Amine-linked diglycosides: Synthesis facilitated by the enhanced reactivity of allylic electrophiles, and glycosidase inhibition assays

Ian Cumpstey1,2,*, Jens Frigell1, Elias Pershagen1, Tashfeen Akhtar1, Elena Moreno-Clavijo3, Inmaculada Robina3, Dominic S. Alonzi4 and Terry D. Butters4

Address: 1Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, 2Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette CEDEX, France, 3Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Prof. García González, 1, 41012 Seville, Spain and 4Glycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford, OX1 3QU, England

Email: Ian Cumpstey - ian.cumpstey@sjc.oxon.org
* Corresponding author

1H and 13C NMR spectra of compounds 9–17
STANDARD PROTON

Pulse Sequence: s2pul
Solvent: CDCl3
Temp. 25.0 C / 298.1 K
Mercury-40888 "nmrd"

Relax. delay 1.000 sec
Pulse 39.2 degrees
Acq. time 2.735 sec
Width 5995.2 Hz
16 repetitions
OBSERVE H1, 399.9856487 MHz
DATA PROCESSING
Line broadening 0.1 Hz
FT size 65536
Total time 1 min, 2 sec

![NMR Spectrum](image)
Pulse Sequence
Solvent: CDCl₃
Temp. 25.0 °C
Mercury-400B

Relax. delay 1.000 sec
Pulse 58.9 degrees
Acq. time 1.199 sec
Width 2000.0 Hz
160 repetitions

OBserve 13C, 120.569895 MHz
DECOUPLE H1, 339.937612 kHz

Power 4.0 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
Point size 0.536
Total time 42 min. 5 sec

13C OBSERVE

\[13C \text{ OBSERVE} \]

\[\text{BnO} \quad \text{Ns} \quad \text{OTBDMS} \]

\[\text{BnO} \quad \text{O} \quad \text{Et} \]

\[\text{BnO} \quad \text{MeO} \]

\[\text{10} \]

\[\text{148.821} \quad \text{127.403} \quad \text{117.704} \quad \text{87.302} \quad \text{55.572} \quad \text{55.592} \quad \text{47.995} \quad \text{19.226} \quad \text{15.120} \]

\[\text{140} \quad 120 \quad 100 \quad 80 \quad 60 \quad 40 \quad 20 \quad 0 \quad \text{ppm} \]