Supporting Information for

Symmetrical and unsymmetrical α, ω -nucleobase amide-conjugated systems

Sławomir Boncel¹, Maciej Mączka¹, Krzysztof K. K. Koziol², Radosław Motyka¹ and Krzysztof Z. Walczak^{*1}

¹Silesian University of Technology, Department of Organic Chemistry, Biochemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland, Tel.: +48 32 237 1792, Fax: +48 32 237 2094 and ²University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom, Tel.: +44 1223 334 356, Fax: +44 1223 334 567

E-mail: Krzysztof Z. Walczak - krzysztof.walczak@polsl.pl

* Corresponding author

Experimental Section

General: NMR spectra were recorded at 300 MHz for ¹H NMR and 75.5 MHz for ¹³C NMR on a Varian Inova 300 MHz in [D₆]DMSO solution; δ values are in parts per million relative to tetramethylsilane as an internal standard. Elemental analyses were obtained using a Perkin-Elmer 240C apparatus. IR spectra were recorded on a Perkin IR-Spectrometer. Mass spectra were recorded at ESI TOF ionisation on Ionspec 4.7 Tesla Ultima FTMS FT-ICR MS Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. X-ray diffraction data were collected on KUMA KM4 four-circle diffractometer at 295 K. Cell parameters, reflection collection and their reductions were done using KUMA KM4 software. The structures were determined by means of direct methods and refined by the full-matrix least squares technique . TEM analyses were conducted on JEOL 200 CX operating at 120 kV in bright/dark field and diffraction modes. All used reagents were purchased from Aldrich. TLC 60F₂₅₄ plates and silica gel 60 (0.040–0.063 mm) were purchased from Merck (also diamines) or from Alfa Aesar. Melting points were measured at Boetius apparatus and are uncorrected. DMF was distilled prior to use and stored over molecular sieves 4 Å.

Michael-type adducts of 6-chloropurine to methyl acrylate

To a solution of 6-chloropurine (5 mmol) in anhydrous DMF (10 ml), Hünig's base (5 mmol) was added with stirring. After 5 minutes methyl acrylate (15 mmol) was added dropwise. Stirring was continued and when the consumption of the limiting reactant was achieved (TLC, 5% MeOH/CHCl₃, vol.), the solvent was evaporated under reduced pressure and the residue purified on a chromatographic column using 5% MeOH/CHCl₃ (vol.) as eluant.

Methyl 3-(6-chloro-9*H*-purin-9-yl)propanoate (1ea)

Mp 83–84 °C. ¹H NMR: δ = 8.77 (s, H-2, 1 H), 8.70 (s, H-8, 1 H), 4.56 (t, ³*J*₁ = 6.6 Hz, >NCH₂, 2 H), 3.59 (s, OCH₃, 3 H), 3.06 (t, ³*J*₁ = 6.6 Hz, CH₂CO, 2 H). ¹³C NMR: δ = 170.9, 151.9, 151.4, 148.9, 147.7, 130.8, 51.7, 39.7, 32.9. C₉H₉ClN₄O₂ (240.65): calcd. C 44.92, H 3.77, N 23.28; found C 44.77, H 3.92, N 23.15.

Methyl 3-(6-chloro-7*H*-purin-7-yl)propanoate (1eb)

Mp 81–82 °C. ¹H NMR: δ = 8.78 (m, H-2, H-8, 2 H), 4.72 (t, ³*J*₁ = 6.6 Hz, >NCH₂, 2 H), 3.57 (s, OCH₃, 3 H), 3.04 (t, ³*J*₁ = 6.6 Hz, CH₂CO, 2 H). ¹³C NMR: δ = 170.8, 151.5, 151.3, 148.9, 122.1, 42.1, 39.8, 34.8. C₉H₉ClN₄O₂ (240.65): calcd. C 44.92, H 3.77, N 23.28; found C 45.09, H 3.59, N 23.16.

Symmetrical α, ω -nucleobase amide-conjugated systems

General procedure

To a stirred solution (at room temperature) of the appropriate acidic component (1a-d) (0.5 mmol) in anhydrous DMF (8 mL), diamine (1 mmol) was added. In the case of synthesis of 4, when the diamine hydrochloride was used, 1 mmol of *N*-methylmorpholine was added to liberate the free amine. After 10 minutes to the clear solution (in the synthesis of 8–12) or the suspension (4–7 and 13–15), DMT-MM (1 mmol) was added. The progress of reaction was monitored by TLC (20% vol. MeOH/CHCl₃). After 1.5–6 h the volatiles were removed under reduced pressure and the residue purified by gradient column chromatography (0–50% vol. MeOH/CHCl₃) or recrystallised from ethanol/water (4–7 and 13–15) or ethyl acetate/hexane (8–12). All the obtained compounds were white solids unless otherwise indicated.

