, OCH₂Ph), 4.86 (d, 1H, J 10.9 Hz, OCH2Ph), 4.75 (dd, 1H, JPhCH.SCHax 10.6 Hz, JPhCH.SCHeq 1.7 Hz, PhCH), 4.74 (d, 1H, J 11.2 Hz, OCH₂Ph), 4.61 (d, 1H, J 12.1 Hz, OCH₂Ph), 4.54 (d, 1H, J 10.9 Hz, OCH₂Ph), 4.53 (d, 1H, J 12.1 Hz, OCH₂Ph), 4.41 (d, 1H, J_{1,2} 8.6 Hz, H-1), 3.79-3.70 (m, 5H, H-2, H-3, H-4, H-6, H-6'), 3.62 (m, 1H, H-5), 3.04 (dd, 1H, J_{SCHax-eq} 14.0 Hz, J_{PhCH,SCHax} 10.6 Hz, SCH_{ax}), 2.79 (dd, 1H, J_{SCHax-eq} 14.0 Hz, J_{PhCH.SCHea} 1.7 Hz, SCH_{ea}); ¹³C-NMR (75 MHz, CDCl₃); 140.6, 138.5, 138.1, 138.1, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.8, 127.8, 127.0, 127.6, 125.7 (ArC), 84.8 (C-1), 83.7 (PhCH), 80.4, 80.4, 79.8, 75.6 (C-2, C-3, C-4, C-5), 75.6, 75.2, 73.6 (OCH₂Ph), 68.8 (C-6), 35.5 (SCH₂); HRMS: Found [M+Na]⁺ 591.2165, C₃₅H₃₆O₅SNa requires 591.2176.

1,3,4,6-Tetra-O-acetyl-2-O-[1-methoxy-1-(S)-phenyl-2-(phenylsulfanyl)-ethyl]-α-D-

glucopyranose (19)

Lead tetraacetate (47 mg, 0.105 mmol) in CH₂Cl₂ (300 μ L) was added dropwise to a solution of 2methoxy-2-(S)-phenyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-β-D-gluco-pyranoso)[1,2-e]-1,4-oxathiane 14 (40 mg, 88 μ mol) and 1-aminobenzotriazole (14 mg, 0.105 mmol) in CH₂Cl₂ (700 μ L), at -78 °C. After 30 min the temp was raised to -30 °C, and held for 35 min before raising to r.t. After a further 1h 50 min the reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with aq. NaHCO₃ (2 x 5 mL) and aq. NaCl (2 x 5 mL), dried (Na₂SO₄) and concentrated to afford a colourless syrup. The crude syrup was purified by flash chromatography (silica; 5:1 (v/v) hexane-ethyl acetate) to afford **19** (45 mg, 82%) as a colourless syrup; $[\alpha]_D^{23}$ +81.5 (*c* 0.5, CHCl₃); R_F 0.66 (3:2 (v/v) hexaneethyl acetate); IR (v_{max}/cm⁻¹): 2918 (C-H), 1751 (C=O); ¹H-NMR (500 MHz, CDCl₃); 7.47-7.10 (m, 10H, ArH), 6.31 (d, 1H, J₁₂ 3.4 Hz, H-1), 5.46 (dd, 1H, J₂₃ 9.7 Hz, J₃₄ 9.7 Hz, H-3), 4.88 (dd, 1H, J_{3,4}9.7 Hz, J_{4,5}9.6 Hz, H-4), 4.20 (dd, 1H, J_{6,6'} 12.4 Hz, J_{5,6} 4.4 Hz, H-6), 3.97-3.93 (m, 2H, H-5, H-6'), 3.78 (d, 1H, J₂₃ 9.7 Hz, J₁₂ 3.4 Hz, H-2), 3.57 (d, 1H, J_{SCH2,SCH2'} 13.1 Hz, SCH₂), 3.39 (dd, 1H, J_{SCH2.SCH2'} 13.1 Hz, SCH'₂), 3.31 (s, 3H, OCH₃), 2.22 (s, 3H, C(O)CH₃), 2.04 (s, 3H, C(O)CH₃), 2.03 (s, 3H, C(O)CH₃), 2.00 (s, 3H, C(O)CH₃); ¹³C-NMR (75 MHz, CDCl₃); 170.6, 170.1, 169.5, 169.2 (C=O), 137.7, 135.9, 129.8, 129.7, 128.9, 128.8, 128.7, 128.7, 128.2, 127.4, 126.2 (ArC), 104.2 (C-OMe), 91.0 (C-1), 70.9 (C-3), 69.8, 68.7, 68.4 (C-2, C-4, C-5), 61.7 (C-6), 50.2 (OCH₃), 42.7 (SCH₂), 21.1, 20.9, 20.6, 20.5 (C(O)<u>C</u>H₃); HRMS: Found [M+Na]⁺ 613.1706, C₂₉H₃₄O₁₁SNa requires 613.1714.

