Supporting Information

for

A practical two-step procedure for the preparation of enantiopure pyridines: Multicomponent reactions of alkoxyallenes, nitriles and carboxylic acids followed
 by a cyclocondensation reaction
 Christian Eidamshaus, Roopender Kumar, Mrinal K. Bera and Hans-Ulrich Reissig*

Address: Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, D14195 Berlin, Germany

Email: Hans-Ulrich Reissig* - hreissig@chemie.fu-berlin.de

* Corresponding author

Experimental procedures and characterization data

Compounds $\mathbf{2 1}{ }^{[1]}, \mathbf{2 3}{ }^{[2]}, \mathbf{2 5}{ }^{[3]}, \mathbf{4 1}{ }^{[4]}$ and $\mathbf{4 3}{ }^{[5]}$ were prepared following literature procedures.

(S)-3-Phenylbutanamide

$\mathrm{Boc}_{2} \mathrm{O}(558 \mathrm{mg}, 2.55 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{HCO}_{3}(186 \mathrm{mg}, 2.36 \mathrm{mmol})$ and pyridine $(96 \mu \mathrm{~L}, 1.18$ mmol) were added to a solution of (S)-3-phenylbutyric acid (323 mg, 1.97 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The resulting mixture was stirred at r.t. under an atmosphere of argon for 16 h . After complete consumption of the starting material (as indicated by TLC) all the volatile components were removed under reduced pressure. The residue was dissolved in EtOAc and water added. The phases were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated and the product used without further purification.

(S)-3-Phenylbutanenitrile (38)

[^0]

Cyanuric choride (56 mg, 0.30 mmol) was added to a solution of (S)-3phenylbutanamide ($75 \mathrm{mg}, 0.46 \mathrm{mmol}$) in DMF $(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was slowly allowed to reach r.t. and stirring at that temperature continued overnight. The reaction was quenched by the addition of water and diluted with EtOAc. The phases were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash column chromatography on silica gel (eluent: hexane:EtOAc 7:3) to provide 38 (54 $\mathrm{mg}, 81 \%)$ as a colorless oil.
$[\alpha]_{D}^{22}=-4.7\left(c=0.15, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $2.46\left(\mathrm{dd}, J=7.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53\left(\mathrm{dd}, J=6.5,16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.08$ (sext., $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.15-7.29$ (m $5 \mathrm{H}, \mathrm{Ph})$ ppm.

The spectroscopic data correspond with those previously reported ${ }^{[6]}$.

[^1] 4(1H)-yl nonaflate (52)

According to procedure 1, methoxyallene (0.15 mL , 1.85 mmol), n-BuLi (2.5 m in hexanes, $0.65 \mathrm{~mL}, 1.63 \mathrm{mmol}$), pivalonitrile ($51 \mathrm{mg}, 0.60 \mathrm{mmol}$) and ($(S)-\alpha$-methoxy(trifluoromethyl)phenylacetic acid ($843 \mathrm{mg}, 3.60 \mathrm{mmol}$ - dissolved in the minimum amount of DMF were reacted to afford the intermediate β-ketoenamide, which was then treated with TMSOTf ($0.70 \mathrm{~mL}, 3.60 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.50 \mathrm{~mL}, 3.60 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate $\mathbf{8 0 : 2 0)}$ to give $68 \mathrm{mg}(30 \%)$ of $\mathbf{2 0}$ as a colorless oil. Compound $\mathbf{2 0}$ was found to be in equilibrium with the corresponding pyridone. The ratio estimated by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ is $25: 75$ in favour of the pyridine tautomer. Pyridone: ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}): $\delta=1.43$ (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 3.39 (br. s, $3 \mathrm{H}, \mathrm{OMe}$), 3.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$ at $\mathrm{C}-3$), 6.09 (s, $1 \mathrm{H}, 5-\mathrm{H}$), $7.35-7.50$ (m, $5 \mathrm{H}, \mathrm{Ph}$), 8.91 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm. Pyridinol: ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17$ (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 3.39 (br. s, $3 \mathrm{H}, \mathrm{OMe}$), 3.52 (s, 3 H , OMe at $\mathrm{C}-3$), 7.35-7.50 (m, 6 H, Ph, 5-H), 7.99 (br. s, 1 H, OH) ppm.

Since 20 could not completely be separated from unidentified side products, it was converted into the corresponding nonaflate 52. Compound 20 ($68 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in dry THF (0.11 mL) and treated with $\mathrm{NaH}(15 \mathrm{mg}, 0.37 \mathrm{mmol})$. NfF ($67 \mu \mathrm{~L}$, 0.37 mmol) was added and stirred for 10 h . After complete conversion of the starting
material (as indicated by TLC), the reaction was quenched by the addition of MeOH . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate 100:0 to 70:30, linear gradient) to afford 61 mg (56%) of 52 as a colorless oil.

$[\alpha]_{\mathrm{D}}{ }^{22}=+14.5\left(\mathrm{c}=2.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 3.42$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.94 (m , 3 H , OMe at C-3), 7.32-7.35, 7.37-7.42 (2 m, $5 \mathrm{H}, \mathrm{Ph}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.3,39.1$ ($\mathrm{q}, \mathrm{s}, t-\mathrm{Bu}$), 54.3 (br. q, OMe), 61.9 (q, OMe at C-3), 84.5 ($\mathrm{s}, \mathrm{C}-1$ '), 115.0 ($\mathrm{d}, \mathrm{C}-5$), 124.8 ($\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=290.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.9, 128.2, 128.6, 136.6 (3 d, s, Ph), 146.7, 150.2, 151.7 (3 s, C-2, C-3, C-6), 163.6 (s, C-4) ppm. ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-68.6\left(\mathrm{~s}, \mathrm{CF}_{3}\right),-80.5\left(\mathrm{~m}_{\mathrm{c}}, \mathrm{CF}_{3}\right),-109.4\left(\mathrm{~m}_{\mathrm{c}}, \mathrm{CF}_{2}\right),-120.6\left(\mathrm{~m}_{\mathrm{c}}\right.$, CF_{2}), -125.7 ($\mathrm{m}_{\mathrm{c}}, \mathrm{CF}_{2}$) ppm. IR (neat): $\tilde{v}=2980$, $2930(\mathrm{C}-\mathrm{H}), 1560,1430$ (C=C), 1200, 1140, 1030, 725 (C-F) cm ${ }^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}\right]^{+} 652.1022$, found 652.0994.

According to procedure 1 , methoxyallene ($0.25 \mathrm{~mL}, 3.08 \mathrm{mmol}$), n - $\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.16 \mathrm{~mL}, 2.90 \mathrm{mmol}$), pivalonitrile ($83 \mathrm{mg}, 1.00 \mathrm{mmol}$) and TBS-mandelic acid $21(1.60 \mathrm{~g}, 6.00 \mathrm{mmol})$ were converted into the β-ketoenamide, which was then treated with $\mathrm{NEt}_{3}(1.66 \mathrm{~mL}, 12.0 \mathrm{mmol})$ and TMSOTf ($2.61 \mathrm{~mL}, 12.0 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate $50: 50$ to $70: 30$, linear gradient) to afford $201 \mathrm{mg}(50 \%)$ of 22 as a yellow oil. [a] $]_{D}^{2}=-7.1$ ($\mathrm{c}=10.7, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.08,0.07,0.90(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$, OTBS), $1.40(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.56\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.13(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.26-7.35 (m, $5 \mathrm{H}, \mathrm{Ph}), 8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.9$, 4.7, 18.2, 25.8 ($3 \mathrm{q}, \mathrm{s}, \mathrm{OTBS}$), 28.5, 35.3 ($\mathrm{q}, \mathrm{s}, t-\mathrm{Bu}$), 58.8 (q, OMe), 73.4 ($\mathrm{d}, \mathrm{C}-1$ '), 113.9 (d, C-5), 126.4, 128.7, 128.9, 140.9 (3 d, s, Ph), 145.6, 146.7, 147.1 (3 s, C-2, C3, C-6), 175.5 (s, C-4) ppm. IR (neat): $\tilde{v}=3355$ (N-H), 2940, 2930, 2855 (C-H), 1620 (C=O), 1250 (C=C), 1000 (C-N) cm ${ }^{-1}$. ESI-TOF: m / z calc. for [M+H] 402.2464 , found 402.2472. Anal. calc. for. $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}$ (401.6): C 68.78, $\mathrm{H} 8.78, \mathrm{~N} 3.49$, found: C 68.48 , H 8.84, N 3.55.

