Supporting Information

for

Meta-metallation of *N*,*N*-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiationdialkylzinc co-complexation

David R. Armstrong, Liam Balloch*, Eva Hevia, Alan R. Kennedy, Robert E. Mulvey*,

Charles T. O'Hara and Stuart D. Robertson

Address: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom

Email: David R. Armstrong - d.r.armstrong@strath.ac.uk; Liam Balloch* liam.balloch@strath.ac.uk; Robert E. Mulvey* - r.e.mulvey@strath.ac.uk

* Corresponding author

Computational details and NMR spectra for compounds 3, 4, 5 and 6

DFT calculations were carried out using the Gaussian G03 computational package [1]. The B3LYP density functionals [2,3] were used along with the 6-311G(d,p) basis set [4,5]. After the geometry optimisation of each molecule, a frequency analysis was carried out. The resulting calculated zero-point energy was added to the electronic energy and this is the energy value quoted below.

o-NaC₆H₄-NMe₂

Principal bond lengths (Å) and angles (°)

Na-N	2.289 Å	C-Na-N	63.0°
Na-C	2.439 Å	Na-N-C	85.6°
Na-C _i	2.758 Å	N-C-C	117.8°
C _i -N	1.487 Å	C-C-Na	93.6°

m-NaC₆H₄-NMe₂

Principal bond lengths (Å) and angles (°)

Na-C 2.301 Å

Na-C-C 122.8 ° 120.5 °

p-NaC₆H₄-NMe₂

Principal bond lengths (Å) and angles (°)

Na-C 2.301 Å

Na-C-C 123.0 °

C₆H₅-N(Me)CH₂Na

Principal bond lengths (Å) and angles (°)

- Na-C 2.387 Å N-C_i 1.371 Å
- Na..C_i 3.023 Å N-C_{Me} 1.469 Å 1.451Å
- Na..C_o 2.862 Å
- Na..N 2.959 Å

Energies/au

o-NaC ₆ H ₄ -NMe ₂	-527.821237
<i>m</i> -NaC ₆ H ₄ -NMe ₂	-527.807529
<i>p</i> -NaC ₆ H ₄ -NMe ₂	-527.807352
C ₆ H ₅ -N(Me)CH ₂ Na	-527.818668

Relative energies/kcal mol⁻¹

ortho:meta:para:methyl 0.00:8.60:8.71:1.61

[o-NaC₆H₄-NMe₂(TMEDA)]

Principal bond lengths (Å) and angles (°)

Na-N _{tm}	2.521 Å 2.533 Å
Na-N	2.501 Å
Na-C	2.357 Å
C _i -N	1.488 Å
N _{tm} -Na-N _{tm}	74.5 °
C-Na-N	61.1 °
Na-N-C	86.8 °
N-C-C	117.5 °
C-C-Na	94.6 °

[*m*-NaC₆H₄-NMe₂(TMEDA)]

Principal bond le	engths (Å) and ang	gles (°)	a da
Na-C	2.356 Å		
Na-N	2.513 Å 2.517 Å		3
Na-C-C	119.5 ° 125.4 °		
N-Na-N	74.7 °		

[p-NaC₆H₄-NMe₂(TMEDA)]

Principal bond lengths (Å) and angles (°)

Na-C 2.351 Å

Na-N 2.518 Å 2.517 Å

Na-C-C 123.8 ° 123.7 °

N-Na-N 74.6 °

[{C₆H₅-N(Me)CH₂Na}(TMEDA)]

Principal bond lengths (Å) and angles (°)

Na-C	2.424 Å	
NaC _i	3.118 Å	
NaC _o	2.963 Å	
N-C _{Me}	1.489 Å 1.448 Å	
Na-N	2.518 Å 2.527 Å	
N-Na-N	74.8 °	

Energies/au

[o-NaC ₆ H ₄ -NMe ₂ (TMEDA)]	-875.471777
[<i>m</i> -NaC ₆ H ₄ -NMe ₂ (TMEDA)]	-875.460731
[p-NaC ₆ H ₄ -NMe ₂ (TMEDA)]	-875.460371
[{C ₆ H ₅ -N(Me)CH ₂ Na}(TMEDA)]	-875.469626
Relative energies kcal mol ⁻¹	
ortho:meta:para:methyl 0.00:6.93:7	.15:1.35