N,*N*'-(ethane-1,2-diyl)bis{3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (4)

Mp 291–294 °C. ¹H NMR: δ = 11.75 (s, H-3, 2 H), 8.09 (s, H-6, 2 H), 8.02 (br s, CONH, 2 H), 3.85 (t, ³*J*₁ = 6.6 Hz, 4 H, >NCH₂), 3.05 (m, 4 H, NHC*H*₂C*H*₂NH), 2.45 (t, ³*J*₁ = 6.6 Hz, 4 H, CH₂CO). ¹³C NMR: δ = 169.7 (2 C), 159.7 (2 C), 150.2 (2 C), 145.9 (2 C), 94.1 (2 C), 45.0 (2 C), 38.3 (2 C), 34.0 (2 C). C₁₆H₁₈Br₂N₆O₆ (550.16): calcd. C 34.93, H 3.30, N 15.28; found C 34.78, H 3.39, N 15.33.

N,*N*'-(propane-1,3-diyl)bis{3-[2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propanamide} (5)

Mp 278–279 °C. ¹H NMR: δ = 11.25 (br s, H-3, 2 H), 7.96 (br s, CONH, 2 H), 7.52 (d, ³J = 7.2 Hz, H-6, 2 H), 5.50 (d, ³J = 7.2 Hz, H-5, 2 H), 3.84 (t, ³J = 6.6 Hz, 4 H, >NCH₂), 3.01 (quartet, ³J = 6.6 Hz, 4 H, CONHCH₂), 2.44 (t, ³J = 6.6 Hz, 4 H, CH₂CO), 1.47 (m, CH₂CH₂CH₂, 2 H). ¹³C NMR: δ =169.5 (2 C), 163.8 (2 C), 150.8 (2 C), 146.2 (2 C), 100.5 (2

C), 44.8 (2 C), 36.4 (2 C), 34.2 (2 C), 29.1. $C_{17}H_{22}N_6O_6$ (406.39): calcd. C 50.24, H 5.46, N 20.68; found C 50.19, H 5.46, N 20.71.

N,N'-(propane-1,3-diyl)bis{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (6)

Mp 271–273 °C. ¹H NMR: δ = 11.22 (s, H-3, 2 H), 7.94 (t, ³*J* = 6.6 Hz, CONH, 2 H), 7.39 (d, ⁴*J* = 0.6 Hz, H-6, 2 H), 3.81 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.01 (quartet, ³*J* = 6.6 Hz, 4 H, CONHC*H*₂), 2.42 (t, ³*J* = 6.6 Hz, 4 H, CH₂CO), 1.71, (d, ⁴*J* = 0.6 Hz, CH₃, 6 H), 1.44 (quintet, ³*J* = 6.6 Hz, CH₂CH₂CH₂, 2 H). ¹³C NMR: δ = 169.5 (2 C), 164.3 (2 C), 150.7 (2 C), 141.9 (2 C), 108.0 (2 C), 44.6 (2 C), 36.3 (2 C), 34.4 (2 C), 29.2, 11.9 (2 C). C₁₉H₂₆N₆O₆ (434.45): calcd. C 52.53, H 6.03, N 19.34; found C 52.42, H 6.03, N 19.18.

N,N'-(propane-1,3-diyl)bis{3-[5-nitro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (7)

Mp 144–147 °C. ¹H NMR: δ = 11.25 (s, H-3, 2 H), 9.12 (s, H-6, 2 H), 8.02 (t, ³*J* = 5.4 Hz, CONH, 2 H), 4.07 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.03 (quartet, ³*J* = 6.3 Hz, 4 H, CONHC*H*₂), 2.55 (t, ³*J* = 6.6 Hz, 4 H, CH₂CO), 1.48 (quintet, ³*J* = 6.3 Hz, CH₂CH₂CH₂, 2 H). ¹³C NMR: δ = 169.5 (2 C), 155.2 (2 C), 151.4 (2 C), 149.4 (2 C), 124.5 (2 C), 46.3 (2 C), 36.4 (2 C), 33.6 (2 C), 29.1. C₁₇H₂₀N₈O₁₀ (496.39): calcd. C 41.13, H 4.06, N 22.57; found C 40.95, H 3.98, N 22.40.