Compound 24 was prepared according to procedure 1 , from methoxyallene (0.25 mL , 3.08 mmol), n-BuLi (2.5 M in hexanes, $1.16 \mathrm{~mL}, 2.90 \mathrm{mmol}$), pivalonitrile ($83 \mathrm{mg}, 1.00$ mmol) and N, N-dibenzylated phenylalanine (23) (2.15 g, 6.00 mmol$)$. The resulting β ketoenamide was treated with $\mathrm{NEt}_{3}(0.83 \mathrm{~mL}, 6.00 \mathrm{mmol})$ and TMSOTf ($1.31 \mathrm{~mL}, 6.00$ mmol). The crude material was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate $50: 50$) to afford 208 mg (45\%) of 24 as a brown, highly viscous oil. $[\alpha]_{D}^{22}=+50.0\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.36(\mathrm{~s}, 9 \mathrm{H}$, t-Bu), $3.12\left(\mathrm{dd}, J=14.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.39\left(\mathrm{dd}, J=14.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.54$, $3.80\left(2 \mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$ each, NCH_{2}), $3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.96$ (dd, $J=9.0,4.1 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.67(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.15-7.35(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}), 8.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=28.4(\mathrm{q}, t-\mathrm{Bu}), 30.9\left(\mathrm{t}, \mathrm{C}-\mathbf{2}^{\prime}\right), 35.6(\mathrm{~s}, t-\mathrm{Bu}), 53.9\left(\mathrm{~d}, \mathrm{NCH}_{2}\right), 58.9$ (q, OMe), 60.1 (d, C-1'), 116.4 (d, C-5), 126.8, 127.9, 128.9, 129.0, 129.1, 129.2 (6 d , Ph), 138.2, 138.6 ($2 \mathrm{~s}, \mathrm{Ph}$), 145.8, $146.2,147.3$ (3 s, C-2, C-3, C-6), 175.4 (s, C-4) ppm. IR (neat): $\tilde{v}=3685,3620(N-H), 3020,2975(\mathrm{C}-\mathrm{H}), 1720$ (C=O), 1520, 1425, 1215 (C=C) cm^{-1}. ESI-TOF: m / z calc. for $[\mathrm{M}+\mathrm{H}]^{+}$481.2849, found 481.2842. Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$ (480.6): C 79.96, H 7.55, N 5.83, found: C 78.18, H 7.41, N 5.63.

According to procedure 1, methoxyallene ($83 \mu \mathrm{~L}, 0.99 \mathrm{mmol}$), n-BuLi (2.5 M in hexanes, $0.36 \mathrm{~mL}, 0.90 \mathrm{mmol})$, pivalonitrile ($42 \mathrm{mg}, 0.50 \mathrm{mmol}$) and rac- N, N-dibenzyl valine (25) ($588 \mathrm{mg}, 2.00 \mathrm{mmol}$) were reacted to afford the intermediate β-ketoenamide, which was subsequently treated with $\mathrm{NEt}_{3}(0.83 \mathrm{~mL}, 6.00 \mathrm{mmol})$ and TMSOTf ($1.31 \mathrm{~mL}, 6.00$ mmol). The crude material was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate $80: 20$) to afford 108 mg (50%) of 26 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta=0.74,1.13(2 \mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$ each, Me), 1.38 (s, $9 \mathrm{H}, t-$ $B u), 2.28$ (hept.d, $\left.J=6.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.12\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.37,3.86$ (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}$ each, NCH_{2}), 3.98 (s, $3 \mathrm{H}, \mathrm{OMe}$), $6.33(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.22-7.35 (m, $10 \mathrm{H}, \mathrm{Ph}), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.)_{3}\right): \delta=19.3,20.6$ (2 q, Me), 28.4 ($\mathrm{q}, t-\mathrm{Bu}$), 28.8 (d, C-2'), 35.1 ($\mathrm{s}, t-\mathrm{Bu}), 53.7$ (t, NCH $)_{2}$, 58.9 (q, OMe), 68.1 ($\left.\mathrm{d}, \mathrm{C}-\mathrm{l}^{\prime}\right)$, 116.9 (d, C-5), 127.5, 128.7, 128.8, 138.3 (3 d, s, Ph), 143.2, 145.9, 147.0 (3 s, C-2, C3, C-6), 175.6 (s, C-4) ppm. IR (neat): $\tilde{v}=3050-2930(\mathrm{C}-\mathrm{H}), 1725(\mathrm{C}=\mathrm{O}), 1420-1265$ $(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+} 433.2855$, found 433.2871.

(R)-2-tert-Butyl-3-methoxy-6-(1-phenylpropyl)pyridin-4-ol (28)

According to procedure 1 , methoxyallene ($92 \mu \mathrm{~L}, 1.13 \mathrm{mmol}$) was treated with n - BuLi (2.5 m in hexanes, $0.46 \mathrm{~mL}, 1.15 \mathrm{mmol}$) and reacted with pivalonitrile ($89 \mathrm{mg}, 1.07$ $\mathrm{mmol})$ and (R)-2-phenylbutyric acid $27(0.35 \mathrm{~mL}, 3.21 \mathrm{mmol})$. The crude product was cyclized with TMSOTf ($1.42 \mathrm{~mL}, 6.42 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.89 \mathrm{~mL}, 6.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 3 d . The title compound ($143 \mathrm{mg}, 45 \%$) was obtained in pure form after flash column chromatography on silica gel (eluent: EtOAc). $[\alpha]_{D}^{22}=-8.1(c=0.7$, $\mathrm{MeOH}) \cdot{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}$): $\delta=0.92\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35$ (s, $9 \mathrm{H}, t$-Bu), 2.01-2.12 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH), $6.44(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{OD}+$ $\left.\mathrm{CDCl}_{3}\right): \delta=11.3\left(\mathrm{q}, \mathrm{C}-3^{\prime}\right), 27.0\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 27.6(\mathrm{q}, t-\mathrm{Bu}), 35.4(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}), 49.6(\mathrm{~d}, \mathrm{C}-1$ '), 58.5 (q, OMe), 113.3 (d, C-5), 127.2, 127.7, 128.8 (3 d ,Ph), 126.7, 127.5, 128.1, 140.6, 151.9 (5 s, Ph, C-2, C-3, C-4, C-6) ppm. IR (neat): $\tilde{v}=3375$ (OH), 2965-2875 (=C-H, C-H), 1620-1535 (C=C) cm^{-1}. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\right]^{+} 300.1985$, found 300.1957.

(R)-6-[(tert-Butyldimethylsiloxy)phenylmethyl]-3-methoxy-2-phenylpyridin-4(1H)-

 one (30)

According to procedure 1, methoxyallene ($0.25 \mathrm{~mL}, 3.1 \mathrm{mmol}$), n-BuLi (2.5 m in hexanes, $1.16 \mathrm{~mL}, 2.90 \mathrm{mmol}$), freshly distilled benzonitrile ($102 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) and TBS-mandelic acid (29) ($1.60 \mathrm{~g}, 6.00 \mathrm{mmol}$) were converted into the β-ketoenamide, which was then treated with $\mathrm{NEt}_{3}(1.66 \mathrm{~mL}, 12.0 \mathrm{mmol})$ and TMSOTf ($2.61 \mathrm{~mL}, 12.0$ $\mathrm{mmol})$. The crude product was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate 100:0 to 50:50, linear gradient) to afford 30 as a brown, viscous oil ($101 \mathrm{mg}, 24 \%$). $[\alpha]_{D}^{2}=32.1\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -0.06, 0.09, 0.91 (s, $3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}$), 3.75 (br. s, $3 \mathrm{H}, \mathrm{OMe}$), 5.63 (br. s, $1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 6.25 (br. s, 1 H, 5-H), $7.27-7.66$ (m, $10 \mathrm{H}, \mathrm{Ph}$), 8.88 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.0,-4.7,18.2,25.8$ (3 s, q, OTBS), 59.8 (q, OMe), 122.0 (d, C-5), 126.4, 128.1, 128.9 (3 d, Ph), 175.5 (br. s, C-4) ppm. IR (neat): $\tilde{v}=3535(\mathrm{~N}-\mathrm{H}), 2970$, 2875 (C-H), 1735 (C=O), 1470-1195 (C=C) cm ${ }^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Sij}\right]^{+}$ 422.2146, found 422.2144.