Energies of the reactionsTMEDA·BuNa + C₆H₅-NMe₂ \rightarrow BuH + TMEDA·NaC₆H₄-NMe₂[o-NaC₆H₄-NMe₂(TMEDA)] $\Delta E = -12.74 \text{ kcal mol}^{-1}$ [m-NaC₆H₄-NMe₂(TMEDA)] $\Delta E = -5.81 \text{ kcal mol}^{-1}$ [p-NaC₆H₄-NMe₂(TMEDA)] $\Delta E = -5.59 \text{ kcal mol}^{-1}$ [{C₆H₅-N(Me)CH₂Na}(TMEDA)] $\Delta E = -11.39 \text{ kcal mol}^{-1}$

[o-NaC₆H₄-NMe₂(TMEDA)]₂

Principal bond lengths (Å) and angles (°)

Na-N _{tm}	2.604 Å 2.674 Å
Na-N	2.662 Å
Na-C	2.594 Å 2.605 Å
C _i -N	1.461 Å
N _{tm} -Na-N _{tm}	70.6°
C-Na-N	55.6 °
Na-N-C	85.3 °
N-C-C	117.0 °
C-C-Na	88.8 °
C-Na-C	105.3 °
Na-C-Na	74.7 °

[*m*-NaC₆H₄-NMe₂(TMEDA)]₂

Principal bond l	engths (Å) and angles (°)
Na-C	2.571 Å 2.532 Å
Na-N	2.546 Å 2.546 Å
Na-C-Na	72.1 °
C-Na-C	107.9 °
N-Na-N	74.7 °

[p-NaC₆H₄-NWe₂(TMEDA)]₂ Principal bond lengths (Å) and angles (°) Na-C 2.551 Å 2.548 Å Na-N 2.545 Å 2.544 Å Na-C-Na 69.1 ° C-Na-C 110.9 ° N-Na-N 74.7 °

$[{C_6H_5-N(Me)CH_2Na}(TMEDA)]_2$

Principal bond lengths (Å) and angles (°)

Na-C	2.598 Å 2.563 Å	
NaC _i	3.632 Å	
NaC _o	4.320 Å	
N-C _{Me}	1.496 Å 1.459 Å	
Na-N	2.581 Å 2.587 Å	
N-Na-N	73.5 °	ي جي د وقبر
Na-C-Na	74.1 °	
C-Na-C	105.9 °	

Energies/au

[o-NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	-1750.978739
[<i>m</i> -NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	-1750.971326
[p-NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	-1750.969999
[{C ₆ H ₅ -N(Me)CH ₂ Na}(TMEDA)] ₂	-1750.965031

Relative energies/kcal mol⁻¹

ortho:meta:para:methyl 0.00:4.65:5.48:8.60

Energies of the reactions

2 TMEDA·BuNa + 2 C₆H₅-NMe₂ \rightarrow 2 BuH + [TMEDA·NaC₆H₄-NMe₂]₂

[o-NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	$\Delta E = -47.55 \text{ kcal mol}^{-1}$
[<i>m</i> -NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	$\Delta E = -42.90 \text{ kcal mol}^{-1}$
[p-NaC ₆ H ₄ -NMe ₂ (TMEDA)] ₂	$\Delta E = -42.07 \text{ kcal mol}^{-1}$
[{C ₆ H ₅ -N(Me)CH ₂ Na}(TMEDA)] ₂	$\Delta E = -38.95 \text{ kcal mol}^{-1}$

$[(TMEDA)Na(\mu-TMP)(\mu-m-C_6H_4-NMe_2)Zn(tBu)]$

Princi	pal t	ond	lengt	<u>hs (Å</u>)
				0	

Na-C	2.594
Na…C	3.070 3.212
Na-N _{TMP}	2.454
Na-N _{TMEDA}	2.602 2.606
Zn-C _{br}	2.084
Zn-C _{ter}	2.040
Zn-N	2.054

$[(TMEDA)Na(\mu-TMP)(\mu-p-C_6H_4-NMe_2)Zn(tBu)]$

Principal bond lengths (Å)		
Na-C	2.596	
Na…C	3.178 3.239	
Na-N _{TMP}	2.445	
Na-N _{TMEDA}	2.599 2.591	
Zn-C _{br}	2.083	
Zn-C _{ter}	2.042	
Zn-N	2.055	

$[(TMEDA)Na(\mu-TMP)(\mu-o-C_6H_4-NMe_2)Zn(tBu)]$

Principal bond lengths (Å)

-	-	
Na-C	2.747	
Na…C	2.937	
Na-N	2.780	
Na-N _{TMP}	2.497	
Na-N _{TMEDA}	2.651 2.807	
Zn-C _{br}	2.107	
Zn-C _{ter}	2.055	
Zn-N	2.048	

