Supporting Information

for

Synthesis of 6-PEtN- α -D-GalpNAc- $(1\rightarrow 6)$ - β -D-Galp- $(1\rightarrow 4)$ - β -D-GlcpNAc- $(1\rightarrow 3)$ - β -D-Galp- $(1\rightarrow 4)$ - β -D-Glcp, a *Haemophilus influenzae* lipopolysacharide structure, and biotin and protein conjugates thereof

Andreas Sundgren¹, Martina Lahmann² and Stefan Oscarson^{*3}

¹Department of Chemistry, Göteborg University, S-412 96 Gothenburg, Sweden; ²The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K. and ³Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, Phone: +353 17162318

E-Mail: Andreas Sundgren - andreas@riktad.com; Martina Lahmann m.lahmann@bangor.ac.uk; Stefan Oscarson - stefan.oscarson@ucd.ie *Corresponding author

General methods

Organic solutions were dried over MgSO₄ or Na₂SO₄ before concentration, which was performed under reduced pressure at <45 °C (bath temperature). NMR spectra were recorded at 25 °C and 400 MHz (¹H) in CDCl₃ with Me₄Si as internal standard ($\delta =$ 0.00), 75 or 100 MHz (¹³C) in CDCl₃ with CDCl₃ as internal standard ($\delta =$ 77.16) or 67 MHz (³¹P) in H₂O with H₃PO₄ as external standard ($\delta =$ 0.00), unless otherwise stated. TLC was performed on silica gel 60 F254 with detection by charring with 8% sulfuric acid or ninhydrin. Silica gel (0.040–0.063 mm) was used for column chromatography.

Ethyl 2,3-di-*O*-acetyl-4-*O*-benzyl-6-*O*-tert-butyldimethylsilyl-1-thio-β-D-

(3). 2,3-di-O-acetyl-4,6-O-benzylidene-1-thio-B-Dgalactopyranoside Ethyl galactopyranoside (1, 1.43 g, 3.61 mmol) [13] was dissolved in 1M BH₃ in THF (36 mL) and 1M Bu₂BOTf in CH₂Cl₂ (4.1 mL) was added slowly at 0 °C. After 2 h, triethylamine (2 mL) was added followed by slow addition of MeOH (10 mL). The solution was concentrated, coevaporated with MeOH three times and with toluene two times, and the residue purified by silica gel column chromatography (toluene-EtOAc 2:1) to yield ethyl 2,3-di-O-acetyl-4-O-benzyl-1-thio-β-D-galactopyranoside (2, 1.22) g, 3.07 mmol, 85%). ¹³C NMR (CDCl₃): δ 20.8, 20.8 (COCH₃), 61.4, 68.1, 74.0, 74.9, 74.9, 78.0, 83.5 (C-1-C-6, CH₂Ph), 127.8–138.0 (aromatic C), 169.6, 170.3 (COCH₃). A solution of TBDMS-Cl (633 mg, 4.22 mmol), pyridine (1.0 mL) and 2 (1.02 g, 2.56 mmol) in CH₂Cl₂ (15 mL) was stirred for 18 h. MeOH (1.0 mL) was added and the solution concentrated, coevaporated with toluene and the residue purified by column chromatography (toluene-EtOAc 3:1) to give **3** (1.18 g, 2.30 mmol, 90%). $[\alpha]_D$ +4.4 (*c* 1.1, CHCl₃). ¹H NMR (CDCl₃): δ 0.03 (s, 6H, SiCH₃), 0.87, 0.88 (s, 9H, C(CH₃)₃), 1.23 (t, 3H, SCH₂CH₃), 1.93, 2.04 (s, 6H, COCH₃), 2.70 (m, 2H, SCH₂CH₃), 3.58 (t, 1H, H-5), 3.72–3.74 (m, 2H, H-6), 4.04 (d, 1H, H-4), 4.40 (d, 1H, J_{1,2} 9.88 Hz, H-1), 4.61, 4.70 (d, 2H, CH₂Ph), 4.99 (dd, 1H, H-3), 5.39 (t, 1H, H-2), 7.25–7.34 (m, 5H, aromatic H). ¹³C NMR (CDCl₃): δ -5.4, -5.3 (SiCH₃), 14.9 (SCH₂CH₃), 18.3 (C(CH₃)₃), 20.9, 21.0 (COCH₃), 23.6 (SCH₂CH₃), 26.0 (C(CH₃)₃), 60.9, 68.3, 74.2, 75.0, 75.1, 78.9 (C-2-6, CH₂Ph), 83.5 (C-1), 127.9–138.1 (aromatic C), 169.8, 170.1 (COCH₃). Anal. Calcd for C₂₅H₄₀O₇SSi: C, 58.56; H, 7.86. Found: C, 58.46; H, 7.92.