(S,S)-2,6-Di-sec-butyl-3-methoxypyridin-4(1H)-one (32)

According to procedure 1, methoxyallene ($0.38 \mathrm{~mL}, 4.7 \mathrm{mmol}$), n-BuLi (2.5 m in hexanes, $1.65 \mathrm{~mL}, 4.13 \mathrm{mmol}$), (S)-2-methylbutyronitrile (31) ($162 \mu \mathrm{~L}, 1.53 \mathrm{mmol}$) and (S)-2-methylbutyric acid (17) ($1.0 \mathrm{~mL}, 9.18 \mathrm{mmol}$) were converted into the β ketoenamide, which was then treated with $\mathrm{NEt}_{3}(1.91 \mathrm{~mL}, 13.8 \mathrm{mmol})$ and TMSOTf ($3.01 \mathrm{~mL}, 13.8 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 20: 1$) to afford 18 as a brown, amorphous solid (309 $\mathrm{mg}, 85 \%)$. $\mathrm{mp} 113-116^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}^{22}=+39.3\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.85\left(\mathrm{t}, \mathrm{J} \approx 7 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime} / 4^{\prime \prime}-\mathrm{H}\right), 0.87\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime} / 4^{\prime \prime}-\mathrm{H}\right), 1.21,1.27\left(2 \mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right.$ each, $1^{\prime}-\mathrm{H} / 1^{\prime \prime}-\mathrm{H}$), 1.56, $1.66\left(2 \mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right.$ each, $\left.3^{\prime}-\mathrm{H} / 3^{\prime \prime}-\mathrm{H}\right)$, 2.59, 3.19 ($2 \mathrm{~m}_{\mathrm{c}}$, 1 H each, $2^{\prime}-$ H/2"-H), 3.86 (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.26 (s, $1 \mathrm{H}, 5-\mathrm{H}$), 8.91 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.7,12.4$ (2 q, C-4'/C-4"), 18.9, 19.9 ($2 \mathrm{q}, \mathrm{C}-1^{\prime} / \mathrm{C}-1$ "), 27.8, 29.9 (2 t , C-3'/C-3"), 35.2, 38.2 ($2 \mathrm{~d}, \mathrm{C}-2^{\prime} / \mathrm{C}-2^{\prime \prime}$), 59.6 (q, OMe), 112.3 (d, C-5), 145.3, 147.6, 155.2 (3 s, C-2, C-3, C-6), 174.5 (s, C-4) ppm. IR (ATR): $\tilde{v}=3255(N H), 3075-2825$ (=C-H, C-H), 1610 (C=O), 1532-1200 (C=C) cm ${ }^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}\right]^{+}$ 238.1807, found 238.1806 .

2,6-Bis $\{(2 R, 6 R)$-[tert-butyldimethylsiloxy)(phenyl)methyl]-3-methoxypyridin-4(1H)one (35)

A solution of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.58 \mathrm{~mL}, 3.95 \mathrm{mmol})$ was added dropwise to a solution of methoxyallene ($0.36 \mathrm{~mL}, 4.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. After 30 min , rac-2-(tert-butyldimethylsiloxy)-2-phenylacetonitrile (33) (360 mg, 1.46 mmol) was added and the mixture stirred at $-50^{\circ} \mathrm{C}$ for 3 h . Then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and (R)-2-(tert-butyldimethylsiloxy)-2-phenylacetic acid (29) (2.33 g, 8.75 mmol$)$ dissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ added. The mixture was stirred overnight during which time it was slowly allowed to reach r.t. The reaction was quenched by the addition of aq. sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, the phases were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, hexane/EtOAc $=9: 1$ to $8: 2$) to provide 482 mg (58\%) of the β-methoxy- β-ketoenamide. Following the typical procedure, the β-methoxy-β-ketoenamide ($70 \mathrm{mg}, 0.12 \mathrm{mmol}$) was cyclized with TMSOTf ($0.07 \mathrm{~mL}, 0.36 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.06 \mathrm{~mL}, 0.36 \mathrm{mmol})$ in 1,2-dichloroethane $(2.5 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 1 d . The title compound and the corresponding diastereomer (15 mg each, 22\% each; 26\% over 2 steps for both diastereomers) were obtained pure after flash column chromatography on
silica gel (eluent: hexane: EtOAc 8:2 to 7:3 linear gradient). $[\alpha]_{D}^{22}=-47.1$ ($c=0.7$, $\left.\mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.03,0.03,0.07,0.10(4 \mathrm{~s}, 3 \mathrm{H}$ each, OTBS), 0.90, 0.94 (2 s, 9 H each, OTBS), 3.72 (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.57, 6.12 (2 s, 1 H , each, CHPh), $6.24(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.23-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-5.05$, -4.98, -4.84, -4.77 (4 q, OTBS), 18.23, 18.27 ($2 \mathrm{~s}, \mathrm{OTBS}$), 25.8 (q, OTBS), 58.9 (q, OMe), 69.0, 72.7 (2 d, CHPh), 114.5 (d, C-5), 126.0, 126.1, 128.1, 128.5, 128.6, 128.8 ($6 \mathrm{~d}, \mathrm{Ph}$), 140.8 (s, Ph), 141.2 (s, C-3), 143.5, 147.9 (s, C-2/6), 175.0 (s, C-4) ppm. IR (neat): $\tilde{v}=3360(\mathrm{NH}), 3145-2835(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1705-1550(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}_{2}\right]^{+} 566.3116$, found 566.3145 .

6-\{(R)-[tert-Butyldimethylsiloxy)(phenyl]methyl\}-2-\{(S)-[tert-butyldimethylsilyloxy]-(phenyl)methyl\}-3-methoxypyridin-4(1H)-one (34)

$[\alpha]_{D}^{22}=+41.6\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.00,0.02(2 \mathrm{~s}, 6 \mathrm{H}$ each, OTBS), 0.90, 0.92 (2 s, 9 H each, OTBS), 3.75 (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.57, 6.11 (2 s, 1 H each, $\mathrm{CHPh}), 6.26(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.25-7.45(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ = -5.3, -4.9 (2 q, OTBS), 18.2 (s, OTBS), 25.7 (q, OTBS), 58.9 (q, OMe), 69.0, $72.5(2 \mathrm{t}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 114.2 (d, C-5), 125.8, 126.1, 128.1, 128.3, 128.5, 128.8 ($6 \mathrm{~d}, \mathrm{Ph}$), 140.9 (s,

Ph), 141.1 (s, C-3), 141.3 (s, Ph), 143.7, 147.8 (2 s, C-2/C-6), 174.9 (s, C-4) ppm. IR (neat): $\tilde{v}=3360(N H), 3145-2835(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1705-1550(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}_{2}\right]^{+} 566.3116$, found 566.3145 .

(R)-2-[(tert-Butyldimethylsiloxy)phenylmethyl]-3-methoxy-6-(trifluoromethyl)-

 pyridin-4(1H)-one (37)

According to procedure 1, methoxyallene ($0.25 \mathrm{~mL}, 3.1 \mathrm{mmol}$), $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.16 \mathrm{~mL}, 2.90 \mathrm{mmol}$), TBS-mandelonitrile $36(247 \mathrm{mg}, 1.00 \mathrm{mmol})$ and trifluoroacetic acid ($1.54 \mathrm{~mL}, 6.00 \mathrm{mmol}$) were converted to the β-ketoenamide, which was then treated with $\mathrm{NEt}_{3}(0.42 \mathrm{~mL}, 3.00 \mathrm{mmol})$ and TMSOTf ($0.58 \mathrm{~mL}, 3.00 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate 100:0 to 50:50 linear gradient) to afford 37 as a colorless oil (152 $\mathrm{mg}, 37 \%)$. In $\mathrm{CDCl}_{3} 37$ was found to be in equilibrium with the corresponding pyridone. At r.t. the ratio pyridinol/pyridone was $\approx 4: 6$. Pyridinol. $[\alpha]_{D}^{22}=38.4\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta=-0.07,0.06,0.90(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}), 3.67(\mathrm{~s}, 3 \mathrm{H}$, OMe), 6.11 (s, $\left.1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 7.23(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.15-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 9.93$ (br. s, 1 H , $\mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.3,-4.7,18.5,26.0(3 \mathrm{q}, \mathrm{s}, \mathrm{OTBS}), 60.8(\mathrm{q}$, OMe), 75.4 (d, C-1'), 109.6 (d, C-5), 121.4, 126.1, 127.9, 129.0 (3 d, s, Ph), 141.4 (q , $J_{\mathrm{CF}}=265.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 142.7, 144.3, 157.1, 157.9 (4 s, C-2, C-3, C-4, C-6) ppm. Pyridone: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.08,0.13,0.92(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS})$, 3.54 (s, $3 \mathrm{H}, \mathrm{OMe}$), $6.00\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.80(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.15-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 9.42$
(br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.9,-4.6,18.2,25.8(3 \mathrm{q}, \mathrm{s}$, OTBS), 58.7 (q, OMe), 69.7 ($\mathrm{d}, \mathrm{C}-1$ '), 116.1 (d, C-5), 120.1 ($\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=273.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 126.9, 128.9, 129.0, 133.2 ($3 \mathrm{~d}, \mathrm{~s}, \mathrm{Ph}$), 140.0, 142.9, 145.7 (s, C-2, C-3, C-6), 174.4 (s, C-4) ppm. IR (neat): $\tilde{v}=3310(N-H), 2950,2930,2860(C-H), 1605(C=O), 1405,1255$, 1135 (C=C) cm^{-1}. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NaNO}_{3} \mathrm{Sij}^{+} 436.1532\right.$, found 436.1512.

