Supporting Information

Efficient gold(I)/silver(I)-cocatalyzed cascade intermolecular \mathbf{N}-Michael addition/intramolecular hydroalkylation of unactivated alkenes with α-ketones
Ya-Ping Xiao ${ }^{1}$, Xin-Yuan, Liu ${ }^{2}$, Chi-Ming Che ${ }^{1,2 *}$
Address: ${ }^{1}$ Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032 , P. R. China and ${ }^{2}$ Department of Chemistry, State Key
Laboratory of Synthetic Chemistry, and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Email: Chi-Ming Che* - cmche@hku.hk; Ya-Ping Xiao -
xiaoyaping82@hotmail.com; Xin-Yuan Liu - liuxy@hku.hk
*Corresponding author

Experimental section and spectra of compounds

Table of contents

Experimental section S2
References S9
Spectra of compounds S10-S17

Experimental section

General methods. Reagents were obtained commercially and used without further purification unless indicated otherwise. All anhydrous solvents used in the reactions were dried and freshly distilled. All manipulations with air-sensitive reagents were carried out under a dry argon atmosphere. The catalysts $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ [1], $(\mathrm{Cy})_{2}\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.$-triiisopropyl-o-biphenyl)PAuCl $\quad[1,2], \quad(t-\mathrm{Bu})_{2}(o$-diphenyl)PAuCl $[1,2]$ and $\mathrm{IPrAuCl}[3]$ were prepared following literature procedures. 2-Methylene-3,4-dihydronaphthalen- $1(2 \mathrm{H})$-one was prepared according to the literature procedure [4]. α, β-Unsaturated ketones were prepared following the literature procedure [5]. Substituted allylic amines were prepared following the literature procedure [6]. NMR spectra were recorded on Bruker AM300/400 spectrometers at $300 / 400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ NMR and $75 / 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} with TMS as an internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz . Data for ${ }^{\mathrm{I}} \mathrm{H}$ NMR are recorded as follows: Chemical shift (ppm), multiplicity (s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Mass spectra were obtained on a HP5989A spectrometer (EI), an IonSpec 4.7 Tesla FTMS spectrometer (MALDI), or a Bruker

Daltonics FTMS-7 spectrometer (ESI). IR spectra were recorded as KBr discs, on a Bio-Rad FTS-185 spectrometer; frequencies are given in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$ and only selected absorbance is reported.

General procedure for gold/silver-cocatalyzed one-pot tandem intermolecular

\mathbf{N}-Michael addition/intramolecular hydroalkylation

A mixture of $(t-\mathrm{Bu})_{2}\left(o\right.$-diphenyl) $\mathrm{PAuCl}(6.7 \mathrm{mg}, 0.0125 \mathrm{mmol}), \mathrm{AgClO}_{4}(7.8 \mathrm{mg}$, 0.0375 mmol) (Warning! The perchlorate salt is potentially explosive and should be handled with great caution.), α, β-unsaturated ketone (0.25 mmol) and substituted allylic amine (0.375 mmol , 1.5 equiv) in toluene (0.5 mL) was stirred at $90^{\circ} \mathrm{C}$ under Ar atmosphere for 20 h . Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether $=1: 12-1: 6)$ to give the desired products.

(trans-4-Methyl-1-tosylpyrrolidin-3-yl)(phenyl)methanone (3a)

3a
trans/cis: 4.1:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of $\mathbf{3 a}$ was determined with reference to 1-(trans-4-methyl-1-tosylpyrrolidin-3-yl)ethanone [7].

White solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=7.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.1,143,6,136.2,133.7,133.4,129.7$,
$128.8,128.3,127.6,54.2,50.8,36.5,21.6,17.4$. IR (FILM): $v_{\max } 3286,2956,2924$, 1712, 1679, 1597, 1448, 1341, 1223, 1161, 1093, 1041, $815 \mathrm{~cm}^{-1}$. MS (ESI) $\mathrm{m} / \mathrm{z}: 366$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right), 344\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right): 344.13149$, found: 344.13189 .
(4-Methoxyphenyl)(trans-4-methyl-1-tosylpyrrolidin-3-yl)methanone (3b)

3b
trans/cis: 1.0: 1. One of the diastereomers could be separated on a silica gel column, and the relative configuration of $\mathbf{3 b}$ was determined with reference to $\mathbf{3 a}$.

White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54-2.44(m, 1H), 2.44(s, 3H), $1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4,163.9,143.6,133.4,130.7,129.7,129.2,127.5,113.9,55.5,54.2,51.6,51.0$, 36.6, 21.5, 17.3; MS (ESI) $m / z: 396\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 396.12400$, found: 396.12381.
(cis-4-Methyl-1-tosylpyrrolidin-3-yl)(4-nitrophenyl)methanone (3c)

3c
trans/cis: 1.7: 1 . One of the diastereomers could be separated on a silica gel column, and the relative configuration of $\mathbf{3 c}$ was determined with reference to $\mathbf{3 a}$.

Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 1 \mathrm{H})$,
$3.75-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $0.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.9,150.9,144.1,141.1$, $133.8,128.0,124.5,55.4,49.9,47.9,36.6,21.9,14.9$; IR (FILM): $v_{\max } 3108,2967$, $2925,1688,1602,1526,1493,1407,1346,1221,1164,1093,1032,985 \mathrm{~cm}^{-1} ;$ MS (ESI) $m / z:$ 411($\left.\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 411.10102, found: 411.09913 .

1-(trans-4-Methyl-1-tosylpyrrolidin-3-yl)propan-1-one (3d)

trans/cis: 5.5:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of $\mathbf{3 d}$ was determined with reference to $\mathbf{3 a}$.