Ethyl 2-azido-3,4-di-O-benzyl-2-deoxy-6-O-tert-butyldimethylsilyl-1-thio-β-Dgalactopyranoside (6). Pyridine (1.2 mL) and TBDMS-Cl (1.69 g, 6.15 mmol) were added to a solution of 2-azido-2-deoxy-1-thio- β -D-galactopyranoside (4, 1.02 g, 4.10 mmol) [14] in pyridine (17 mL) and the reaction was stirred for 48 h. MeOH (5 mL) was added and the solution concentrated, coevaporated with toluene and the residue purified by column chromatography (toluene-EtOAc 2:1) to obtain ethyl 2-azido-2deoxy-6-O-tert-butyldimethylsilyl-1-thio- β -D-galactopyranoside (5, 1.86 g, 3.79 mmol, 92%). $[\alpha]_{D}$ +7.6° (c 1.0, CHCl₃). ¹H NMR (CDCl₃): δ 1.07 (s, 9H, C(CH₃)₃), 1.30 (t, 3H, SCH₂CH₃), 2.74 (m, 2H, SCH₂CH₃), 3.46 (t, 1H, H-5), 3.51 (m, 1H, H-3), 3.60 (t, 1H, H-2), 3.91 (d, 2H, H-6), 4.10 (s, 1H, H-4), 4.26 (d, 1H, H-1), 7.40-7.73 (m, 10H, aromatic H). ¹³C NMR (CDCl₃): δ 15.1 (SCH₂CH₃), 19.2 (C(CH₃)₃), 24.4 (SCH₂CH₃), 26.9 (C(CH₃)₃), 63.8, 63.8, 69.0, 74.4, 77.8 (C-2-6), 84.3 (C-1), 127.9-135.8 (aromatic C). Compound 5 (1.86 g, 3.79 mmol) was dissolved in DMF (15 mL) and 60% NaH (661 mg, 16.5 mmol) added. After stirring for 10 min, benzyl bromide (1.50 mL, 12.6 mmol) was added, the reaction stirred for 30 min followed by slow addition of MeOH (4 mL). The mixture was diluted with toluene, washed with water $(2 \times 15 \text{ mL})$, concentrated and the residue coevaporated with toluene. Purification by column chromatography (pentane \rightarrow pentane-toluene 1:10) gave 6 (2.16 g, 3.24) mmol, 85%). [α]_D –0.4 (*c* 1.7, CHCl₃). ¹H NMR (CDCl₃): δ 1.10 (s, 9H, C(CH₃)₃), 1.29 (t, 3H, SCH₂CH₃), 2.72 (m, 2H, SCH₂CH₃), 3.41–3.47 (m, 2H, H-3, H-5), 3.83 (d, 2H, H-6), 3.90 (t, 1H, H-2), 4.01 (d, 1H, H-4), 4.23 (d, 1H, H-1), 4.64 (d, 1H, CH₂Ph), 4.80 (d, 2H, CH₂Ph), 4.97 (d, 1H, CH₂Ph), 7.28–7.68 (m, 20H, aromatic H). ¹³C NMR (CDCl₃): δ 15.1 (SCH₂CH₃), 19.3 (C(CH₃)₃), 24.3 (SCH₂CH₃), 27.0 (C(CH₃)₃), 62.3, 62.8, 72.4, 72.7, 74.7, 78.9, 82.7, 84.2 (C-1-6, CH₂Ph), 127.6–138.6 (aromatic *C*). Anal. Calcd for C₃₈H₄₅N₃O₄SSi: C, 68.33; H, 6.79. Found: C, 68.42; H, 6.68.

3-Azidopropyl (3-*O*-acetyl-4,6-*O*-benzylidene-2-deoxy-2-phthalimido-β-Dglucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6tri-*O*-benzyl-β-D-glucopyranoside (11). CSA (90 mg) was added to a solution of 3azidopropyl (2,6-di-*O*-benzyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-Dglucopyranoside (7, 1.46 g, 1.67 mmol) [17] and benzaldehyde dimethyl acetal (490 µL, 3.26 mmol) in DMF (15 mL). After stirring at 40 °C under reduced pressure for 1.5 h, triethylamine (2 mL) and toluene (25 mL) was added. The solution was washed with water and NaHCO₃ (aq), dried, concentrated and purified by column chromatography (toluene-EtOAc 18:1) to give 3-azidopropyl (2,6-di-*O*-benzyl-3,4-*Oendo*-benzylidene-β-D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-