(S)-2-(2-Phenylpropyl)-6-(trifluoromethyl)pyridin-4-ol (39)

Following procedure 1, methoxyallene ($0.19 \mathrm{~mL}, 2.3 \mathrm{mmol}$) was treated with n-BuLi (2.5 m in hexanes, $0.88 \mathrm{~mL}, 2.20 \mathrm{mmol}$) and reacted with (S)-3-phenylbutanenitrile (38) (86 $\mathrm{mg}, 0.59 \mathrm{mmol}$) and trifluoroacetic acid ($352 \mu \mathrm{~L}, 4.56 \mathrm{mmol}$). The crude product was cyclized with TMSOTf ($316 \mu \mathrm{~L}, 2.28 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(315 \mu \mathrm{~L}, 2.28 \mathrm{mmol})$ in 1,2dichloroethane (11 mL) at $70^{\circ} \mathrm{C}$ for 3 d . Compound 39 ($52 \mathrm{mg}, 28 \%$) was obtained in pure form after flash column chromatography on silica gel (eluent: hexane: EtOAc 8:2). $[\alpha]_{D}^{22}=+49.1\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}\right)$, 3.02-3.07 (m, 2 H, 1'-H), 3.40-3.43 (m, 1 H, 2'-H), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 7.06 ($\mathrm{s}, 1$ $\mathrm{H}, 5-\mathrm{H}), 7.14-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3\left(\mathrm{q}, \mathrm{C}-3^{\prime}\right)$, 38.8 (t, C-1'), 40.3 (d, C-2'), 61.2 (q, OMe), 107.5 (d, C-5), 144.5, 146.5, 155.2, 156.5 (4 s, C-2, C-3, C-4, C-5) ppm. *The CF_{3} group could not be detected. ${ }^{19} \mathrm{~F}$ NMR (470 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=-67.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$. IR (neat): $\tilde{v}=2960-2565(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1610-1495$ (C=C) cm^{-1}. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}\right]^{+} 312.1206$, found 312.1218 .
(S)-2-sec-Butyl-3-methoxy-6-(trifluoromethyl)pyridin-4(1H)-one (40)

According to procedure 1, methoxyallene ($0.75 \mathrm{~mL}, 9.3 \mathrm{mmol}$), n-BuLi (2.5 m in hexanes, $3.24 \mathrm{~mL}, 8.10 \mathrm{mmol}$), ($(S)-2$-methylbutyronitrile (31) ($0.32 \mathrm{~mL}, 3.00 \mathrm{mmol}$) and trifluoroacetic acid ($1.34 \mathrm{~mL}, 18.0 \mathrm{mmol}$) were converted into the β-ketoenamide which was then treated with $\mathrm{NEt}_{3}(1.25 \mathrm{~mL}, 9.00 \mathrm{mmol})$ and TMSOTf ($1.74 \mathrm{~mL}, 9.00 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc 100:0 to 70:30, linear gradient) to afford 40 as a yellow oil (421 mg , $56 \%) \cdot[\alpha]_{D^{22}}=+21.3\left(\mathrm{c}=6.8, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}, 4^{\prime}-\mathrm{H}$), 1.25 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 1.58-1.67, 1.75-1.84 (2 m, 1 H each, $3^{\prime}-\mathrm{H}$), 3.18-3.23 (m, 1 H, 2'-H), 3.85 (s, $3 \mathrm{H}, \mathrm{OMe}$), 6.62 (s, $1 \mathrm{H}, 5-\mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.79\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $1^{\prime}-\mathrm{H}$), 1.53-1.62, 1.74-1.82 (2 m, 1-H each, 3'-H), 3.17-3.25 (m, $1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}$, OMe), $7.02(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.3(\mathrm{q}, \mathrm{C}-4)$), $19.8(\mathrm{q}$, C-1'), 28.9 (t, C-3'), 36.2 ($\mathrm{d}, \mathrm{C}-2^{\prime}$), 61.9 (q, OMe), 107.3 ($\mathrm{d}, \mathrm{C}-5$), 121.3 ($\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=273.8$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 143.9 (m_{c}, higher intensity, C-4, C-6), 156.7, 160.1 (2 s, C-2, C-3) ppm. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-63.0\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$. IR (neat): $\tilde{v}=2965-2840(\mathrm{C}-\mathrm{H},=\mathrm{C}-\mathrm{H})$, 1605-1420 (C=C), 1130 (C-N) cm ${ }^{-1}$. ESI-TOF: m/z calc. for [M+H] ${ }^{+}$250.1055, found
250.1050. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}$ (249.2): C 53.01, H 5.66, N 5.62, found: C 52.72, H 5.17, N 6.01.
(S)-(3-Methoxy-5,5-dimethyl-4-oxohex-1-en-2-yl) 1-tritylpyrrolidine-2-carboxylate (48)

Following procedure 1 , methoxyallene $(0.14 \mathrm{~mL}, 1.7 \mathrm{mmol})$ was treated with n-BuLi (2.5 M in hexanes, $0.67 \mathrm{~mL}, 1.68 \mathrm{mmol}$) and reacted with pivalonitrile ($80 \mathrm{mg}, 0.96 \mathrm{mmol}$) and (S)-trityl-proline 45 ($1.20 \mathrm{~g}, 3.36 \mathrm{mmol}$). The crude product was purified by flash column chromatography on silica gel (hexane:EtOAc 8:2) to afford 48 ($140 \mathrm{mg}, 49 \%$) as a $1: 1$ mixture of two diastereomers and $47(26 \mathrm{mg}, 9 \%)$ as colorless oils. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.84-1.07(\mathrm{~m} 4 \mathrm{H}, 3-\mathrm{H}$ or $4-\mathrm{H}), 1.19,1.21(2 \mathrm{~s}, 9 \mathrm{H}$ each, $t-\mathrm{Bu}), 1.55-$ $1.66(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}$ or $4-\mathrm{H}), 2.80-2.92,3.30-3.43(2 \mathrm{~m}, 2 \mathrm{H}$ each, $5-\mathrm{H}), 3.40,3.44(2 \mathrm{~s}, 3$ H each, OMe), 4.51, 4.57 ($2 \mathrm{~s}, 1 \mathrm{H}$ each, 3 '- H), $5.17-5.21$ ($\mathrm{m}, 4 \mathrm{H},=\mathrm{CH}_{2}$), 7.14-7.28 (m, $20 \mathrm{H}, \mathrm{Ph}), 7.55-7.60(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1,24.2(2 \mathrm{~s}$, $t-\mathrm{Bu}), 26.4,26.5$ (2 q, t-Bu), 31.1, 31.2 (2 t, C-3 or C-4), 44.3, 44.4 (2 t, C-3, C-4), 49.9 (t, C-5), 57.5, 57.6 (2 q, OMe), 62.95, 63.04 (2 d, C-2), 82.3, 82.5 (2 d, C-3'), 89.4, 89.5 (2 s, Ph), 106.8, $107.0\left(2 \mathrm{t},=\mathrm{CH}_{2}\right), 126.2(\mathrm{~d}, \mathrm{Ph}), 127.66,127.68,129.1,129.2(4 \mathrm{~d}, \mathrm{Ph})$, 144.64, 144.65 ($2 \mathrm{~s}, \mathrm{Ph}$), 149.4, 149.5 (2 s, C-2'), 174.3, 174.5 (2 s, $\mathrm{CO}_{2} \mathrm{R}$), 208.9, 209.0 (2 s, C=O) ppm. IR (neat): $\tilde{v}=3020-2980(\mathrm{C}-\mathrm{H},=\mathrm{C}-\mathrm{H}), 2300-2350(\mathrm{C}=\mathrm{C}), 1710$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{4}\right]^{+}$534.2620, found 534.2542.

