Supporting Information

for

Multicomponent reaction access to complex

quinolines via oxidation of the Povarov adducts

Esther Vicente-García¹, Rosario Ramón¹, Sara Preciado¹ and Rodolfo Lavilla^{*1,2}

Address: ¹Barcelona Science Park, Baldiri Reixac 10–12, 08028, Barcelona, Spain and ²Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII sn, 08028, Barcelona, Spain

Email: Rodolfo Lavilla - rlavilla@pcb.ub.es

*Corresponding author

Experimental details

Table of contents

Synthetic procedures and characterization data for new compounds	.S2
¹ H and ¹³ C NMR spectra	.S4
Particle size analyses of MnO ₂ samples	.S6

5-(4-Chlorophenyl)-9-methyl-3,4-dihydrobenzo[h][1,6]naphthyridin-2(1*H*)-one (21a) Following the general procedure A, the oxidation of 20a,20a',

afforded compound **21a** as a white solid (22%). Following the general procedure C for 5h with Wako MnO_2 , the oxidation of **20a**,**20a'**, afforded compound **21a** as a white solid (71%).

The spectroscopic data for this compound perfectly matches the published data [12].

Butyl-9-methoxy-5-[4-(trifluoromethyl)phenyl]-3,4 dihydrobenzo[h][1,6]naphthyridin-2(1*H*)-one (21b)

Following the general procedure A, the oxidation of **20b**,**20b'**, afforded compound **21b** as a purple solid (84%).

Following the general procedure C for 8h with Wako MnO_2 , the oxidation of **20b**,**20b'**, afforded compound **21b** as a purple solid (41%). The spectroscopic data for this compound perfectly matches the published data [12].

3-[2-(4-Chlorophenyl)-6-methylquinolin-3-yl]propanamide (22a)

Following the general procedure B, the treatment of **20a**,**20a'** afforded compound **22a** as a white solid (49%). ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.93 (m, 2H), 7.55 (s, 1H), 7.51 (dd, *J*= 8.6, 1.9 Hz, 1H), 7.48–7.40 (m, 4H), 5.49 (br s, 1H), 5.39

(br s, 1H), 3.14–3.08 (m, 2H), 2.54 (s, 3H), 2.36–2.31 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.7, 158.1, 145.4, 139.2, 136.9, 135.9, 134.5, 131.9, 131.8, 130.3, 128.9, 128.8, 127.7, 126.0, 36.0, 28.5, 21.8 ppm. **IR** (film) v_{max} : 3353, 3186, 3051, 2911, 2847, 1662, 1617, 1482, 1437, 1405, 1373, 1296, 1085, 1002, 918, 822, 133 cm⁻¹. **HRMS**: calcd for C₁₉H₁₈CIN₂O, 325.1102 (M+H⁺); found, 325.1101.

3-[6-Methoxy-2-{4-(trifluoromethyl)phenyl}quinolin-3-yl]-*N*-pentylpropanamide (22b)

Following the general procedure B, the treatment of **20b**,**20b'** afforded compound **22b** as a white solid (49%). The spectroscopic data for this compound perfectly matches the published data [12].

9-Bromo-5-(4-chlorophenyl)-3,4-dihydro-2H-pyrano[3,2-c]quinoline (18)

3-(6-Bromo-2-(4-chlorophenyl)quinolin-3-yl)propan-1-ol (19)

100 90 f1 (ppm)

3-[2-(4-Chlorophenyl)-6-methylquinolin-3-yl]propanamide (22a)

MnO₂ Particle size study:

All the manganese dioxide samples were analyzed with a LS^{TM} 13 320 series Laser diffraction particle size analyzer to determine the particle size.

Reagent code	d ₁₀ (µm)	d ₅₀ (μm)	d ₉₀ (µm)	<75%	<95%	<10 µm (%)
310700	1.475	4.302	11.16	7.022	14.53	87.5
243442	77.66	138.4	173.2	156.8	183.2	1.57
217646	0.577	4.240	16.04	9.583	19.69	75.3
213490010	1.509	7.555	37.30	18.16	51.39	57.3
138-09675	2.743	25.70	63.10	44.77	73.05	21.6
Old Sample	0.932	11.46	47.78	24.40	66.57	47.7

 $d_{xx}\left(\mu m\right)$ indicates the size of particle below which XX% of the sample lies (50% - median diameter)

d₁₀: 1.475 μm <75% 7.022 μm <10 µm 87.5%

10x

<u>d₅₀: 138.4 μm</u> d₅₀: 173.2 μm <u><95% 183.2 μm</u>

d₁₀: 77.66 μm <75% 156.8 μm <10 μm 1.57%

10x

<95% 19.69 µm

d₁₀: 0.577 μm <75% 9.883 μm <10 μm 75.3%

10x

Acros (213490010):

10x

Wako (138-09675):

10x

40x

10x

40x