N,N'-(hexane-1,6-diyl)bis{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (8)

Mp 238–239 °C. ¹H NMR: δ = 11.23 (s, H-3, 2 H), 7.94 (t, ³*J* = 6.6 Hz, CONH, 2 H), 7.39 (d, ⁴*J* = 0.6 Hz, H-6, 2 H), 3.82 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.00 (quartet, ³*J* = 6.6 Hz, 4 H, CONHC*H*₂), 2.42 (t, ³*J* = 6.6 Hz, 4 H, CH₂CO), 1.72 (d, ⁴*J* = 0.6 Hz, CH₃, 6 H), 1.40–1.24 (m, NHCH₂C*H*₂, 4 H), 1.26–1.10 (m, NHCH₂CH₂C*H*₂, 4 H). ¹³C NMR: δ = 169.3 (2 C), 164.3 (2 C), 150.7 (2 C), 141.9 (2 C), 107.9 (2 C), 44.6 (2 C), 38.4 (2 C), 34.3 (2 C), 29.0 (2 C), 26.0 (2 C), 11.9 (2 C). ESI MS (*m*/*z*): M⁺ + Na = 499.23 (100%), 500.26 (78%); calcd. M⁺ + Na = 499.53. IR (KBr): v = 3340, 3161, 3040, 2928, 1695, 1674, 1550, 1467, 1456, 1348, 1217 cm⁻¹. C₂₂H₃₂N₆O₆ (476.53): calcd. C 55.45, H 6.77, N 17.64; found C 55.56, H 6.64, N 17.86.

N,*N*'-(hexane-1,6-diyl)bis{3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (9)

Mp 223–224 °C. ¹H NMR: $\delta = 11.76$ (s, H-3, 2 H), 8.03 (s, H-6, 2 H), 7.95 (t, ³J = 6.6 Hz, CONH, 2 H), 3.88 (t, ³J = 6.6 Hz, >NCH₂, 4 H), 3.00 (quartet, ³J = 6.6 Hz, CONHCH₂, 4 H), 2.45 (t, ³J = 6.6 Hz, CH₂CO, 4 H), 1.40–1.26 (m, NHCH₂CH₂, 4 H), 1.24–1.10 (m, NHCH₂CH₂CH₂, 4 H). ¹³C NMR: $\delta = 169.2$ (2 C), 159.7 (2 C), 150.1 (2 C), 145.9 (2 C), 94.0 (2 C), 45.2 (2 C), 38.4 (2 C), 34.0 (2 C), 29.0 (2 C), 26.1 (2 C). ESI MS (*m*/*z*): M⁺ + Na = 629.00 (100%), 627.01 (78%), 631.01 (60%); calcd. M⁺ + Na = 629.26. C₂₀H₂₆Br₂N₆O₆ (606,27): calcd. C 39.62, H 4.32, N 13.86; found C 39.51, H 4.34, N 13.95.

N,N'-(nonane-1,9-diyl)bis{3-[2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propanamide} (10)

Mp 117–118 °C. ¹H NMR: δ = 11.24 (s, H-3, 2 H), 7.94 (t, ³*J* = 6.6 Hz, CONH, 2 H), 7.51 (d, ³*J* = 7.8 Hz, H-6, 2 H), 5.48 (dd, ³*J*₁ = 7.8 Hz, ⁴*J*₂ = 1.8 Hz, H-5, 2 H), 3.84 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.00 (quartet, ³*J* = 6.6 Hz, CONHC*H*2, 4 H), 2.43 (t, ³*J* = 6.6 Hz, 4 H, CH₂CO), 1.42–1.28 (m, NHCH₂C*H*₂, 4 H), 1.28–1.12 (m, (CH₂)₅, 10 H). ¹³C NMR: δ = 169.2 (2 C), 163.8 (2 C), 150.8 (2 C), 146.2 (2 C), 100.4 (2 C), 44.8 (2 C), 38.4 (2 C), 34.2 (2 C), 29.0 (2 C), 28.9, 28.7 (2 C), 26.4 (2 C). C₂₃H₃₄N₆O₆ (490.55): calcd; C 56.31, H 6.99, N 17.13; found C 56.49, H 7.08, N 17.25.