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.77-0.86(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}$ or $4-\mathrm{H}), 1.38$ (s $9 \mathrm{H}, t-\mathrm{Bu}$), 1.581.65 (m, 2 H, 3-H or 4-H), 2.30 (s, 3 H, 1'-H), 3.03-3.14, 3.28-3.40 ($2 \mathrm{~m}, 1 \mathrm{H}$ each, $5-\mathrm{H}$), 3.54 (s, 3 H, OMe), 3.92-3.95 (m, 1 H, 2-H), 7.12-7.29 (m, 10 H, Ph), 7.46-7.49 (m, 5 H, Ph) ppm.

(S,S)-2-tert-Butyl-6-[(tert-butyldimethylsiloxy)phenyImethyl]-3-methoxypyridin-4-

 yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (49)

According to procedure 4, pyridone 22 ($22 \mathrm{mg}, 0.06 \mathrm{mmol}$) was treated with (S)-Mosher chloride ($17 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) to give 25 mg (68%) of NMR-spectroscopically pure 49 as a colorless oil after an aqueous work-up. $[\alpha]_{\mathrm{D}}^{22}=+14.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR $(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.01,0.02,0.96(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}$), 1.35 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 3.49, 3.68 (2 s, 3 H each, OMe), 5.80 (s, $1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 7.17 (s, $1 \mathrm{H}, 5-\mathrm{H}$), 7.19-7.22, 7.27-7.31, 7.48-7.53, 7.61-7.71 ($4 \mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}$) ppm. ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.1(\mathrm{~s}$, CF_{3}) ppm. IR (neat): $\tilde{v}=2955-2930(\mathrm{C}-\mathrm{H}), 1775$ (C=O), 1570-1450 (C=C), 1170-1105
(=C-H), 780-700 (C-F) cm ${ }^{-1}$. ESI-TOF: m / z calc.for $\left[\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{Si}\right]^{+} 618.2857$, found 618.2896.

(S,S)-6-sec-Butyl-2-tert-butyl-3-methoxypyridin-4-yl 3,3,3-trifluoro-2-methoxy-2-

 phenylpropanoate (50)

According to procedure 4, pyridone $18(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ was treated with (S)-Mosher chloride ($4 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) to give $5 \mathrm{mg}(55 \%)$ of NMR-spectroscopically pure 50 as a colorless oil after an aqueous work-up. $[\alpha]_{\mathrm{D}}^{22}=+22.4\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.78\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.20\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.46(\mathrm{~s}, 9$ H, t-Bu), 1.50, 1.75 (2 dqd, $J=6.9,7.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}$ each, 3 '-H), 2.61 (sext., $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, 2$ '-H), 3.18 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.91 (br. s, $3 \mathrm{H}, \mathrm{OMe}$), 6.87 (s, $1 \mathrm{H}, 5-\mathrm{H}$), 6.95-7.05 (m, $10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-71.2\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm} . \mathrm{MS}(\mathrm{EI}, 80 \mathrm{eV}, 80$ $\left.{ }^{\circ} \mathrm{C}\right): m / z(\%)=453(16)[\mathrm{M}]^{+}, 438(27)\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 264(23), 236(75), 189(100)$.
(S,S)-2-sec-Butyl-3-methoxy-6-(trifluoromethyl)pyridin-4-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (51)

According to procedure 4, pyridine $40(37 \mathrm{mg}, 0.14 \mathrm{mmol})$ was treated with (S)-Mosher chloride ($42 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) to give $39 \mathrm{mg}(67 \%)$ of NMR-spectroscopically pure 51 as a colorless oil after an aqueous work-up. $[\alpha]_{\mathrm{D}}^{22}=+22.7\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.68\left(\mathrm{t}, J=7.4,3 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 1.13\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 1.48(\mathrm{dqd}, J=$ $6.6,7.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}$), 1.79 (quint.d, $\left.J=7.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.03(\mathrm{dqd}, J=$ 6.6, 6.8, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 3.09 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.32 (br. s, $3 \mathrm{H}, \mathrm{OMe}$), 6.98-7.04 (m, 3 $\mathrm{H}, \mathrm{Ph}), 7.10(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.60-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-$ 67.5, -71.2 (2 s, CF_{3}) ppm. IR (neat): $\tilde{v}=2965-2880(\mathrm{C}-\mathrm{H}), 1780(\mathrm{C}=\mathrm{O}), 1585,1470$, 1460 (C=C), 1170, 1140, 990, $960(\mathrm{C}-\mathrm{H}), 730-660(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{3}\right]^{+} 466.1448$, found 466.1462 .

General Procedure for the O-Methylation of 4-Hydroxypyridines (Procedure 5)

NaH in mineral oil ($60 \mathrm{wt}-\%, 3.0$ equiv.) was washed with hexane (three times) and suspended in anhydrous THF ($2.0 \mathrm{~mL} / \mathrm{mmol} 4$-hydroxypyridine). A solution of the 4hydroxypyridine in THF ($2.0 \mathrm{~mL} / \mathrm{mmol}$ 4-hydroxypyridine) was added dropwise. After 5 min stirring at r.t., methyl iodide (3.0 equiv.) was added and the reaction mixture stirred at ambient temperature overnight. After complete consumption of the starting material (as indicated by TLC), the reaction was quenched by the slow addition of MeOH until hydrogen production had ceased. Water and ethyl acetate were added, the organic layer was separated and the aqueous phase extracted with ethyl acetate. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude material was purified by flash column
chromatography on silica gel using an appropriate mixture of ethyl acetate and hexane as eluent.
(S)-2-tert-Butyl-6-[(tert-butyldimethylsiloxy)phenylmethyl]-3,4-dimethoxypyridine (53)

According to procedure $5,22(122 \mathrm{mg}, 0.30 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \mathrm{wt}-\%, 37$ $\mathrm{mg}, 0.91 \mathrm{mmol})$ and $\mathrm{Mel}(56 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$. Flash column chromatography of the crude material on silica gel (eluent: hexane/ethyl acetate 100:0 to 50:50, linear gradient) afforded 53 (93 mg, 75\%) as a colorless oil. $[\alpha]_{D}^{22}=+12.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.0,0.04,0.96(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}), 1.37(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 3.79$, 3.82 (2 s, 3 H each, OMe), 5.78 ($\mathrm{s}, 1 \mathrm{H}, 1$ '-H), $6.93(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.16-7.23,7.26-7.31$, 7.50-7.56 (3 m, 5 H, Ph) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-4.8,18.4,25.9(2 \mathrm{q}, \mathrm{s}$, OTBS), 29.7, 37.9 (q, s, $t-\mathrm{Bu}$), 55.4, 60.4 (2 s, OMe), 101.9 (d, C-5), 126.0, 126.8, 127.9, 142.9, 144.4, 158.1 (3 d, 3 s , Ph, C-2, C-6), 159.2, 159.4 (2 s, C-3, C-4) ppm. IR (neat): $\tilde{v}=3050-2800(\mathrm{C}-\mathrm{H}, \mathrm{C}=\mathrm{C}), 1550-1200(\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $[\mathrm{M}+\mathrm{H}]^{+}: 416.2621$, found 416.2618. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}(415.6) \mathrm{C}$ 69.35, H 8.97 , N 3.37, found: C 72.86, H 9.06, N 2.78.

