Supporting Information

for

Efficient gold(I)/silver(I)-cocatalyzed cascade intermolecular N-Michael addition/intramolecular hydroalkylation of unactivated alkenes with α-ketones

Ya-Ping Xiao¹, Xin-Yuan, Liu², Chi-Ming Che¹-²*

Address: ¹Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 , P. R. China and ²Department of Chemistry, State Key Laboratory of Synthetic Chemistry, and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

Email: Chi-Ming Che* - cmche@hku.hk; Ya-Ping Xiao - xiaoyaping82@hotmail.com; Xin-Yuan Liu - liuxy@hku.hk

*Corresponding author

Experimental section and spectra of compounds
Table of contents

Experimental section .. S2

References .. S9

Spectra of compounds .. S10–S17

Experimental section

General methods. Reagents were obtained commercially and used without further purification unless indicated otherwise. All anhydrous solvents used in the reactions were dried and freshly distilled. All manipulations with air-sensitive reagents were carried out under a dry argon atmosphere. The catalysts Au(PPh$_3$)$_2$Cl [1], (Cy)$_2$(2',4',6'-triisopropyl-o-biphenyl)PAuCl [1,2], (t-Bu)$_2$(o-diphenyl)PAuCl [1,2] and IPrAuCl [3] were prepared following literature procedures. 2-Methylene-3,4-dihyronaphthalen-1(2H)-one was prepared according to the literature procedure [4]. α,β-Unsaturated ketones were prepared following the literature procedure [5]. Substituted allylic amines were prepared following the literature procedure [6]. NMR spectra were recorded on Bruker AM300/400 spectrometers at 300/400 MHz for 1H NMR and 75/100 MHz for 13C NMR in CDCl$_3$ with TMS as an internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for 1H NMR are recorded as follows: Chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). Mass spectra were obtained on a HP5989A spectrometer (EI), an IonSpec 4.7 Tesla FTMS spectrometer (MALDI), or a Bruker
Daltonics FTMS-7 spectrometer (ESI). IR spectra were recorded as KBr discs, on a Bio-Rad FTS-185 spectrometer; frequencies are given in reciprocal centimeters (cm⁻¹) and only selected absorbance is reported.

General procedure for gold/silver-cocatalyzed one-pot tandem intermolecular N-Michael addition/intramolecular hydroalkylation

A mixture of (t-Bu)₂(o-diphenyl)PAuCl (6.7 mg, 0.0125 mmol), AgClO₄ (7.8 mg, 0.0375 mmol) (Warning! The perchlorate salt is potentially explosive and should be handled with great caution.), α,β-unsaturated ketone (0.25 mmol) and substituted allylic amine (0.375 mmol, 1.5 equiv) in toluene (0.5 mL) was stirred at 90 °C under Ar atmosphere for 20 h. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1:12-1:6) to give the desired products.

trans-4-Methyl-1-tosylpyrrolidin-3-yl)(phenyl)methanone (3a)

trans/cis: 4.1:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of 3a was determined with reference to 1-(trans-4-methyl-1-tosylpyrrolidin-3-yl)ethanone [7].

White solid. ¹H NMR(300 MHz, CDCl₃): δ 7.86 (d, J = 7.3 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.3 Hz, 2H), 3.79 (t, J = 8.2 Hz, 1H), 3.55 (q, J = 8.0 Hz, 1H), 3.47 (dd, J = 7.2, 9.0 Hz, 1H), 3.29 (t, J = 9.0 Hz, 1H), 3.05 (t, J = 7.6 Hz, 1H), 2.56-2.46 (m, 1H), 2.44 (s, 3H), 1.04 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 198.1, 143.6, 136.2, 133.7, 133.4, 129.7,
128.8, 128.3, 127.6, 54.2, 50.8, 36.5, 21.6, 17.4. IR (FILM): ν_{max} 3286, 2956, 2924, 1712, 1679, 1597, 1448, 1341, 1223, 1161, 1093, 1041, 815 cm$^{-1}$. MS (ESI) m/z: 366 (M+Na$^+$), 344 (M+H$^+$). HRMS (ESI): calcd. for C$_{19}$H$_{22}$NO$_3$S$^+$ (M+H$^+$): 344.13149, found: 344.13189.

(4-Methoxyphenyl)(trans-4-methyl-1-tosylpyrrolidin-3-yl)methanone (3b)

$trans/cis$: 1.0: 1. One of the diastereomers could be separated on a silica gel column, and the relative configuration of 3b was determined with reference to 3a.