N,*N*'-(decane-1,10-diyl)bis{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (11)

Mp 214–216 °C. ¹H NMR: δ = 11.22 (s, H-3, 2 H), 7.94 (t, ³*J* = 6.6 Hz, CONH, 2 H), 7.37 (s, H-6, 2 H), 3.81 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.00 (quartet, ³*J* = 6.6 Hz, 4 H, CONHCH₂), 2.41 (t, ³*J* = 6.6 Hz, CH₂CO, 4 H), 1.72 (s, CH₃, 6 H), 1.49–1.23 (m, NHCH₂CH₂, 4 H), 1.23–1.11 (m, (CH₂)₆, 12 H). ¹³C NMR: δ = 169.2 (2 C), 164.3 (2 C), 150.7 (2 C), 141.9 (2 C), 107.9 (2 C), 44.6 (2 C), 38.4 (2 C), 34.3 (2 C), 29.0 (2 C), 28.9 (2 C), 28.7 (2 C), 26.3 (2 C), 11.9 (2 C). IR (KBr): v = 3379, 3172, 3041, 2930, 2854, 1699, 1697, 1670, 1550, 1470, 1364, 1217 cm⁻¹. C₂₆H₄₀N₆O₆ (532.63): calcd. C 58.63, H 7.57, N 15.78, O 18.02; found C 58.48, H 7.38, N 15.60.

N,*N*'-(decane-1,10-diyl)bis{3-[5-nitro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (12)

Yellowish solid, mp 218–219 °C. ¹H NMR: $\delta = 12.02$ (br s, H-3, 2 H), 9.13 (s, H-6, 2 H), 7.97 (t, ³*J* = 6.6 Hz, CONH, 2 H), 4.05 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 3.00 (quartet, ³*J* = 6.6 Hz, 4 H, CONHC*H*₂), 2.51 (t, ³*J* = 6.6 Hz, CH₂CO, 4 H), 1.40–1.26 (m, NHCH₂C*H*₂, 4 H), 1.26–1.12 (m, (CH₂)₆, 12 H). ¹³C NMR: $\delta = 169.1$ (2 C), 154.9 (2 C), 151.2 (2 C), 149.1 (2 C), 124.4 (2 C), 46.2 (2 C), 38.5 (2 C), 33.6 (2 C), 29.0 (2 C), 28.9 (2 C), 28.7 (2 C), 26.4 (2 C). IR (KBr): $\nu = 3327$, 3200, 3087, 2931, 2853, 1728, 1691, 1637, 1620, 1554, 1515, 1465, 1371, 1319, 1271, 1238, 1203 cm⁻¹. C₂₄H₃₄N₈O₁₀ (594,57): calcd. C 48.48, H 5.76, N 18.85, O 26.91; found C 48.56, H 5.81, N 19.03.

N,N'-(1,2-phenylene)bis{3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (13)

Mp 288–289 °C (decomp.). ¹H NMR: $\delta = 11.78$ (br s, H-3, 2 H), 9.37 (s, CONH, 2 H), 8.16 (s, H-6, 2 H), 7.51 (dd, ${}^{3}J_{I} = 6.0$ Hz, ${}^{4}J_{I} = 3.3$ Hz, *o*-H, 4 H), 7.13 (dd, ${}^{3}J_{I} = 6.0$ Hz, ${}^{4}J_{I} = 3.3$ Hz, *m*-H, 4 H), 3.99 (t, ${}^{3}J = 6.6$ Hz, >NCH₂, 4 H), 2.75 (t, ${}^{3}J = 6.6$ Hz, CH₂CO, 4 H). ¹³C NMR: $\delta = 169.0$ (2 C), 162.3 (2 C), 159.7 (2 C), 150.3 (2 C), 145.9 (2 C), 130.2 (2 C), 124.8 (2 C), 94.2 (2 C), 44.9 (2 C), 34.8 (2 C). IR (KBr): v = 3471, 3251, 3190, 3089, 3047, 2829, 1718, 1708, 1639, 1537, 1535, 1446, 1436, 1353, 1257, 1222, 1217 cm⁻¹. C₂₀H₁₈Br₂N₆O₆ (598.20): calcd. C 40.16, H 3.03, N 14.05; found: C 40.08, H 2.92, N 14.07.