To a solution of 53 ($63 \mathrm{mg}, 0.15 \mathrm{mmol}$) in anhydrous THF (1.15 mL), was added HF-pyridine (0.30 mL) and the mixture stirred at r.t. for 15 min . After complete consumption of the starting material (as indicated by TLC), the reaction mixture was diluted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$ was added. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to afford pure $54(35 \mathrm{mg}, 77 \%)$ as a colorless oil. $[\alpha]_{D^{2}}^{2}=-109.0\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 3.90,3.97\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, OMe), $6.05\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\right.$ $\mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.30-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 27.7, 37.0 (q, s, $t-\mathrm{Bu}$), 57.8, 61.3 (2 q, OMe), 70.8 (d, C-1'), 106.6 (d, C-5), 127.0, 129.2, 129.2 (3 d, Ph), 139.6, 144.9, 152.6, 153.1 ($4 \mathrm{~s}, \mathrm{Ph}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-6$), 166.2 (s, C-4) ppm. IR (neat) $\tilde{v}=3020-2800(\mathrm{C}-\mathrm{H}, \mathrm{C}=\mathrm{C}), 1550-1215(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\right]^{+}$302.1756, found 302.1757.

(R)-6-[(tert-ButyldimethyIsiloxy)phenylmethyl]-3,4-dimethoxy-2-phenylpyridine

According to procedure $5,30(101 \mathrm{mg}, 0.24 \mathrm{mmol})$ was treated with $\mathrm{NaH}(60 \mathrm{wt}-\%, 30$ $\mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{Mel}(45 \mu \mathrm{~L}, 0.72 \mathrm{mmol})$. Flash column chromatography of the crude material on silica gel (eluent: hexane/ethyl acetate 80:20) afforded 55 (31 mg, $30 \%)$ as a colorless oil. $[\alpha]_{D}^{22}=-66.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 0.02, 0.04, 0.97 ($3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$ OTBS), $3.59,3.91$ ($2 \mathrm{~s}, 3 \mathrm{H}$ each, OMe), 5.91 (s, 1 H, 1'-H), 7.11 (s, 1 H, 5-H), 7.34-7.29, 7.36-7.39, 7.40-7.46, 7.53-7.64, 7.87-7.91 (5 m, $10 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.7,18.4,25.9(2 \mathrm{q}, \mathrm{s}, \mathrm{OTBS}), 55.7$, 60.5 (2 q, OMe), 102.6 (d, C-5), 126.0, 127.1, 128.3, 128.1, 129.3, 137.8 (6 d, Ph), 138.8, 142.4, 144.1, 150.2 (4 s, Ph, C-2, C-6), 159.8, 160.7 (2 s, C-3, C-4) ppm. IR (neat) $\tilde{v}=3020-2800(\mathrm{C}-\mathrm{H}, \mathrm{C}=\mathrm{C}), 1550-1215(\mathrm{C}=\mathrm{C})$. ESI-TOF: m / z calc. for $[\mathrm{M}+\mathrm{H}]^{+}$ 436.2308, found 436.2308. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$ (435.6): C 71.68, H 7.64, N 3.22, found: C 72.12, H 7.36, N 3.19.

(R)-(4,5-Dimethoxy-6-phenylpyridin-2-yl)phenylmethanol (56)

To a solution of 55 ($31 \mathrm{mg}, 0.07 \mathrm{mmol}$) in anhydrous THF (1.0 mL), was added HF-pyridine (0.15 mL) and the mixture stirred at r.t. for 40 min . After complete consumption of the starting material (as indicated by TLC), the reaction mixture was diluted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$ was added. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to afford NMR spectroscopically pure $56(17 \mathrm{mg}, 76 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{22}=+116.0(\mathrm{c}=1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.63,3.86$ ($2 \mathrm{~s}, 3 \mathrm{H}$ each, OMe), 5.89 (s, 1 H , 1'-H), 6.68 (s, $1 \mathrm{H}, 5-\mathrm{H}$), 7.29-7.31, 7.43-7.44, 7.95-7.97 (3 m, $10 \mathrm{H}, \mathrm{Ph}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=56.4,60.9(2 \mathrm{q}, \mathrm{OMe}), 73.8(\mathrm{~d}, \mathrm{C}-1$ '), 104.4 (d, C-5), 127.2, 128.1, 128.5, 128.7, 129.4, 129.5 (6 d, Ph), 140.8, 142.5, 143.2, 148.4, 156.9, 161.7 (6 s, Ph, C-2, C-3, C-4, C-6) ppm. IR (neat): $\tilde{v}=3020$ (C-H), 2400-1550 (C=C) cm ${ }^{-1}$. ESITOF: calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}\right]^{+} 321.1365$, found 321.1349.

According to procedure 2, a mixture of methoxyallene ($0.62 \mathrm{~mL}, 7.6 \mathrm{mmol}$), n - $\mathrm{BuLi}(2.5$ M in hexanes, $2.85 \mathrm{~mL}, 7.13 \mathrm{mmol}$), pivalonitrile ($189 \mathrm{mg}, 2.38 \mathrm{mmol}$) and TBS-lactic acid (2.48 g, 11.9 mmol$)$ in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ provided $500 \mathrm{mg}(58 \%)$ of enamide 61 as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.1,0.91$ (2 s, $6 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}$), 1.19 (s, $9 \mathrm{H}, t-\mathrm{Bu}), 1.32(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.17$ $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-$ 4.9, - 4.7 (2 q, OTBS), 17.9 (q, C-4'), 21.3 (q, C-3), 25.7, 27.2 (s, q, OTBS), 28.4, 36.3 (q, s, t-Bu), 59.0 (q, OMe), 70.3 (d, C-2), 129.8, 150.1 (2 s, C-1', C-2'), 172.7 (s, C-1), 200.1 (s, C-3') ppm. IR (ATR): $\tilde{v}=3405$ (NH), 2955-2860 (=CH, C-H), 1740-1700 $(\mathrm{C}=\mathrm{O}), 1635-1585(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NNaO}_{4} \mathrm{Si}^{+} 380.2233\right.$, found 380.2245
(S)-2-(tert-Butyldimethylsiloxy)-N-(2-methoxy-3-oxo-1-phenylbut-1-enyl)propionamide (62)

According to procedure 2, a mixture of methoxyallene ($0.38 \mathrm{~mL}, 4.7 \mathrm{mmol}$), n - $\mathrm{BuLi}(2.5$ M in hexanes, $1.74 \mathrm{~mL}, 4.35 \mathrm{mmol}$), benzonitrile ($150 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$) and TBS-lactic
acid $60(1.80 \mathrm{~g}, 8.61 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(35 \mathrm{~mL})$ gave $315 \mathrm{mg}(58 \%)$ of enamide 62 as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.16,0.19,0.98(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$, OTBS), 1.35 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 3.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.19$ (q, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.35-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 11.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.8,-4.7$ (2 q, OTBS), 22.0 (q, C-3), 18.3, 25.7 (s, q, OTBS), 27.6 (q, C-4'), 60.5 (q, OMe), 70.6 (d, C-2), 127.9, 128.3, 128.7, 132.7, 139.5, 139.7 (3 s, 3 d, C-1', C-2', Ph), 174.0 (s, C-1), 200.7 (s, C-3') ppm. IR (ATR): $\tilde{v}=3335(\mathrm{NH}), 3020-$ $2855(=\mathrm{CH}, \mathrm{C}-\mathrm{H}), \quad 1754-1570 \quad(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}) \quad \mathrm{cm}^{-1}$. ESI-TOF: m/z calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NNaO}_{4} \mathrm{Si}^{+} 400.1915\right.$, found 400.1921
(S,E)-Thiophene-2-carboxylic acid \{1-[1-(tert-butyldimethylsiloxy)ethyl]-2-meth-oxy-3-oxo-but-1-enyl\}amide (65)

According to procedure 2, a mixture of methoxyallene ($0.30 \mathrm{~mL}, 3.7 \mathrm{mmol}$), n - $\mathrm{BuLi}(2.5$ M in hexanes, $1.30 \mathrm{~mL}, 3.25 \mathrm{mmol})$, TBS-lactic nitrile $63(200 \mathrm{mg}, 1.08 \mathrm{mmol})$ and thiophene-2 carboxylic acid ($870 \mathrm{mg}, 6.70 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ gave 302 mg (73\%) of enamide 65 as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07,0.11$, $0.89(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}), 1.46\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2\right.$ '"-H), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 3.64$ (s, $3 \mathrm{H}, \mathrm{OMe}$), $5.34(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1$ "'H), 7.08-7.10, $7.51-7.64$ (2 m, $1 \mathrm{H}, 2 \mathrm{H}, \mathrm{Ar}$), 10.35 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,-4.7$ ($2 \mathrm{q}, \mathrm{OTBS}$), 21.9 (q, C-2"), 18.2, 25.9 ($s, q, O T B S$), 27.2 ($q, C-4$ '), 61.1 ($q, O M e$), 65.4 (d, C-1"), 128.0, 129.5, 131.5, 139.3, 140.6, 141.5 (3 s, 3 d, C-1', C-2', Ar), 160.1 (s, C-1), 200.48 (s, C-
$\left.3^{\prime}\right) \mathrm{ppm}$. IR (ATR): $\tilde{v}=3270(\mathrm{NH}), 3105-2860(=\mathrm{CH}, \mathrm{C}-\mathrm{H}), 1710-1470(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-}$
${ }^{1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NNaO}_{4} \mathrm{SSi}^{+}{ }^{+} 406.1484\right.$, found 406.1489
(S)-Pyridine-2-carboxylic acid \{1-[1-(tert-butyldimethylsiloxy)ethyl]-2-methoxy-3 oxobut-1-enyl\}amide (66)