glucopyranoside (8). The residue from last step and NaBH₃CN (890 mg, 13.5 mmol) in dry THF (20 mL) containing 3Å molecular sieves was stirred for 10 min followed by slow addition of HCl/Et₂O (sat.) until no starting material could be detected by TLC. The mixture was diluted with toluene (30 mL), filtered through Celite, washed with water and stirred with 0.1 M HCl (20 mL, aq) overnight. The organic layer was washed with water, NaHCO₃ (aq), dried, concentrated and purified by column chromatography (toluene-EtOAc 9:1) to yield 3-azidopropyl (2,4,6-tri-*O*-benzyl- β -Dgalactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (9, 1.28 g, 1.33 mmol, 80%). ¹³C NMR (CDCl₃): δ 29.4 (OCH₂CH₂CH₂N₃), 48.4 (OCH₂CH₂CH₂N₃), 66.6, 68.1, 68.3, 68.5, 73.3, 73.4, 73.5, 73.6, 74.2, 75.1, 75.2, 75.5, 76.0, 76.7, 80.7, 81.9, 83.0 (C-2^I-6^I, 2^{II}-6^{II}, OCH₂CH₂CH₂N₃), *C*H₂Ph), 102.8, 103.6 (C-1^I, 1^{II}), 126.5– 139.2 (aromatic *C*). Ethyl 3-*O*-acetyl-4,6-*O*-benzylidene-2-deoxy-2-phthalimido-1thio-β-D-glucopyranoside (**10**, 3.21 g, 6.65 mmol) [19] and **9** (6.74 g, 4.86 mmol) were dissolved in dry CH₂Cl₂ (30 mL) and 4Å molecular sieves was added. The mixture was stirred for 30 min, cooled to -40 °C followed by addition of NIS (3.01 g, 13.4 mmol). After another 20 min AgOTf (120 mg) was added and the reaction mixture stirred for 35 min at -25 °C, quenched with Et₃N, diluted with toluene, filtered through Celite, concentrated and purified by column chromatography (toluene-EtOAc 6:1) to afford **11** (5.59 g, 4,03 mmol, 83%). [α]_D -42.4 (*c* 0.5, CHCl₃). ¹³C NMR (CDCl₃): 20.6, 20.8 (COCH₃), 29.3 (OCH₂CH₂CH₂N₃), 48.4 (OCH₂CH₂CH₂N₃), 55.4, 55.5, 65.9, 66.1, 66.4, 66.5, 67.7, 67.8, 68.0, 68.3, 68.4, 69.3, 69.5, 69.7, 70.6, 72.2, 72.5, 73.2, 73.2, 73.5, 74.1, 74.1, 74.3, 74.6, 74.8, 75.1, 75.1, 75.4, 75.6, 75.8, 75.8, 75.8, 77.3, 77.9, 78.1, 79.0, 79.8, 81.6, 81.8, 82.9, 83.1, 85.5 (C-2¹-6¹, 2^{II}-6^{II}, 2^{III}-6^{III}, OCH₂CH₂CH₂CH₂N₃, *C*H₂Ph), 100.1, 101.8, 102.4, 103.5 (C-1¹, 1^{II}, 1^{III}, CHPh), 125.5–138.6 (aromatic *C*), 167.1, 168.5, 170.4 (*C*OCH₃, PhthCO). Anal. Calcd for C₇₄H₈₂N₄O₁₇: C, 69.25; H, 5.96. Found: C, 69.18; H, 6.10.

3-Azidopropyl (2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6tri-*O*-benzyl- β -D-glucopyranoside (13). NaOMe (0.2 mL, 1 M in MeOH) was added to a solution of 11 (2.90 g, 2.09 mmol) dissolved in MeOH (45 mL) and the solution stirred for 2.5 h, neutralized with Dowex H⁺, filtered and concentrated. The product was dissolved in EtOH (50 mL) and ethylenediamine (5 mL) and the reaction refluxed for 7 h, concentrated, coevaporated with toluene and dried. The residue was dissolved in pyridine (20 mL) and Ac₂O (6 mL), stirred for 80 min, diluted with toluene,

washed with water and NaHCO₃ (aq), dried, concentrated and gave, after purification by column chromatography (toluene-EtOAc 3:1), 3-azidopropyl (2-acetamido-3-Oacetyl-4,6-*O*-benzylidene-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl- β -D-galactopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (12, 2.52 g, 1.94) mmol, 93 %). [α]_D -35.1 (*c* 1.1, CHCl₃). ¹³C NMR (CDCl₃): δ 20.8, 22.9 (COCH₃), 29.3 (OCH₂CH₂CH₂N₃), 48.4 (OCH₂CH₂CH₂N₃), 54.6, 66.5, 66.6, 68.3, 72.2, 73.3, 73.4, 73.5, 74.5, 75.0, 75.1, 75.1, 75.5, 76.3, 76.5, 78.7, 80.5, 81.8, 83.0 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, OCH₂CH₂CH₂CH₂N₃, CH₂Ph), 100.1, 101.8, 102.4, 103.5 (C-1^I, 1^{II}, 1^{III}, CHPh), 126.2–129.5, 138.2, 138.4, 138.7, 139.0, 139.1, 139.2 (aromatic C), 169.8, 171.1 (COCH₃, NHCOCH₃). A solution of **12** (1.22 g, 940 µmol) in THF (14 mL) was stirred together with 3Å molecular sieves for 30 min. NaBH₃CN (301 mg, 4.78 mmol) was added, the mixture stirred for another 10 min followed by slow addition of HCl/Et₂O until no starting material could be detected by TLC. The reaction mixture was diluted with toluene (30 mL), filtered, washed with water and NaHCO₃ (aq), dried, concentrated and purified by column chromatography (toluene-EtOAc 3:1) to give **13** (990 mg, 761 μ mol, 81%). [α]_D -21.7 (*c* 1.2, CHCl₃). ¹³C NMR (CDCl₃): δ 20.9 (COCH₃), 22.9 (NHCOCH₃), 29.3 (OCH₂CH₂CH₂N₃), 48.4 (OCH₂CH₂CH₂N₃), 53.9, 66.5, 68.2, 70.7, 71.0, 73.4, 73.5, 73.9, 74.0, 74.5, 75.0, 75.2, 75.5, 75.9, 76.3, 76.5, 80.3, 81.3, 81.7, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, OCH₂CH₂CH₂CH₂N₃, CH₂Ph), 102.4, 102.7, 103.6 (C-1^I, 1^{II}, 1^{III}), 126.2-129.1, 137.5, 138.3, 138.4, 138.7, 139.1, 139.1, 139.3 (aromatic C), 169.8, 171.8 (COCH₃, NHCOCH₃). Anal. Calcd for C₇₄H₈₄N₄O₁₇: C, 68.29; H, 6.51. Found: C, 68.31; H, 6.57.