N,*N*'-(1,3-phenylene)bis{3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamide} (14)

White spherulic crystals, mp 266–267 °C. ¹H NMR: $\delta = 11.78$ (br s, H-3, 2 H), 10.08 (s, CONH, 2 H), 8.17 (s, H-6, 2 H), 7.34-7.16 (m, aromatic H, 8 H), 3.97 (t, ³*J* = 6.6 Hz, >NCH₂, 4 H), 2.73 (t, ³*J* = 6.6 Hz, CH₂CO, 4 H). ¹³C NMR: $\delta = 168.7$ (2 C), 159.7 (2C), 150.2 (2C), 145.9 (2C), 139.2 (2C), 128.9 (2C), 114.2 (2C), 110.1 (2C), 94.1 (2C), 44.9 (2C), 34.9 (2C). IR (KBr): v = 3481, 3330, 1690, 1647, 1544, 1452, 1440, 1348 cm⁻¹. C₂₀H₁₈Br₂N₆O₆ (598.20): calcd. C 40.16, H 3.03, N 14.05; found: C 40.33, H 3.17, N 13.89.

N,*N*'-(1,4-phenylene)bis{3-[2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propanamide} (15)

Mp > 300 °C. ¹H NMR: $\delta = 11.27$ (br d, ⁴ $J_I = 1.8$ Hz, H-3, 2 H), 9.99 (s, CONH, 2 H), 7.60 (d, ³J = 7.8 Hz, H-6, 2 H), 7.47 (s, aromatic H, 4 H), 5.51 (dd, ³ $J_I = 7.8$ Hz, ⁴ $J_2 = 1.8$ Hz, H-5,

2 H), 3.94 (t, ${}^{3}J = 6.3$ Hz, >NCH₂, 4 H), 2.69 (t, ${}^{3}J = 6.3$ Hz, CH₂CO, 4 H). 13 C NMR: $\delta = 168.4$ (2C), 163.8 (2C), 150.9 (2C), 146.3 (2C), 134.4 (2C), 119.6 (2C), 100.5 (2C), 44.7 (2C), 35.0 (2C). IR (KBr): v = 3463, 3327, 3174, 3051, 1683, 1573, 1517, 1461, 1407, 1309, 1303, 1242 cm⁻¹. C₂₀H₂₀N₆O₆ (440.41): calcd. C 54.54, H 4.58, N 19.08; found C 54.59, H 4.37, N 19.02.

Unsymmetrical α, ω -nucleobase amide-conjugated systems and their exemplary synthetic precursors

N-(6-aminohexyl)-3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propanamide (16)

To a stirred solution of 1,6-hexylenediamine (**2c**, 3 mmol) (at room temperature) in anhydrous DMF (8 mL), a mixture containing **1c** (1 mmol), DMT-MM (1 mmol) and DMF (2 mL) was added within 1 h. Stirring was continued for 30 min. The volatiles were removed under reduced pressure using a rotary evaporator and the residue purified by gradient column chromatography (50% vol. MeOH/CHCl₃ to 2% NH_{3(aq)}/MeOH) to yield the title compound as white crystals (0.33 mmol). Mp 226–228 °C. ¹H NMR: δ = 9.20 (br s, H-3, 1 H), 8.02 (t, ³*J*₁ = 6.6 Hz, CONH, 1 H), 7.90 (s, H-6, 1 H), 5.35 (br s, NH₂, 2 H), 3.85 (t, >NCH₂, ³*J*₁ = 6.3 Hz, 2 H), 3.00 (quartet, ³*J* = 6.6 Hz, CONH*CH*₂, 2 H), 2.65 (quintet, ³*J* = 6.6 Hz, *CH*₂NH₂, 2 H), 2.45 (t, ³*J* = 6.6 Hz, CH₂CO, 2 H), 1.58–1.10 (m, (*CH*₂)₄CH₂NH₂, 8 H). ¹³C NMR: δ = 169.4, 162.2, 152.3, 145.2, 94.7, 53.5, 45.2, 38.4, 34.3, 30.0, 29.0, 26.1, 25.9. C₁₃H₂₁BrN₄O₃ (361.23): calcd. C 43.22, H 5.86, N 15.51; found C 43.05, H 6.03, N 15.51.