White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=$ $9.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=9.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, 3H), 2.45-2.23 (m, 3H), 1.04-0.99 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 209.1, $143.7,133.3,129.7,127.6,56.7,54.3,49.9,36.3,36.1,21.5,17.5,7.5 ;$ IR (FILM): $v_{\max } 2972,2937,2877,1713,1598,1459,1379,1343,1162,1093 \mathrm{~cm}^{-1}$; MS (ESI) $m / z:$ $318\left(\mathrm{M}+\mathrm{Na}^{+}\right), 296\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 318.11344, found: 318.11249.

trans/cis: 5.3:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of $\mathbf{3 e}$ was determined with reference to $\mathbf{3 a}$.

Pale yellow solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=9.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.2,150.4$, $142.9,128.9,124.7,56.6,54.5,49.8,36.9,36.4,17.9,7.8 ; \mathrm{MS}(\mathrm{EI}) m / z: 326\left(\mathrm{M}^{+}, 1\right)$, 140 (100), 122 (13), 113 (48), 108 (12), 85 (15), 84 (60), 82(41); HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left(\mathrm{M}^{+}\right):$297.0545, found: 297.0542.

1-(trans-4-Methyl-1-(2,4,6-triisopropylphenylsulfonyl)pyrrolidin-3-yl)propan-1-

 one (3f)
trans/cis: 5.2:1. Major diastereomer could be separated on a silica gel column, and the relative configuration of $\mathbf{3 f}$ was determined with reference to $\mathbf{3 a}$.

Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15$ (s, 2H), 4.21-4.15 (m, 2H), $3.63(\mathrm{dd}, J=7.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=6.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 18 \mathrm{H}), 1.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.04(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.6,153.1,151.2$, $131.0,123.8,57.0,53.2,48.6,36.7,36.1,34.1,29.3,24.8,23.5,17.3,7.5$; MS (EI) $m / z: 407\left(\mathrm{M}^{+}, 1\right), 306$ (14), 268 (18), 267 (100), 251 (32), 249 (9), 218 (24), 203 (14); HRMS (EI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{~S}^{+}\left(\mathrm{M}^{+}\right)$: 407.2494, found: 407.2487.

4'-Methyl-1'-tosyl-3,4-dihydro-1H-spiro[naphthalene-2,3'-pyrrolidin]-1-one (3g)

$3 g$
trans/cis: 1.8: 1 . One of diastereomers could be separated on a silica gel column.
White solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 2 \mathrm{H})$, 2.94-2.85 (m, 1H), 2.46 (s, 3H), 2.39-2.32 (m, 1H), 2.25-2.17 (m, 1H), 2.08-1.99 (m, $1 \mathrm{H}), 0.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,143.4,142.6$, 133.6, 133.3, 132.0, 129.6, 128.7, 127.62, 127.57, 126.8, 55.6, 54.8, 54.2, 39.9, 33.2, 25.8, 21.6, 14.1; MS(ESI) $m / z:: 392\left(\mathrm{M}+\mathrm{Na}^{+}\right), 370\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 392.12909$, found: 392.12958 .

General procedure for control experiment

A mixture of AgClO_{4} (20.7 mg , 0.1 mmol) (Warning! The perchlorate salt is potentially explosive and should be handled with great caution.), α, β-unsaturated ketone 1a (1.0 mmol) and substituted allylic amine $2 \mathbf{2 a}$ (1.5 mmol , 1.5 equiv) in toluene (2 mL) was stirred at $90{ }^{\circ} \mathrm{C}$ under Ar atmosphere for 3 h . Then, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether $=1: 10$) to give the desired product 4 in 85% yield ($299 \mathrm{mg}, 0.85 \mathrm{mmol}$).

N-Allyl-4-methyl-N-(3-oxo-3-phenylpropyl)benzenesulfonamide (4)

4
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.75-5.62 (m, 1H), 5.22-5.13 (m, 2H), $3.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.5 \mathrm{~Hz}$, 2H), 3.36 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.3$, $143.4,136.3,136.2,133.3,133.0,129.7,128.6,127.9,127.1,119.3,52.1,43.1,38.9$, 21.5. IR(FILM): $v_{\max } 3064,2922,1682,1644,1598,1581,1494,1449,1417,1382$, 1342, 1306, 1287, 1211, 1157, 1092, 1018, 986, 931, $876 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 366$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right), 344\left(\mathrm{M}+\mathrm{H}^{+}\right)$. $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 366.1134, found: 366.1141. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NS}: \mathrm{C}, 66.45 ; \mathrm{H}, 6.16$; $\mathrm{N}, 4.08$, found: C , 66.45; H, 6.10; N, 4.05.

References

1. Al-Sa'Ady, A. K.; McAuliffe, C. A.; Parish, R. V.; Sandeank, J. A. Inorg. Synth. 1985, 191-194.
2. Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179. doi:10.1021/ja042257t
3. de Frémont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2005, 24, 2411-2418. doi:10.1021/om050111c
4. Gras, J. L. Org. Synth. Coll.1990, Vol. 7, 332.
5. Barluenga, J.; Fanlo, H.; López, S.; Flórez, J. Angew. Chem., Int. Ed. 2007, 46, 4136-4140. doi:10.1002/anie. 200605167
6. Taillier, C.; Hameury, T.; Bellosta, V.; Cossy, J. Tetrahedron 2007, 63, 4472-4490. doi:10.1016/j.tet.2007.03.066
7. Xiao, Y.-P.; Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2011, 50, 4937-4941. doi:10.1002/anie. 201100044

$2005147 \times 1066-1$
Pulse Sequence: s2pul
(2)

$2005147 \times 1072-1$

3 g

$2005147 \times 1068-2$
s2pu1

11

2005197×1043-1
Pulse sequence:
Pulse sequence: s2pul
(