S6

3-Azidopropyl (2,3-di-O-acetyl-4-O-benzyl-6-O-tert-butyldimethylsilyl-β-Dgalactopyranosyl)- $(1\rightarrow 4)$ -(2-acetamido-3-O-acetyl-6-O-benzyl-2-deoxy- β -Dglucopyranosyl)- $(1\rightarrow 3)$ -(2,4,6-tri-O-benzyl- β -D-galactopyranosyl)- $(1\rightarrow 4)$ -2,3,6tri-O-benzyl-β-D-glucopyranoside (14). A solution of 3 (155 mg, 303 μmol) and 13 (210 mg, 161 µm) in CH₂Cl₂ (2.5 mL) containing 4Å molecular sieves was stirred for 1.5 h. The reaction mixture was cooled to -35 °C, NIS (157 mg, 697 µmol) added, stirred for another 10 min followed by addition of a catalytic amount of AgOTf. After 40 min at -25 °C, the reaction was quenched with triethylamine (0.5 mL), diluted with toluene, filtered through Celite, concentrated and purified by column chromatography (toluene-EtOAc 3:1) to afford 14 (217 mg, 124 µmol, 77%). [a]_D -6.4 (c 1.6, CHCl₃). ¹³C NMR (CDCl₃): δ -5.4, -5.3 (SiCH₃), 18.2 (C(CH₃)₃), 20.8, 20.9 (COCH₃), 22.8 (NHCOCH₃), 25.9 (C(CH₃)₃), 29.6 (OCH₂CH₂CH₂N₃), 48.4 (OCH₂CH₂CH₂N₃), 54.0, 60.1, 66.5, 68.1, 68.4, 70.6, 73.4, 73.4, 73.8, 73.8, 74.5, 74.6, 74.9, 75.0, 75.1, 76.6, 80.0, 81.7, 81.8, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, OCH₂CH₂CH₂N₃, CH₂Ph), 100.6, 102.7, 102.8, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{IV}), 127.7-139.1 (aromatic C), 169.3, 169.9, 170.5, 170.9 (COCH₃, NHCOCH₃). Anal. Calcd for C₉₇H₁₁₈N₄O₂₄Si: C, 67.79; H, 6.83. Found: C, 67.64; H, 6.76.

3-(*N*-Benzyloxycarbonyl)-aminopropyl (2-azido-3,4-*O*-dibenzyl-6-*tert*butyldimethylsilyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 6)-(2,3-di-*O*-acetyl-4-*O*benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-(3-*O*-acetyl-6-*O*-benzyl-2-acetamido-2deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (17). H₂S was bubbled through a solution of 14 (105 mg, 60 µmol) in pyridine (4 mL) and triethylamine (2 mL) for 7 h and the solution was concentrated. Pyridine (0.2 mL) and benzylchloroformate (10 μ l, 71 μ mol) were added to a solution of the residue in CH₂Cl₂ (4 mL) at 0 °C, stirred for 20 min, concentrated and coevaporated with toluene. Purification by column chromatography (toluene-EtOAc 2:1) yielded 3-(*N*-benzyloxycarbonyl)-aminopropyl (2,3-di-*O*-acetyl-4-*O*-benzyl-6-*O*-tert-butyldimethylsilyl-β-D-galactopyranosyl)-

 $(1\rightarrow 4)$ - $(2-acetamido-3-O-acetyl-6-O-benzyl-2-deoxy-\beta-D-glucopyranosyl)$ - $(1\rightarrow 3)$ -

(2,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-*O*-benzyl-β-D-

glucopyranoside (**15**, 102 mg, 55 µmol, 91%). $[\alpha]_{\rm D}$ –12.3 (*c* 2.4, CHCl₃). ¹³C NMR (CDCl₃): δ –5.4, –5.3 (SiCH₃), 18.2 (*C*(CH₃)₃), 20.8, 20.9, (COCH₃), 22.8 (NHCOCH₃), 25.9 (C(CH₃)₃), 29.7 (OCH₂CH₂CH₂NH), 38.2 (OCH₂CH₂CH₂NH), 54.0, 60.1, 66.6, 67.4, 68.1, 68.4, 70.6, 73.2, 73.4, 73.4, 73.8, 74.5, 74.7, 74.7, 74.9, 75.0, 75.1, 75.1, 75.4, 76.5, 76.6, 79.9, 81.7, 81.9, 82.9 (C-2¹-6¹, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, OCH₂CH₂CH₂NH, CH₂Ph), 100.6, 102.7, 102.8, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{IV}), 127.8-128.4, 136.8, 137.9, 138.0, 138.3, 138.4, 138.7, 139.1, 139.3 (aromatic *C*), 156.5 156.6 (NHCOOCH₂Ph), 169.4, 169.9, 170.4, 171.3 (COCH₃, NHCOCH₃). 1 M TBAF (130 µl) as a solution in THF was added to a solution of **15** (102 mg, 55 µmol) in THF (8 mL) and the reaction stirred for 24 h at 0 °C. The solution was diluted with toluene (5 mL), washed with 25 mM HCl (5 mL) and water, dried and concentrated. Purification by column chromatography (toluene-EtOAc 3:1) gave 3-(*N*benzyloxycarbonyl)-aminopropyl (2,3-di-*O*-acetyl-4-*O*-benzyl-β-Dgalactopyranosyl)-(1→4)-(-2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2-deoxy-β-D-

glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-glucopyranoside (**16**, 102 mg, 49 μmol, 89%). [α]_D –14.4 (*c* 1.0, CHCl₃). ¹³C NMR (CDCl₃): δ 20.9 21.5 (COCH₃), 22.8 (NHCOCH₃), 29.8

(OCH₂CH₂CH₂NH), 38.2 (OCH₂CH₂CH₂NH), 55.9, 61.9, 66.6, 68.1, 68.2, 68.4, 70.3, 73.2, 73.4, 73.4, 73.7, 73.8, 73.9, 74.5, 74.7, 74.9, 75.0, 75.3, 75.4, 76.4, 76.6, 80.1, 81.6, 81.7, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, OCH₂CH₂CH₂CH₂NH, CH₂Ph), 100.6, 102.6, 102.7, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{IV}), 127.8–128.4, 136.8, 137.5, 137.8, 137.9, 138.2, 138.3, 138.7, 139.0, 139.1, 139.2 (aromatic C), 156.7 (NHCOOCH₂Ph), 169.4, 170.0, 170.6, 171.0 (COCH₃, NHCOCH₃). Bromine was added to a cooled (0 °C) solution of 6 (76 mg, 111 µmol) in CH₂Cl₂ (2 mL). After 20 minutes the reaction mixture was concentrated, co-evaporated with toluene, dissolved in CH₂Cl₂ (0.5 mL) and added to a solution of acceptor 16 (99 mg, 53 µmol) in dry CH₂Cl₂ (1.3 mL) containing 4A molecular sieves. DMF (50 µl) and Et₄NBr (10 mg, 48 µmol) were added at 0 °C under a nitrogen atmosphere and the reaction was stirred at rt for 11 days. The mixture was diluted with toluene (10 mL), guenched with triethylamine (0.5 mL) and methanol (0.3 mL), filtered through a short silica column (toluene-EtOAc 3:1) and concentrated. The residue was dissolved in CH₂Cl₂ (8 mL) followed by addition of 0.1 μ l BF₃·Et₂O, stirred for 30 min, washed with water and NaHCO₃ (aq.), dried, concentrated and purified by column chromatography (toluene-EtOAc 3:1) to yield 17 (99 mg, 42 μ mol, 79%). [α]_D +4.2 (*c* 1.2, CHCl₃). ¹³C NMR (CDCl₃): δ 19.3 (C(CH₃)₃), 20.8, 20.9 (COCH₃), 22.9 (NHCOCH₃), 27.0 (C(CH₃)₃), 29.6 (OCH₂CH₂CH₂NH), 38.2 (OCH₂CH₂CH₂NH), 54.0, 60.0, 62.0, 65.3, 66.6, 67.4, 68.0, 68.1, 68.3, 68.4, 70.5, 71.4, 72.3, 72.6, 73.2, 73.5, 73.6, 73.9, 74.5, 74.9, 75.1, 75.5, 76.6, 77.8, 80.0, 81.7, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, 2^V-6^V, OCH₂CH₂CH₂NH, *C*H₂Ph), 98.8, 100.7, 102.7, 102.9, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{III}, 1^V), 127.8–135.6.1, 136.8, 137.6, 137.9, 138.3, 138.3, 138.4, 138.7, 139.0, 139.0, 139.3 (aromatic C), 156.5

S9

(NHCOOCH₂Ph), 169.3, 169.6, 170.4, 170.8 (COCH₃, NHCOCH₃). Anal. Calcd for C₁₃₅H₁₅₁N₅O₃₀Si: C, 68.95; H, 6.47. Found: C, 68.90; H, 6.38.

 $\begin{aligned} & 3-(N-\text{Benzyloxycarbonyl})-\text{aminopropyl} \quad (2-\text{acetamido-}3,4-O-\text{dibenzyl-}2-\text{deoxy-}\alpha-D-\text{galactopyranosyl})-(1\rightarrow 6)-(2,3-\text{di-}O-\text{acetyl-}4-O-\text{benzyl-}\beta-D-\text{galactopyranosyl})-(1\rightarrow 4)-(3-O-\text{acetyl-}6-O-\text{benzyl-}2-\text{acetamido-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})-(1\rightarrow 3)-(2,4,6-\text{tri-}O-\text{benzyl-}\beta-D-\text{galactopyranosyl})-(1\rightarrow 4)-2,3,6-\text{tri-}O-\text{benzyl-}\beta-D-\end{aligned}$