N-Boc protected amine precursor 17 and unsymmetrical conjugated α,ω-nucleosides 18– 25

General procedure:

To a stirred (room temperature) solution of the appropriate acidic component (**1b**, **c**, **e**–**g**) (1 mmol) in anhydrous DMF (8 mL), the amine unit (**2c**, **f**–**l**, **2ba**) (1 mmol) was added. In the case of synthesis of **19**–2**3**, when amine hydrofluoroacetate was used, 1 mmol of *N*-methylmorpholine was added to liberate the free amine. When **1ea** was the acid component, an additional 1 mmol of *N*-methylmorpholine was used. After 10 minutes to the formed clear solution, DMT-MM (1 mmol) was added. The progress of the reaction was monitored by TLC (20% vol. MeOH/CHCl₃). After 1.5–6 h the volatiles were removed under reduced pressure

and the residue purified by gradient column chromatography (0–50% vol. MeOH/CHCl₃). All products were obtained as white solids.

tert-butyl 3-{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propanamido}propylcarbamate (17)

Mp 122–123 °C. ¹H NMR (CDCl₃): $\delta = 10.60$ (s, H-3, 1 H), 7.34 (s, CH₂CON*H*, 1 H), 7.29 (s, H-6, 1 H), 5.30 (s, NHBoc, 1 H), 4.04 (t, >NCH₂, ${}^{3}J_{1} = 6.6$ Hz, 2 H), 3.29 (quartet, CONHC*H*₂, ${}^{3}J_{1} = 6.9$ Hz, 2 H), 3.10 (t, *CH*₂NHBoc, ${}^{3}J_{1} = 6.9$ Hz, 2 H), 2.67 (t, *CH*₂CONH, ${}^{3}J_{1} = 6.6$ Hz, 2 H), 1.85 (s, CH₃, 3 H), 1.62 (m, CH₂CH₂CH₂, 2 H), 1.42 (s, C(CH₃)₃, 9 H).¹³C NMR (CDCl₃): $\delta = 170.6$, 165.3, 156.4, 151.4, 142.3, 110.0, 79.2, 45.7, 37.2, 36.3, 34.9, 29.7, 28.4 (3C), 12.1. C₁₆H₂₆N₄O₅ (354.40): calcd. C 54.22, H 7.39, N 15.81; found C 54.40, H 7.38, N 15.76.

3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-*N*-(9*H*-purin-6-yl)propanamide (18)

Mp 234–236 °C. ¹H NMR δ = 12.85 (br s, H-9, 1 H), 11.24 (br s, H-3, 1 H), 8.07 (br s, CONH, 1 H), 7.55 (s, H-2, 1 H), 7.51 (s, H-8, 1 H), 7.10 (s, H-5, 1 H), 3.81 (t, >NCH₂, ³*J*₁ = 6.6 Hz, 2 H), 2.60 (t, CH₂CO, ³*J*₁ = 6.6 Hz, 2 H), 1.74 (s, CH₃, 3 H). C₁₃H₁₃N₇O₃ (315.29): calcd. C 49.52, H 4.16, N 31.10; found C 49.38, H 4.03, N 30.96.

3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-*N*-{3-[5-nitro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]propyl}propanamide (19)

Mp 289–291 °C. ¹H NMR δ = 11.90–11.05 (br s, 2 H-3, 2 H), 9.33 (s, H-6, 1 H), 8.21 (t, ³*J*₁ = 6.6 Hz, CONH, 1 H), 8.10 (s, H-6, 1 H), 3.90 (t, >NCH₂, ³*J*₁ = 6.6 Hz, 2 H), 3.83 (t, >NCH₂, ³*J*₁ = 6.6 Hz, 2 H), 3.08 (quartet, C*H*₂NH, ³*J*₁ = 6.6 Hz, 2 H), 2.48 (t, C*H*₂CO, ³*J*₁ = 6.6 Hz, 2 H), 1.76 (quintet, C*H*₂CH₂C*H*₂, ³*J*₁ = 6.6 Hz, 2 H). ¹³C NMR: δ = 169.7, 159.7, 155.3, 150.8, 150.2, 149.5, 145.9, 125.0, 94.1, 47.4, 45.1, 35.6, 34.2, 28.4. C₁₄H₁₅BrN₆O₇ (459.21): calcd. C 36.62, H 3.29, N 18.30; found C 36.77, H 3.11, N 18.21.