2-O-Acetyl-3,4,6-tetra-O-benzyl-α-D-glucopyranose (22)[2]

Lead tetraacetate (71 mg, 0.161 mmol) in CH_2Cl_2 (300 µL) was added dropwise to a solution of 2methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-benzyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **15** (80 mg, 0.134 mmol), 1-aminobenzotriazole (21.5 mg, 0.161 mmol) in CH_2Cl_2 (700 µL), at -78 °C. The reaction mixture was allowed to warm to r.t and stirred for 1 h 30 min, and then quenched with aq. NaHCO₃ (5 mL), and diluted with CH₂Cl₂ (5 mL). The organic layer was washed with aq. NaCl (5 mL), dried (MgSO₄) and concentrated to afford a colourless oil. The crude oil was purified by flash chromatography (silica; 7:1 (v/v) hexane-ethyl acetate \rightarrow 9:1 (v/v) CH₂Cl₂-methanol) to afford **22** (46 mg, 70%) as a colourless solid; m.p. 120-123 °C, lit.² m.p. 124-126 °C; [α]_D²¹+48.8 (*c* 0.8, CHCl₃), lit.²[α]_D²³+64 (*c* 1, CHCl₃); *R_F* 0.40 (2:1 (v/v) hexane-ethyl acetate); IR (v_{max}/cm⁻¹): 3478 (OH), 1748 (C=O); ¹H-NMR (500 MHz, CDCl₃); 7.35-7.14 (m, 15H, ArH), 5.39 (d, 1H, *J*_{1,2} 3.6 Hz, H-1), 4.87 (dd, 1H, *J*_{2,3} 10.0 Hz, *J*_{1,2} 3.6 Hz, H-2), 4.83-4.48 (m, 6H, 3 x OCH₂Ph), 4.09-4.03 (m, 2H, H-3, H-4), 3.71-3.59 (m, 3H, H-5, H-6, H-6'), 3.55-3.41 (br d, 1H, OH), 2.02 (s, 3H, C(O)CH₃); m/z (ES+, %); 510.5 ([M+NH4]⁺);

1,3,4,6-Tetra-O-acetyl-2-O-[1-(S)-phenyl-2-(phenylsulfanyl)-ethyl]-α-D-glucopyranose (23)[3]

Lead tetraacetate (125 mg, 0.28 mmol) in CH₂Cl₂ (500 µL) was added dropwise to a solution of 2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **17** (100 mg, 0.24 mmol), 1-aminobenzotriazole (38 mg, 0.28 mmol) in CH₂Cl₂ (1.5 mL), at -78 °C. After 10 min the reaction mixture was quenched with aq. NaHCO₃ (5 mL), warmed to r.t. and diluted with CH₂Cl₂ (5 mL). The organic layer was washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to afford a colourless oil. The crude oil was purified by flash chromatography (silica; 3:2 (v/v) hexane-ethyl acetate) to afford **23** (82 mg, 62%) as a colourless syrup; $[\alpha]_D^{23}$ +70.6 (*c* 2, CHCl₃), lit.³ $[\alpha]_D^{20}$ +124.6 (*c* 0.6, CHCl₃); *R_F* 0.39 (2:1 (v/v) hexane-ethyl acetate); IR (v_{max}/cm⁻¹): 2925 (C-H), 1754 (C=O); ¹H-NMR (500 MHz, CDCl₃); 7.35-7.16 (m, 10H, ArH), 6.47 (d, 1H, *J*_{1,2} 3.5 Hz, H-1), 5.39 (dd, 1H, *J*_{2,3} 9.7 Hz, *J*_{3,4} 9.7 Hz, H-3), 4.90 (dd, 1H, *J*_{3,4} 9.7 Hz, *J*_{4,5} 9.7 Hz, H-4), 4.47 (dd, 1H, *J*_{4,5} 9.7 Hz, *J*_{5,6} 3.7 Hz, *J*_{5,6} 2.1 Hz, H-5), 3.99 (dd, 1H, *J*_{6,6}· 12.4 Hz, *J*_{5,6} 2.1 Hz, H-6), 3.58 (dd, 1H, *J*_{2,3} 9.7 Hz, *J*_{1,2} 3.5 Hz, H-2), 3.22 (dd, 1H, *J*_{SCH2,SCH2}· 14.1 Hz, *J*_{PhCH,SCH2} 8.4 Hz, SCH₂), 3.04 (dd, 1H, *J*_{5CH2,SCH2}· 14.1 Hz, *J*_{PhCH,SCH2}· 4.5 Hz, SCH₂), 2.19 (s, 3H, C(O)CH₃), 2.03 (s, 3H, C(O)CH₃), 1.98 (s, 3H, C(O)CH₃), 1.82 (s, 3H, C(O)CH₃); ¹³C-NMR (75 MHz, CDCl₃); 170.5, 170.0, 169.5, 169.2 (C=O), 139.7, 136.3, 129.2, 129.0, 128.6, 126.9, 126.1 (ArC), 88.6 (C-1), 81.4 (C-2), 74.6 (Ph<u>C</u>H), 71.1 (C-5), 69.3 (C-3), 68.0 (C-4), 61.5 (C-6), 41.5 (SCH₂), 21.1, 20.6, 20.6, 20.5 (C(O)<u>C</u>H₃); m/z (ES+, %); 578.2 ([M+NH₄]⁺, 5).