According to procedure 2 , a mixture of methoxyallene ($0.27 \mathrm{~mL}, 3.3 \mathrm{mmol}$), n-BuLi (2.5 м in hexanes, $1.16 \mathrm{~mL}, 2.90 \mathrm{mmol}$), TBS-lactic nitrile 63 ($200 \mathrm{mg}, 1.08 \mathrm{mmol}$) and picolinic acid ($669 \mathrm{mg}, 5.40 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ gave $210 \mathrm{mg}(51 \%)$ of enamide 66 as a pale yellow oil. Enamide 66 was obtained as a $1: 1$ mixture of E - and Z-isomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04,0.07,0.10,0.12,0.94,0.95(6 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 3 \mathrm{H}, 3$ H, $9 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS}$), 1.28 ($\mathrm{d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}$), $1.29\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 2.30$, 2.32 (2 s, 3 H each, $4^{\prime}-\mathrm{H}$), 3.61, 3.62 ($2 \mathrm{~s}, 3 \mathrm{H}$ each, OMe), 5.07 ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, 1' $^{\prime}$ H), 5.17 ($\mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $1^{\prime \prime}-\mathrm{H}$), 7.41-7.44, 7.80-7.86, 8.87-8.20, 8.53-8.57 (4 m , 1 H each, Ar), 8.22 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1,-4.9,-$ 4.72, -4.66 (4 q, OTBS), 18.07, 18.13 ($2 \mathrm{~s}, \mathrm{OTBS}$), 22.2, 22.6 ($2 \mathrm{q}, \mathrm{C}-2$ "), 25.73, 25.77 (2 q, OTBS), 27.6, 28.2 (2 q, C-4'), 58.8, 60.1 (2 q, OMe), 65.4, 66.1 (2 d, C-1"), 122.6, 122.7, 126.48, 126.54, 132.0, 134.4, 137.47, 134.50, 143.2, 143.8, 148.24, 148.27, 149.4, 149.6 ($6 \mathrm{~s}, 8 \mathrm{~d}, \mathrm{C}-1$ ', C-2', Ar), 161.1, 162.4 ($2 \mathrm{~s}, \mathrm{C}-1$), 198.1, 199.0 ($2 \mathrm{~s}, \mathrm{C}-3^{\prime}$) ppm. IR (ATR): $\tilde{v}=3325(N H), 3060-2860(=C H, C-H), 1755-1685(C=O), 1590-1570$ (C=C) cm^{-1}. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{Si}^{+}\right]^{+} 401.1873$, found: 401.1889.
(S,S)-2-(tert-Butyldimethylsiloxy)-N-\{1-[1-(tert-butyldimethylsiloxy)ethyl]-2-meth-oxy-3-oxo-but-1-enyl\}propionamide (67)

According to procedure 2, a mixture of methoxyallene ($0.27 \mathrm{~mL}, 3.3 \mathrm{mmol}$), n-BuLi (2.5 m in hexanes, $1.25 \mathrm{~mL}, 3.13 \mathrm{mmol}$), TBS-lactic nitrile $63(200 \mathrm{mg}, 1.08 \mathrm{mmol})$ and TBSlactic acid $60(1.35 \mathrm{~g}, 6.40 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ gave $125 \mathrm{mg}(25 \%)$ of enamide 67 as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=0.08,0.09,0.10,0.12(4 \mathrm{~s}, 6 \mathrm{H}$ each, OTBS), $0.88,0.91$ ($2 \mathrm{~s}, 9 \mathrm{H}$ each, OTBS), 1.22 ($\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}$ or 2"-H), $1.35\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right.$ or $2^{\prime \prime}-\mathrm{H}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right.$), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $4.25(\mathrm{q}, ~ J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$ or 1 "-H), $5.00(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$ or 1 "-H), 8.61 (br s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.6,-5.5,-5.4,-5.3(4 \mathrm{q}, \mathrm{OTBS}), 17.5,17.6(2 \mathrm{~s}$, OTBS), 21.0, 21.2 (2 q, C-3/C-2"), 24.7, 25.2 (2 q, OTBS), 26.7 ($q, C-4$ '), 59.3 (q, OMe), 64.3, 69.9 (2 d, C-2/C-1"), 128.8, 142.9 ($2 \mathrm{~s}, \mathrm{C}-1$ ', C-2'), 171.9 ($\mathrm{s}, \mathrm{C}-1$), 197.1 (s, C-3') ppm. IR (ATR): $\tilde{v}=3415(\mathrm{NH}), 2950-2860(=C H, C-H), 1725(\mathrm{C}=\mathrm{O}), 1570-1460$ ($\mathrm{C}=\mathrm{C}$) cm^{-1}. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{NNaO}_{5} \mathrm{Si}_{2}\right]^{+} 482.2734$, found 482.2740 . te (68)

According to procedure 3, a mixture of enamide 61 ($100 \mathrm{mg}, 0.280 \mathrm{mmol}$), triethylamine ($0.12 \mathrm{~mL}, 0.84 \mathrm{mmol}$), TMSOTf ($0.15 \mathrm{~mL}, 0.84 \mathrm{mmol}$) in 1,2-dichloroethane (4 mL) gave $74 \mathrm{mg}(78 \%)$ of the corresponding pyridine derivative as a brown oil. A mixture of the pyridine derivative ($355 \mathrm{mg}, 1.05 \mathrm{mmol}$), $\mathrm{NaH}(120 \mathrm{mg}, 3.14 \mathrm{mmol})$, and NfF (0.58 mL , 3.14 mmol) in THF (10 mL) gave 468 mg (72%) of 68 as a colorless oil. $[\alpha]_{D}^{22}=+13.3$ (c $\left.=0.60, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04,0.10,0.93(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$, OTBS), 1.39 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 1.45 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.86 ($\mathrm{q}, ~ J$ $\left.=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 7.33(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1,-4.6$ (2 q, OTBS), 18.0, 24.6 (s, q, OTBS), 29.3 (q, C-2'), 25.7, 38.6 ($\mathrm{q}, \mathrm{s}, t-\mathrm{Bu}$), 61.6 (q , OMe), 71.3 (d, C-1'), 145.3, 150.3, 151.8, 160.6, 163.2 ($1 \mathrm{~d}, 4 \mathrm{~s}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-$ 6) ppm. IR (ATR): $\tilde{v}=2975-2870(C-H), 1690-1515(C=C) \mathrm{cm}^{-1}$. ESI-TOF: m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{9} \mathrm{NO}_{5} \mathrm{SSiNa}^{+}\right.$: 644.1524; found: 644.1516.