3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-*N*-{6-[5-nitro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]hexyl}propanamide (20)

Mp 133–135 °C. ¹H NMR δ = 12.00 (br s, H-3, 1 H), 11.77 (s, H-3, 1 H), 9.28 (s, H-6, 1 H), 8.02 (s, H-6, 1 H), 7.98 (t, ³*J*₁ = 6.6 Hz, CONH, 1 H), 3.88 (t, >NCH₂, ³*J*₁ = 6.6 Hz, 2 H), 3.82 (t, ³*J*₁ = 6.6 Hz, >NCH₂, 2 H), 3.00 (t, ³*J*₁ = 6.6 Hz, C*H*₂NH, 2 H), 2.44 (t, ³*J*₁ = 6.6 Hz, CH₂CO, 2 H), 1.61 (m, >NCH₂CH₂, 2 H), 1.52–1.15 (m, (CH₂)₃CH₂NH, 6 H). ¹³C NMR: δ = 169.2, 159.7, 155.0, 150.7, 150.1, 149.3, 145.9, 124.9, 94.0, 49.1, 45.2, 38.4, 34.0, 28.9, 28.3, 26.0, 25.4. C₁₇H₂₁BrN₆O₇ (501.29): calcd. C 40.73, H 4.22, N 16.76; found C 40.58, H 4.24, N 16.90.

3-(6-chloro-9*H*-purin-9-yl)-*N*-(3-{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propanamido}propyl)propanamide (21)

Mp 128–130 °C. ¹H NMR: δ = 11.24 (s, H-3, 1 H), 8.08–7.95 (m, H-2, H-8, 2 CONH, 4 H), 7.42 (d, ⁴J₂ = 0.9 Hz, H-6, 1 H), 4.34 (t, N⁹(purine)-CH₂, ³J₁ = 6.9 Hz, 2 H), 3.81 (t, >NCH₂, ³J₁ = 6.6 Hz, 2 H), 3.58-3.22 (m, CH₂CH₂CH₂, 4 H), 2.98 (m, NHCH₂, 4 H), 2.66 (t, ³J₁ = 6.6 Hz, CH₂CONH, 2 H), 2.51 (t, ³J₁ = 6.9 Hz, CH₂CONH, 2 H), 1.71 (d, CH₃, ⁴J₂ = 0.9 Hz, 3 H), 1.43 (quintet, CH₂CH₂CH₂, ³J₁ = 6.6 Hz, 2 H). ¹³C NMR: δ = 169.5, 169.1, 164.4, 156.7, 150.8, 148.3, 145.5, 141.9, 140.4, 123.9, 108.0, 56.0, 44.6, 40.0, 36.3, 35.4, 34.4, 29.1, 12.0. C₁₉H₂₃ClN₈O₄ (462.89): calcd. C 49.30, H 5.01, N 24.21; found C 49.25, H 4.92, N 24.06.

3-(6-chloro-9*H*-purin-9-yl)-*N*-{3-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]propyl}-propanamide (22)

Mp 118–120 °C. ¹H NMR: δ = 11.24 (s, H-3, 1 H), 8.31 (t, ³*J*₁ = 6.3 Hz, CONH, 1 H), 8.05 (s, H-2, 1H), 8.02 (s, H-8, 1 H), 7.58 (d, ⁴*J*₂ = 0.9 Hz, H-6, 1 H), 4.36 (t, N⁹(purine)-CH₂, ³*J*₁ = 6.9 Hz, 2 H), 3.56 (t, ³*J*₁ = 6.9 Hz, >NCH₂, 2 H), 3.00 (quartet, ³*J*₁ = 6.9 Hz, CONHC*H*₂, 2 H), 2.70 (t, ³*J*₁ = 6.9 Hz, CH₂CO, 2 H), 1.75 (d, ⁴*J*₂ = 0.9 Hz, CH₃, 3 H), 1.65 (quintet, ³*J*₁ = 6.9 Hz, CH₂CH₂, 2 H). ¹³C NMR: δ = 169.3, 164.4, 156.7, 150.9, 148.3, 145.5, 141.7, 140.4, 123.9, 108.4, 54.0, 45.3, 35.7, 35.4, 28.4, 11.9. C₁₆H₁₈ClN₇O₃ (391.81): calcd. C 49.05, H 4.63, N 25.02; found C 49.22, H 4.55, N 24.86.