1-*O*-Acetyl-3,4,6-tetra-*O*-benzyl-2-*O*-[1-(*S*)-phenyl-2-(phenylsulfanyl)-ethyl]-α-Dglucopyranose (25)

Lead tetraacetate (70 mg, 0.16 mmol) in CH₂Cl₂ (300 µL) was added dropwise to a solution of 2-(S)-phenyl-(3,4,6-tri-O-benzyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-e]-1,4-oxathiane 18 (75 mg, 0.13 mmol), 1-aminobenzotriazole (21 mg, 0.16 mmol) in CH₂Cl₂ (700 µL), at -78 °C. After 10 min the reaction mixture was quenched with aq. NaHCO₃ (5 mL), warmed to r.t. and diluted with CH₂Cl₂ (5 mL). The organic layer was washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to afford a colourless oil. The crude oil was purified by flash chromatography (silica; 7:1 (v/v) hexane-ethyl acetate) to afford 25 (53 mg, 57%, α : β : 96:4) as a colourless syrup; IR (v_{max}/cm⁻¹): 2921 (C-H), 1750 (C=O); ¹H-NMR (500 MHz, CDCl₃); 7.35-7.06 (m, 25H, ArH), 6.44 (d, 1H, *J*_{1,2} 3.2 Hz, H-1), 4.96 (d, 1H, *J* 11.1 Hz, OCH₂Ph), 4.79 (d, 1H, *J* 11.1 Hz, OCH₂Ph), 4.75 (d, 1H, J 10.4 Hz, OCH₂Ph), 4.66 (dd, 1H, J_{PhCH.SCH2} 8.1 Hz, J_{PhCH.SCH2} 4.6 Hz, PhCH), 4.55 (d, 1H, J 12.2 Hz, OCH2Ph), 4.43 (d, 1H, J 12.2 Hz, OCH2Ph), 4.41 (d, 1H, J 10.4 Hz, OCH2Ph), 3.93 (dd, 1H, J_{3,4} 9.6 Hz, J_{4,5} 9.6 Hz, H-4), 3.82 (dd, 1H, J_{2,3} 10.6 Hz, J_{1,2} 3.2 Hz, H-2), 3.70 (dd, 1H, J_{6,6}, 11 Hz, J_{5,6} 3.1 Hz, H-6), 3.63-3.56 (m, 3H, H-3, H-5, H-6'), 3.27 (dd, 1H, J_{SCH2,SCH2'} 13.6 Hz, J_{PhCH,SCH2} 8.1 Hz, SCH₂), 3.09 (dd, 1H, J_{SCH2,SCH2} 13.6 Hz, J_{PhCH,SCH2} 4.6 Hz, SCH₂), 2.18 (s, 3H, C(O)CH₃); ¹³C-NMR (75 MHz, CDCl₃); 170.0 (C=O), 139.7, 139.3, 138.5, 138.2, 137.5, 129.8, 129.3, 129.0, 128.8, 128.7, 128.4, 128.3, 128.1, 128.0, 127.8, 127.6, 126.4 (ArC), 89.4 (C-1), 81.5 (PhCH), 79.9 (C-4), 77.3 (C-3), 76.1 (C-2), 75.9, 75.6, 74.0 (OCH₂Ph), 73.1 (C-5), 68.5 (C-6), 42.6 (SCH₂), 21.7 (C(O)<u>C</u>H₃); HRMS: Found [M+Na]⁺ 727.2679, C₄₃H₄₄O₇SNa requires 727.2700.

References

- Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals. 4th ed.; Butterworth-Heinemann, 1996.
- Schmidt, R. R.; Effenberger, G. Carbohydr. Res. 1987, 171, 59–79. doi:<u>10.1016/S0008-6215(00)90879-6</u>
- Kim, J. H.; Yang, H.; Park, J.; Boons, G. J. J. Am. Chem. Soc. 2005, 127, 12090–12097. doi:<u>10.1021/ja052548h</u>