White solid. 1H NMR (300 MHz, CDCl$_3$): δ 7.84 (d, $J = 8.4$ Hz, 2H), 7.71 (d, $J = 7.5$ Hz, 2H), 7.33 (d, $J = 7.5$ Hz, 2H), 6.93 (d, $J = 8.4$ Hz, 2H), 3.87 (s, 3H), 3.75 (t, $J = 8.7$ Hz, 1H), 3.54-3.43 (m, 2H), 3.27 (t, $J = 9.0$ Hz, 1H), 3.04 (t, $J = 8.7$ Hz, 1H), 2.54-2.44 (m, 1H), 2.44 (s, 3H), 1.01 (d, $J = 6.9$ Hz, 3H); 13C NMR (75 MHz, CDCl$_3$): δ 196.4, 163.9, 143.6, 133.4, 130.7, 129.7, 129.2, 127.5, 113.9, 55.5, 54.2, 51.6, 51.0, 36.6, 21.5, 17.3; MS (ESI) m/z: 396 (M+Na$^+$); HRMS (ESI): calcd. for C$_{20}$H$_{23}$NNaO$_4$S$^+$ (M+Na$^+$): 396.12400, found: 396.12381.

(cis-4-Methyl-1-tosylpyrrolidin-3-yl)(4-nitrophenyl)methanone (3c)

$trans/cis$: 1.7: 1. One of the diastereomers could be separated on a silica gel column, and the relative configuration of 3c was determined with reference to 3a.

Pale yellow solid.1H NMR (300 MHz, CDCl$_3$): δ 8.32 (d, $J = 8.4$ Hz, 2H), 8.04 (d, $J = 8.4$ Hz, 2H), 7.77 (d, $J = 7.8$ Hz, 2H), 7.37 (d, $J = 7.8$ Hz, 2H), 4.07-3.99 (m, 1H),
3.75-3.58 (m, 3H), 3.08 (dd, J = 9.6, 3.6 Hz, 1H), 2.76-2.72 (m, 1H), 2.47 (s, 3H), 0.57 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 196.9, 150.9, 144.1, 141.1, 133.8, 128.0, 124.5, 55.4, 49.9, 47.9, 36.6, 21.9, 14.9; IR (FILM): ν_{max} 3108, 2967, 2925, 1688, 1602, 1526, 1493, 1407, 1346, 1221, 1164, 1093, 1032, 985 cm$^{-1}$; MS (ESI) m/z: 411(M+Na$^+$); HRMS (ESI): calcd. for C$_{19}$H$_{20}$N$_2$NaO$_5$S$^+$ (M+Na$^+$): 411.10102, found: 411.09913.

1-(trans-4-Methyl-1-tosylpyrrolidin-3-yl)propan-1-one (3d)

trans/cis: 5.5:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of 3d was determined with reference to 3a.

White solid. 1H NMR (300 MHz, CDCl$_3$): δ 7.71 (d, J = 8.1Hz, 2H), 7.34 (d, J = 8.1Hz, 2H), 3.60 (dd, J = 9.6, 8.4Hz, 1H), 3.41 (dd, J = 9.6, 7.5Hz, 1H), 3.24 (dd, J = 9.9, 8.4Hz, 1H), 2.90 (dd, J = 9.6, 8.1Hz, 1H), 2.69 (dd, J = 16.5, 8.1Hz, 1H), 2.45 (s, 3H), 2.45-2.23 (m, 3H), 1.04-0.99 (m, 6H); 13C NMR (75 MHz, CDCl$_3$): δ 209.1, 143.7, 133.3, 129.7, 127.6, 56.7, 54.3, 49.9, 36.3, 36.1, 21.5, 17.5, 7.5; IR (FILM): ν_{max} 2972, 2937, 2877, 1713, 1598, 1459, 1379, 1343, 1162, 1093 cm$^{-1}$; MS (ESI) m/z: 318 (M+Na$^+$), 296 (M+H$^+$); HRMS (ESI): calcd. for C$_{15}$H$_{21}$NNaO$_5$S$^+$ (M+Na$^+$): 318.11344, found: 318.11249.
1-(trans-4-Methyl-1-(4-nitrophenylsulfonyl)pyrrolidin-3-yl)propan-1-one (3e)

trans/cis: 5.3:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of 3e was determined with reference to 3a.

Pale yellow solid. 1H NMR (300 MHz, CDCl$_3$): δ 8.38 (d, $J = 8.7$Hz, 2H), 8.00 (d, $J = 8.7$Hz, 2H), 3.60 (dd, $J = 9.9$, 1.8Hz, 1H), 3.38-3.31 (m, 2H), 2.99 (dd, $J = 9.6$, 7.2Hz, 1H), 2.77 (dd, $J = 15.0$, 7.5Hz, 1H), 2.46-2.39 (m, 2H), 2.38-2.28 (m, 1H), 1.05 (d, $J = 6.6$Hz, 3H), 0.99 (t, $J = 7.2$Hz, 3H): 13C NMR (75 MHz, CDCl$_3$): δ 209.2, 150.4, 142.9, 128.9, 124.7, 56.6, 54.5, 49.8, 36.9, 36.4, 17.9, 7.8; MS (EI) m/z: 326 (M$^+$, 1), 140 (100), 122 (13), 113 (48), 108 (12), 85 (15), 84 (60), 82(41); HRMS (EI): calcd. for C$_{12}$H$_{13}$N$_2$O$_5$S$^+$ (M$^+$): 297.0545, found: 297.0542.

1-(trans-4-Methyl-1-(2,4,6-triisopropylphenylsulfonyl)pyrrolidin-3-yl)propan-1-one (3f)

trans/cis: 5.2:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of 3f was determined with reference to 3a.