According to procedure 3, a mixture of enamide $62(112 \mathrm{mg}, 0.297 \mathrm{mmol})$, triethylamine ($0.12 \mathrm{~mL}, 0.89 \mathrm{mmol}$), TMSOTf ($0.16 \mathrm{~mL}, 0.88 \mathrm{mmol}$) in 1,2-dichloroethane (3 mL) gave $93 \mathrm{mg}(87 \%)$ of the corresponding pyridine derivative as a brown oil. A mixture of the pyridine derivative ($129 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{NaH}(40 \mathrm{mg}, 1.00 \mathrm{mmol}$), and NfF ($184 \mu \mathrm{~L}$, 1.03 mmol) in THF (3 mL) gave $161 \mathrm{mg}(70 \%)$ of 69 as a colorless oil. $[\alpha]_{0}^{22}=+6.19(\mathrm{c}=$ $0.35, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.05,0.10,0.94(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$, OTBS), 1.49 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 4.95 ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-$ H), 7.14 (s, 1 H, 5-H), 7.34-7.43 (m, $3 \mathrm{H}, \mathrm{Ph}$), 7.85-7.87 (m, $2 \mathrm{H}, \mathrm{Ph}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,-4.5$ ($2 \mathrm{q}, \mathrm{OTBS}$), 18.3 ($\mathrm{q}, \mathrm{C}-2^{\prime}$), 25.5, 25.9 ($\mathrm{q}, \mathrm{s}, \mathrm{OTBS}$), 60.6 (q, OMe), 72.1 (d, C-1'), 102.0, 128.1, 128.2, 129.2, 137.9, 142.0, 150.4, 159.7, 162.3 (4 d, 5 s, C-2, C-3, C-4, C-5, C-6, Ph) ppm. IR (ATR): $\tilde{v}=2960-2870(\mathrm{C}-\mathrm{H})$, 1660-1400 ($\mathrm{C}=\mathrm{C}$) cm^{-1}. nonaflate (71)

According to procedure 3, a mixture of enamide 65 ($125 \mathrm{mg}, 0.30 \mathrm{mmol}$), triethylamine ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$), TMSOTf ($0.18 \mathrm{~mL}, 0.97 \mathrm{mmol}$) in 1,2-dichloroethane (3 mL) gave $78 \mathrm{mg}(65 \%)$ of the corresponding pyridine derivative as a brown oil. A mixture of the pyridine derivative ($58 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathrm{NaH}(16 \mathrm{mg}, 0.39 \mathrm{mmol})$, and $\mathrm{NfF}(0.08 \mathrm{~mL}$, $0.390 \mathrm{mmol})$ in THF (3 mL) gave $82 \mathrm{mg}(80 \%)$ of 71 as a colorless oil. $[\alpha]_{\mathrm{D}}^{22}=-11.9(\mathrm{c}=$ 3.7, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.01,0.04,0.87(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}, \mathrm{OTBS})$, $1.58\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.23\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 7.08-$ $7.10\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}_{\text {thio }}\right), 7.40\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {thio }}, 5-\mathrm{H}\right), 7.51-7.52(\mathrm{dd}, J=3.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ $\left.H_{\text {thio }}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,-4.3$ ($2 \mathrm{q}, \mathrm{OTBS}$), 18.3, 22.6 (s, q, OTBS), 25.9 ($\mathrm{q}, \mathrm{C}-2^{\prime}$), 62.7 (q, OMe), 68.7 ($(\mathrm{d}, \mathrm{C}-1$ '), 110.7, 125.1, 128.1, 128.6, 143.4, 144.1, 149.0, 150.0, 160.1 ($4 \mathrm{~d}, 5 \mathrm{~s}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-6$, Thiophenyl) ppm. IR (ATR): $\tilde{v}=2960-2850(=C H, C-H), 1590-1430(C=C) \mathrm{cm}^{-1}$. ESI-TOF: m / z calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{9} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{SiNa}^{+}:\right.$670.0776; found: 670.0794.

(S)-6-[1-(tert-Butyldimethylsiloxy)-ethyl]-5-methoxy-[2,2']bipyridin-4-yl nonaflate

(72)

According to procedure 3, a mixture of enamide $66(100 \mathrm{mg}, 0.264 \mathrm{mmol})$, triethylamine ($0.12 \mathrm{~mL}, 0.85 \mathrm{mmol}$), TMSOTf ($0.14 \mathrm{~mL}, 0.80 \mathrm{mmol}$) in 1,2-dichloroethane (5 mL) gave 80 mg (84\%) of the corresponding pyridine derivative as a brown oil. A mixture of the pyridine derivative ($38 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{NaH}(13 \mathrm{mg}, 0.33 \mathrm{mmol}$), and NfF (0.06 mL , $0.31 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ gave $57 \mathrm{mg}(86 \%)$ of 72 as a colorless oil. $[\alpha]_{D}^{22}=-2.0(\mathrm{c}=$ $\left.0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.01,0.04,0.87(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 9 \mathrm{H}$, OTBS), $1.59\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.32\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\right.$ H), 7.29-7.31, 7.78-7.82 ($2 \mathrm{~m}, 1 \mathrm{H}$ each, Pyr), $8.29(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}$), $8.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1$ H, Pyr), 8.64-8.65 (m, 1 H, Pyr) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=-4.5,-4.7(2 \mathrm{q}$, OTBS), 18.3, 22.7 ($\mathrm{s}, \mathrm{q}, \mathrm{OTBS}$), 25.9 ($\mathrm{q}, \mathrm{C}-2^{\prime}$), 62.6 (q, OMe), 68.2 (d, C-1'), 113.4, $121.2,124.1,137.0,145.6,149.2,150.3,152.8,154.4,159.5$ (5 d, $5 \mathrm{~s}, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-$ 5, C-6, Pyr) ppm. IR (ATR): $\tilde{v}=2965-2870(=C H, C-H), 1600-1435(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ESITOF: calc. for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}\right]^{+}$643.1339, found 643.1346.
(S,S)-2,6-Bis-[1-(tert-butyl-dimethylsilyloxy) ethyl]-3-methoxypyridin-4-yl nonaflate (73)

According to procedure 3 , a mixture of enamide $67(50 \mathrm{mg}, 0.11 \mathrm{mmol})$, triethylamine ($0.05 \mathrm{~mL}, 0.35 \mathrm{mmol}$), TMSOTf ($0.06 \mathrm{~mL}, 0.32 \mathrm{mmol}$) in 1,2-dichloroethane (3 mL) gave $37 \mathrm{mg}(77 \%)$ of the corresponding pyridine derivative as a brown oil. A mixture of the pyridine derivative ($43 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{NaH}(16 \mathrm{mg}, 0.39 \mathrm{mmol})$, and NfF (0.07 mL , 0.39 mmol) in THF (3 mL) gave $35 \mathrm{mg}(50 \%)$ of 73 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.02,0.01,0.00(3 \mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}, 6 \mathrm{H}, \mathrm{OTBS}), 0.83,0.90(2 \mathrm{~s}, 9 \mathrm{H}$ each, OTBS), $1.40\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ or 2"-H), $1.48\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ or 2"-H), 3.82 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.90 ($\mathrm{q}, ~ J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$ or $1^{\prime \prime}-\mathrm{H}$), $5.21\left(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right.$ or $1^{\prime \prime}-\mathrm{H}$), 7.03 (s, $1 \mathrm{H}, 5-\mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,-4.72,-4.71,-$ 4.5 ($4 \mathrm{q}, \mathrm{OTBS}$), 18.3, 18.5, 25.9, 26.0 ($2 \mathrm{~s}, 2 \mathrm{q}, \mathrm{OTBS}$), 23.3, 26.1 ($2 \mathrm{q}, \mathrm{C}-2^{\prime} / \mathrm{C}-2^{\prime \prime}$) 61.1 (q, OMe), 68.1, 72.2 (2 d, C-1'/C-1"), 140.8, 155.5, 158.4, 159.0, 162.0 (d, $4 \mathrm{~s}, \mathrm{C}-2, \mathrm{C}-3$, C-4, C-5, C-6) ppm. (ATR): $\tilde{v}=2965-2870(=C H, C-H), 1600-1435(C=C) \mathrm{cm}^{-1}$. ESITOF: calc. for $\left[\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~F}_{9} \mathrm{NNaO}_{6} \mathrm{SSi}_{2}\right]^{+} 746.2020$, found 746.2040 .

[^0]: ${ }^{1}$ Kuisle, O.; Quinoá, E.; Riguera, R. J. Org. Chem. 1999, 64, 8063-8075. doi:10.1021/jo981580+
 ${ }^{2}$ Reetz, M. T.; Drewes, M. W.; Lennick, K. Process for the stereoselective preparation of optically active S,S or R,R-beta-aminoalcohols. Eur. Pat. Appl. EP 387605, September 9, 1990.
 ${ }^{3}$ Velluz, L.; Amiard, G.; Heymes, R. Bull. Soc. Chim. Fr. 1955, 201-204.
 ${ }^{4}$ Traverse, J. F.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2005, 7, 3151-3154. doi:10.1021/ol050814q
 ${ }^{5}$ Couty, F.; David, O.; Larmanjat, B.; Marrot, J. J. Org. Chem. 2007, 72, 1058-1061. doi:10.1021/jo062221e

[^1]: ${ }^{6}$ Kangani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron Lett. 2007, 48, 5933-5937. doi:10.1016/j.tetlet.2007.06.119