(2*S*,3*S*,5*R*)-3-hydroxy-5-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-*N*-{6-[5nitro-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]hexyl}tetrahydrofuran-2-carboxamide (23)

Mp 106–107 °C. ¹H NMR: δ = 11.95 (br s, H-3, 1 H), 11.33 (s, H-3, 1 H), 9.28 (s, H-6, 1 H), 8.25 (t, ³*J*₁ = 6.3 Hz, CONH, 1 H), 8.12 (s, H-6, 1 H), 6.31 (dd, ³*J*₁ = 8.4 Hz, ³*J*₂ = 5.7 Hz, H-1', 1 H), 5.60 (br s, OH, 1 H), 4.30 (br s, H-4', 1 H), 3.83 (t, ³*J*₁ = 6.9 Hz, >NCH₂, 2 H), 3.09 (quartet, ³*J*₁ = 6.9 Hz, C*H*₂NH, 2 H), 2.25–2.02 (m, 2 H-2', 2 H), 1.77 (s, CH₃, 3 H), 1.63 (m, >NCH₂C*H*₂, 2 H), 1.52–1.31 (m, (C*H*₂)₃CH₂NH, 6 H). ¹³C NMR: δ = 170.1, 163.7, 158.5, 155.1, 150.7, 149.4, 137.0, 124.9, 109.4, 85.5, 73.7, 66.0, 49.2, 38.4, 28.8, 28.3, 26.0, 25.4, 12.4. C₂₀H₂₆N₆O₉ (494.46): calcd. C 48.58, H 5.30, N 17.00; found C 48.71, H 5.15, N 17.03.

{(2*R*,3*S*,5*R*)-3-acetoxy-5-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)yl]tetrahydrofuran-2-yl}methyl 4-[(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)amino]-4-oxobutanoate (24)

Mp 145–147 °C. ¹H NMR: δ = 11.39 (br s, 2 H-3, 2 H), 10.62 (s, H-1, 1 H), 9.24 (s, H-6, 1 H), 8.02 (br s, CONH, 1 H), 7.49 (s, H-6, 1 H), 6.17 (dd, ³*J*₁ = 8.4 Hz, ³*J*₂ = 5.7 Hz, H-1', 1 H), 5.19–5.17 (m, H-3', 1 H), 4.25 (d, ³*J*₁ = 4.2 Hz, H-5', 2 H), 4.15 (dd, ³*J*₁ = 6.9 Hz, ³*J*₂ = 4.2 Hz, H-4', 1 H), 2.67–2.56 (m, (CH₂)₂, 4 H), 2.46–2.36 (m, H-2^{'b}, 1 H), 2.22 (ddd, ²*J*₁ = 14.4 Hz, ³*J*₁ = 5.7 Hz, H-2^{a'}, ³*J*₁ = 2.1 Hz, 1 H), 2.07 (s, OCCH₃, 3 H), 1.79 (s, CH₃, 3 H). ¹³C NMR: δ = 172.1, 170.2, 170.0, 163.6, 160.6, 150.4, 149.6, 135.6, 129.1, 113.3, 110.0, 83.9, 81.1, 74.0, 63.7, 35.6, 30.10, 28.7, 20.7, 12.1. C₂₀H₂₃N₅O₁₀ (493,42): calcd. C 48.68, H 4.70, N 14.19; found C 48.44, H 4.77, N 13.95.

3-[5-bromo-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]-*N*-({(2*R*,3*S*,5*R*)-3-hydroxy-5-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl]tetrahydrofuran-2-yl}methyl)propanamide (25)

Mp 152–154 °C. ¹H NMR: δ = 11.71 (br s, H-3, 1 H), 11.27 (br s, H-3, 1 H), 8.17 (t, ³*J*₁ = 6.6 Hz, CONH, 1 H), 8.05 (s, H-6, 1 H), 7.48 (s, H-6, 1 H), 6.12 (t, ³*J*₁ = 8.1 Hz, H-1', 1 H), 5.28 (d, ³*J*₁ = 4.5 Hz, OH), 4.12–4.05 (m, H-3', 1 H), 3.87 (t, ³*J*₁ = 6.6 Hz, >NCH₂, 2 H), 3.73–3.67 (m, H-4', 1 H), 3.24–3.16 (m, CH₂CO, H-5', 4 H), 2.11–2.04 (m, H-2', 2 H), 1.80 (s, CH₃, 3 H). ¹³C NMR: δ = 170.1, 169.8, 163.7, 151.2, 150.7, 147.3, 136.1, 95.4, 84.9, 83.9, 71.2, 45.1, 42.3, 41.0, 38.7, 12.0. C₁₇H₂₀BrN₅O₇ (486.27): calcd. C 41.99, H 4.15, N 14.40; found C 42.13, H 4.02, N 14.22.