Pale yellow solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.15 (s, 2H), 4.21-4.15 (m, 2H), 3.63 (dd, $J = 7.2$, 6.3Hz, 1H), 3.41 (dd, $J = 6.9$, 5.4Hz, 1H), 3.31 (dd, $J = 7.5$, 6.3Hz, 1H), 2.97-2.78 (m, 3H), 2.51-2.44 (m, 3H), 1.27-1.22 (m, 18H), 1.09 (d, $J = 5.1$Hz,
3H), 1.04 (t, J = 5.4Hz, 3H); 13C NMR(100 MHz, CDCl$_3$): δ 209.6, 153.1, 151.2, 131.0, 123.8, 57.0, 53.2, 48.6, 36.7, 36.1, 34.1, 29.3, 24.8, 23.5, 17.3, 7.5; MS (EI) m/z: 407 (M$^+$, 1), 306 (14), 268 (18), 267 (100), 251 (32), 249 (9), 218 (24), 203 (14); HRMS (EI): calcd. for C$_{23}$H$_{37}$NO$_3$S$^+$ (M$^+$): 407.2494, found: 407.2487.

4'-Methyl-1'-tosyl-3,4-dihydro-1H-spiro[naphthalene-2,3'-pyrrolidin]-1-one (3g)

![3g](image)

trans/cis: 1.8: 1. One of diastereomers could be separated on a silica gel column.

White solid. 1H NMR (300 MHz, CDCl$_3$) δ 7.86 (d, J = 7.2Hz, 1H), 7.72 (d, J = 8.1Hz, 2H), 7.49-7.44 (m, 1H), 7.35-7.26 (m, 3H), 7.21 (d, J = 7.8Hz, 2H), 3.83 (d, J = 9.9Hz, 1H), 3.67 (dd, J = 9.3, 7.2Hz, 1H), 3.27 (d, J = 10.5Hz, 1H), 3.13-3.02 (m, 2H), 2.94-2.85 (m, 1H), 2.46 (s, 3H), 2.39-2.32 (m, 1H), 2.25-2.17 (m, 1H), 2.08-1.99 (m, 1H), 0.71 (d, J = 6.9Hz, 3H); 13C NMR (75 MHz, CDCl$_3$): δ 197.7, 143.4, 142.6, 133.6, 133.3, 132.0, 129.6, 128.7, 127.62, 127.57, 126.8, 55.6, 54.8, 54.2, 39.9, 33.2, 25.8, 21.6, 14.1; MS(ESI) m/z: 392 (M+Na$^+$), 370 (M+H$^+$); HRMS (ESI): calcd. for C$_{21}$H$_{23}$NNaO$_3$S$^+$ (M+Na$^+$): 392.12909, found: 392.12958.

General procedure for control experiment

A mixture of AgClO$_4$ (20.7 mg, 0.1 mmol) (Warning! The perchlorate salt is potentially explosive and should be handled with great caution.), α,β-unsaturated ketone 1a (1.0 mmol) and substituted allylic amine 2a (1.5 mmol, 1.5 equiv) in toluene (2 mL) was stirred at 90 °C under Ar atmosphere for 3 h. Then, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1:10) to give the desired product 4 in 85% yield (299 mg, 0.85 mmol).
N-Allyl-4-methyl-N-(3-oxo-3-phenylpropyl)benzenesulfonamide (4)

![Chemical Structure]

Colorless oil. 1H NMR (300 MHz, CDCl$_3$): δ 7.93 (d, $J = 8.0$ Hz, 2H), 7.70 (d, $J = 8.3$ Hz, 2H), 7.58 (t, $J = 7.0$ Hz, 1H), 7.46 (t, $J = 7.2$ Hz, 2H), 7.28 (t, $J = 8.6$ Hz, 2H), 5.75-5.62 (m, 1H), 5.22-5.13 (m, 2H), 3.84 (d, $J = 6.6$ Hz, 2H), 3.48 (t, $J = 6.5$ Hz, 2H), 3.36 (t, $J = 7.2$ Hz, 2H), 2.44 (s, 3H); 13C NMR (75 MHz, CDCl$_3$): δ 198.3, 143.4, 136.3, 136.2, 133.3, 133.0, 129.7, 128.6, 127.9, 127.1, 119.3, 52.1, 43.1, 38.9, 21.5. IR(FILM): ν_{max} 3064, 2922, 1682, 1644, 1598, 1581, 1494, 1449, 1417, 1382, 1342, 1306, 1287, 1211, 1157, 1092, 1018, 986, 931, 876 cm$^{-1}$. MS(ESI) m/z: 366 (M+Na$^+$), 344 (M+H$^+$). HRMS(ESI): calcd. for C$_{19}$H$_{21}$NO$_3$SNa$^+$(M+Na$^+$): 366.1134, found: 366.1141. Anal. calcd. for C$_{19}$H$_{21}$O$_3$NS: C, 66.45; H, 6.16; N, 4.08, found: C, 66.45; H, 6.10; N, 4.05.
References