glucopyranoside (19). H₂S was bubbled through a solution of 17 (105 mg, 60 μmol) in pyridine (4 mL) and triethylamine (2 mL) for 7 h and concentrated. Pyridine (0.5 mL) and Ac₂O (0.1 mL) were added to a solution of the residue in CH₂Cl₂ (2 mL) and stirred for 10 min. The reaction solution was diluted with toluene (3 mL), washed with water, dried and concentrated. Purification by column chromatography (toluene-EtOAc 2:1) gave 3-(*N*-benzyloxycarbonyl)-aminopropyl (2-acetamido-3,4-*O*dibenzyl-6-*tert*-butyldimethylsilyl-2-deoxy-α-D-galactopyranosyl)-(1→6)-(2,3-di-*O*acetyl-4-*O*-benzyl-β-D-galactopyranosyl)-(1→4)-(3-*O*-acetyl-6-*O*-benzyl-2-

acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-*O*-benzyl- β -D-

galactopyranosyl)-(1→4)-2,3,6-tri-*O*-benzyl-β-D-glucopyranoside (**18**, 102 mg, 55 μ mol, 91%). ¹³C NMR (CDCl₃): δ 19.3 (*C*(CH₃)₃), 20.9 (COCH₃), 22.9, 23.4 (COCH₃), 27.0 (C(CH₃)₃), 29.6 (OCH₂CH₂CH₂NH), 38.2 (OCH₂CH₂CH₂NH), 49.2, 53.7, 62.6, 65.1, 66.6, 67.4, 68.0, 68.1, 68.3, 68.4, 70.0, 71.6, 72.4, 72.6, 73.2, 73.4, 73.5, 73.8, 74.0, 74.5, 74.6, 74.8, 74.9, 75.1, 75.5, 76.4, 76.6, 80.1, 81.7, 81.8, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, 2^V-6^V, OCH₂CH₂CH₂NH, CH₂Ph), 97.9, 100.9, 102.7, 102.9, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{IV}, 1^V), 127.8–139.1 (aromatic *C*), 156.5 (NHCOOCH₂Ph), 169.3, 169.6, 170.0, 170.5, 170.9 (COCH₃, NHCOCH₃). 1 M

TBAF (45 µL) as a solution in THF was added to a solution of **18** (55 mg, 23 µmol) in THF (5 mL) and the solution stirred for 24 h at 0 °C, diluted with toluene (5 mL), washed with 15 mM HCl (3 mL) and water, dried and concentrated. Purification by column chromatography (toluene-EtOAc 1:1) produced **19** (42 mg, 20 µmol, 85%). $[\alpha]_{D}$ +10 (*c* 0.6, CHCl₃). ¹³C NMR (CDCl₃): δ 20.9 (COCH₃), 22.8, 23.5 (NHCOCH₃), 29.7 (OCH₂CH₂CH₂NH), 38.3 (OCH₂CH₂CH₂NH), 49.2, 53.8, 61.7, 66.6, 67.4, 68.1, 68.4, 70.1, 71.3, 71.7, 72.3, 73.3, 73.4, 73.5, 73.8, 74.2, 74.3, 74.5, 74.9, 75.1, 75.3, 75.5, 76.4, 76.6, 77.7, 78.4, 80.1, 81.6, 81.7, 82.9 (C-2^I-6^I, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, 2^V-6^V, OCH₂CH₂CH₂NH, *C*H₂Ph), 99.0, 100.6, 102.7, 102.8, 103.5 (C-1^I, 1^{II}, 1^{III}, 1^{IV}, 1^V), 127.8–128.9, 136.8, 137.5, 137.9, 138.2, 138.3, 138.5, 138.7, 139.0, 139.1, 139.2 (aromatic *C*), 156.6 (NHCOOCH₂Ph), 169.3, 170.0, 170.2, 170.8, 170.9 (COCH₃, NHCOCH₃). Anal. Calcd for C₁₂₁H₁₃₇N₃O₃₁: C, 68.25; H, 6.48. Found: C, 68.12; H, 6.41.

3-Aminopropyl (2-acetamido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 6)-(β -D-galactopyranosyl)-(1 \rightarrow 4)-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(β -D-galactopyranosyl)-(1 \rightarrow 4)- β -D-glucopyranoside (20). 1 M NaOMe (0.1 mL) was added to a solution of 19 (41 mg, 19 mmol) dissolved in MeOH (3 mL). After 2.5 h of stirring the solution was neutralized with Dowex H⁺, filtered, concentrated and purified by column chromatography (toluene-EtOAc 1:1) to afford 3-(N-benzyloxycarbonyl)-aminopropyl (2-acetamido-3,4-di-O-benzyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 6)-(4-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-(2-acetamido-6-O-benzyl-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-O-benzyl- β -D-

galactopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (33 mg, 16 μ mol,

84%). ¹³C NMR (CDCl₃): δ 23.1, 23.5 (NHCOCH₃), 29.7 (OCH₂CH₂CH₂CH₂NH), 38.3 (OCH₂CH₂CH₂NH), 49.3, 55.7, 62.2, 66.6, 67.4, 67.6, 68.1, 68.3, 69.9, 70.9, 71.5, 71.7, 72.8, 73.4, 73.4, 73.5, 73.6, 73.7, 74.4, 74.4, 74.6, 74.9, 75.0, 75.1, 75.3, 75.4, 75.9, 76.4, 76.4, 76.5, 77.8, 77.8, 77.9, 80.4, 81.1, 81.7, 82.7, 82.9 (C-2¹-6¹, 2^{II}-6^{II}, 2^{III}-6^{III}, 2^{IV}-6^{IV}, 2^V-6^V, OCH₂CH₂CH₂NH, CH₂Ph), 98.0, 102.4, 102.7, 103.5, 104.0 5 (C-1¹, 1^{II}, 1^{III}, 1^{III}, 1^{IV}, 1^V), 126.1–139.0 (aromatic *C*), 156.6 (NHCOOCH₂Ph), 170.2, 170.3 (NHCOCH₃). The deacetylated compound (22 mg, 11 µmol) was dissolved in MeOH (2 mL) and H₂O (0.5 mL) followed by addition of 1 M HCl (50 µL) and a catalytic amount of Pd (10% on C). The mixture was stirred under a H₂ atmosphere for 1 h, filtered, concentrated and purified through a C-18 (H₂O → MeOH) column to give **20** (7 mg, 7 µmol, 66%). [α]_D +29 (*c* 0.7, H₂O). ¹H NMR (D₂O) (selected data): δ 2.01 (m, 2H, CH₂ 3-aminopropyl), 2.05, 2.05 (2s, 6H, NHAc), 3.16 (t, 2H), 3.33 (t, 1H), 4.16 (d, 1H), 4.43, 4.50, 4.51, 4.72 (4d, 4H, H-1¹, 1^{II}, 1^{III}, 1^{IV}) 4.92 (d, 1H , H-1^V). MALDI-TOF MS: Calcd for C₃₇H₆₅N₃O₂₆ ([M+Na]⁺): 990.38, found 991.12. HRMS: Calcd for C₃₇H₆₆N₃O₂₆ ([M+H]⁺): 968.3934, found 968,3943.

Triethylammonium 2-*tert*-butyloxycarbonylaminoethylphosphonate (21). Phosphorus trichloride (1.77 mL, 20.5 mmol) was added to a solution of imidazole (4.12 g) in dry MeCN (50 mL) at 0 °C. After 20 min of stirring at 0 °C, triethylamine was added followed by slow addition of a solution of N-Boc-ethanolamine (1.10 g, 6.83 mmol) in MeCN (10 mL). The reaction was stirred for 1 h at 0 °C, water (3 mL) added and the mixture partitioned between CH_2Cl_2 and water. The aqueous phase was washed with CH_2Cl_2 -butanol 8:1 (3 × 50 mL) and the organic phase concentrated and coevaporated with toluene. The residue was purified by column chromatography (CH₂Cl₂-MeOH-Et₃N 80:18:2) to yield **21** (842 mg, 2.17 mmol, 32%). ¹H NMR (CDCl₃): δ 1.04 (t, 9H, NCH₂CH₃), 1.12 (s, 9H, C(CH₃)₃), 2.79 (q, 6H, NCH₂CH₃), 3.01, 3.60 (2m, 4H, (OCH₂CH₂NH). ¹³C NMR (CDCl₃): δ 8.1 (NCH₂CH₃), 27.9 (C(CH₃)₃), 45.2 (NCH₂CH₃), 61.9, 62.8 (OCH₂CH₂NH), 78.3 (C(CH₃)₃), 155.7 (NHCOOC).

3-Aminopropyl

(2-acetamido-deoxy-6-O-(2-tert-

butyloxycarbonylaminoethyl)phosphoryl- α -D-galactopyranosyl)-(1 \rightarrow 6)-(β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ - $(\beta$ -Dgalactopyranosyl)- $(1\rightarrow 4)$ - β -D-glucopyranoside (23). Compound 19 (20 mg, 9 μ mol) and phosphonate 21 (8 mg, 25 µmol) were concentrated from pyridine and dried under vacuum. The residue was dissolved in MeCN (1.5 mL) and pyridine (0.5 mL), cooled to 0 °C, pivaloyl chloride (3 µL, 24 µmol) added and the solution stirred for 4 h. The solution was diluted with toluene (5 mL), washed with water, dried and concentrated. The residue was dissolved in pyridine (1.5 mL), cooled to 0 °C, water (10 µl) and iodine (14 mg, 55 µmol) were added. The solution was stirred for 2.5 h, diluted with EtOAc (6 mL), washed with Na₂S₂O₃ (aq). Purification by column chromatography (CH₂Cl₂-MeOH-Et₃N 95:5:1) gave the triethylammonium salt of 3-(*N*-benzyloxycarbonylamino)propyl (2-acetamido-3,4-*O*-dibenzyl-2-deoxy-6-*O*-(2*tert*-butyloxycarbonylaminoethyl)phosphoryl- α -D-galactopyranosyl)-(1 \rightarrow 6)-(2,3-di-*O*-acetyl-4-*O*-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-(3-*O*-acetyl-6-*O*-benzyl-2acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-(2,4,6-tri-O-benzyl- β -Dgalactopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (22). MALDI-TOF MS: Calcd for $C_{128}H_{151}N_4O_{36}P$ ([M+Na]⁺): 2375.54, found 2375.91. HRMS: Calcd for C₁₂₈H₁₅₀N₄O₃₆P[•] ([M-H]⁻): 2349.9768, found 2349.9729. 1 M NaOMe (50 µL, in MeOH) was added to a solution of **22** dissolved in MeOH. After 6 h of stirring the solution was neutralized with dry ice, concentrated and purified by column chromatography (CH₂Cl₂-MeOH-Et₃N 90:10:1) to give the deacetylated compound. MALDI-TOF MS: Calcd for C₁₂₂H₁₄₅N₄O₃₃P ([M+2Na]⁺): 2272.42, found 2271.89. A catalytic amount of Pd(OH)₂ (20% on C) was added to a solution of the product from the last step in MeOH (3 mL) and H₂O (1.2 mL). The mixture was stirred under a H₂ atmosphere for 5 h, filtered and concentrated. The residue was purified through a C-18 column (H₂O \rightarrow MeOH) yielding **23** (5 mg, 4 µmol, 44%). [α]_D +34.5 (*c* 0.2, H₂O). ¹H NMR (D₂O) (selected data): δ 1.41 (s, 9H, CH₃ Boc), 1.97 (m, 2H, CH₂ 3aminopropyl), 2.02, 2.02 (2s, 6H, NHAc), 3.13 (t, 2H), 3.30 (t, 2H), 3.31 (t, 1H), 4.13 (d, 1H), 4.40, 4.45, 4.48, 4.69 (4d, 4H, H-1¹, 1^{II}, 1^{III}, 1^{IV}) 4.90 (d, 1H , H-1^V). ³¹P NMR (D₂O): δ 1.02. MALDI-TOF MS: Calcd for C₄₄H₇₈N₄O₃₁P [M+2Na]⁺: 1235.42, found 1236.73. HRMS: Calcd for C₄₄H₇₈N₄O₃₁P [M]⁻: 1189.4387, found 1189.4373.

Reaction of 20 with dimethyl squarate. Compound 20 (2.3 mg, 2.4 µmol) was dissolved in MeOH (800 µL) followed by addition of dimethyl squarate [67 µL, 2 equiv as a solution in MeOH (10 mg/mL)] and triethylamine [36 µL, 1.5 equiv, as a solution in MeOH (10 mg/mL)]. After 8 h, the reaction was complete according to MALDI-TOF and the solution concentrated and purified through a short C-18 column (H₂O \rightarrow MeOH). MALDI-TOF MS: Calcd for C₄₂H₆₇N₃O₂₉ ([M+Na]⁺): 1100.38, found 1101.30. Reaction of 23 with dimethyl squarate and deprotection of Boc. Compound 23 (1.2 mg, 1.0 µmol) was dissolved in MeOH (600 µL) followed by addition of dimethyl squarate [22 µL, as a solution in MeOH (10 mg/mL)] and triethylamine [12 µL, as a solution in MeOH (10 mg/mL)]. After 4 h, the reaction was complete according to MALDI-TOF and the solution concentrated. The residue was dissolved in water (900 µL) and TFA (90 µL) added. The mixture was stirred for 5 h, when no *N*-Boc protected starting material could be detected by MALDI-TOF. The solution was concentrated, coevaporated with water and the crude product passed through a short C-18 column (H₂O \rightarrow MeOH) to yield **24**.

HSA-conjugate of 20. Dimethylsquarate activated **20** (0.7 mg) was dissolved in 0.5 M sodium phosphate buffer (250 μ L, pH 10) and a solution of HSA (95 μ L, 10 mg/mL) was added. After 48 h, the reaction solution was filtered by centrifugation through a 30 kDa filter, the precipitate diluted with water and filtered once again. The procedure was repeated twice. The residue was diluted with water, filtered through a sterile filter and freeze dried. According to MALDI-TOF an incorporation of about 16 sugar residues per protein molecule was obtained.

HSA-conjugate of 24. A solution of HSA (50 μ L, 10 mg/mL) was added to a solution of **24** (0.5 mg) in 0.5 M sodium phosphate buffer (200 μ L, pH 10). After 72 h, the reaction solution was filtered by centrifugation through a 30 kDa filter, the precipitate diluted with water and filtered once again. The procedure was repeated twice. The

residue was diluted with water, filtered through a sterile filter and freeze dried. An incorporation of about 7 mol mol⁻¹ was obtained.

Biotinylation of 23. (+)-Biotin *N*-hydroxy-succinimide ester (1.5 mg) and Et₃N (2 μ L) were added to a 0.1 M pH 7 buffer solution (500 μ L) of **23** (0.5 mg). The reaction mixture was stirred for 20 min until no starting material could be detected by TLC (EtOAc-HOAc-MeOH-H₂O 2:3:3:2), filtered through a short C-18 column (H₂O \rightarrow MeOH) and the combined carbohydrate-containing fractions were concentrated. The residue was dissolved in H₂O (300 μ L) and TFA (60 μ L) and the solution stirred for 3 h, concentrated and the residue purified through a short C-18 column to afford **25**. MALDI-TOF MS: Calcd for C₄₉H₈₄N₆O₃₁PS ([M+H]⁺): 1317.47, found 1318.3.