Energies/au

$[(TMEDA)Na(\mu-TMP)(\mu-m-C_6H_4-NMe_2)Zn(tBu)]$	-3221.012984
$[(TMEDA)Na(\mu-TMP)(\mu-p-C_6H_4-NMe_2)Zn(tBu)]$	-3221.011929
$[(TMEDA)Na(\mu-TMP)(\mu-o-C_6H_4-NMe_2)Zn(tBu)]$	-3221.006092
$[(TMEDA)Na(\mu-TMP)(\mu-C_6H_5-N(CH_2)Me)Zn(tBu)$] -3220.998630

Relative energies/kcal mol⁻¹ *meta:para:ortho*:methyl 0.00:0.66:4.32:9.01 Energies of the reactions

$$[(TMEDA)Na(\mu-TMP)(\mu-tBu)Zn(tBu)] + C_6H_5-NMe_2 \rightarrow$$

BuH + [(TMEDA)Na(\mu-TMP)(\mu-C_6H_4-NMe_2)Zn(tBu)]

$$\begin{bmatrix} (TMEDA)Na(\mu-TMP)(\mu-m-C_6H_4-NMe_2)Zn(tBu) \end{bmatrix} \Delta E = -21.46 \text{ kcal mol}^{-1} \\ \begin{bmatrix} (TMEDA)Na(\mu-TMP)(\mu-p-C_6H_4-NMe_2)Zn(tBu) \end{bmatrix} \Delta E = -20.80 \text{ kcal mol}^{-1} \\ \begin{bmatrix} (TMEDA)Na(\mu-TMP)(\mu-o-C_6H_4-NMe_2)Zn(tBu) \end{bmatrix} \Delta E = -17.13 \text{ kcal mol}^{-1} \\ \begin{bmatrix} (TMEDA)Na(\mu-TMP)(\mu-C_6H_5-N(CH_2)Me)Zn(tBu) \end{bmatrix} \Delta E = -12.45 \text{ kcal mol}^{-1} \\ \end{bmatrix}$$

NMR spectroscopic analysis

≻ Key

Spectrum 1. ¹H NMR (400.13 MHz, 300 K) spectrum of *N*,*N*-dimethylaniline in C₆D₆ solution.

Spectrum 3. ¹³C {¹H} NMR (100.62 MHz, 300 K) spectrum of *N*,*N*-dimethylaniline in C_6D_6 solution.

Spectrum 4. ¹H NMR (400.13 MHz, 300 K) spectrum of N,N-dimethylaniline in C₆D₁₂ solution.

Spectrum 6. ¹³C {¹H} NMR (100.62 MHz, 300 K) spectrum of *N*,*N*-dimethylaniline in C₆D₁₂ solution.

S16

Spectrum 8. Aromatic region of ¹H NMR spectrum of **3** in C_6D_{12} solution.

Spectrum 9. ^{13}C { ^{1}H } NMR (100.62 MHz, 300 K) spectrum of **3** in C₆D₁₂ solution.

Spectrum 10. ¹H NMR (400.13 MHz, 300 K) spectrum of mother liquor following isolation of **3** in C_6D_{12} solution.

Spectrum 11. Aromatic region of ¹H NMR spectrum of mother liquor following isolation of **3** in C_6D_{12} solution.

Spectrum 12. ¹H NMR (400.13 MHz, 300 K) spectrum from the reaction of **3** with toluene in C_6D_6 solution.

Spectrum 13. Aromatic region of ¹H NMR spectrum from the reaction of **3** with toluene in C_6D_6 solution.

Spectrum 14. ¹H NMR (400.13 MHz, 300 K) spectrum from the reaction of **1** and *N*,*N*-dimethylaniline with iodine in C_6D_6 solution.

Spectrum 15. Aliphatic region of ¹H NMR spectrum from the reaction of **1** and *N*,*N*-dimethylaniline with iodine in C_6D_6 solution.

Spectrum 16. Aromatic region of ¹H NMR spectrum from the reaction of **1** and *N*,*N*-dimethylaniline with iodine in C_6D_6 solution.

Spectrum 18. Aromatic region of ¹³C NMR spectrum from the reaction of **1** and *N*,*N*-dimethylaniline with iodine in C_6D_6 solution.

Spectrum 19. Aromatic region of ${}^{1}H{}^{-1}H$ COSY NMR spectrum from the reaction of **1** and *N*,*N*-dimethylaniline with iodine in C₆D₆ solution.

Spectrum 20. ^1H NMR (400.13 MHz, 300 K) spectrum of 4 and 5 in C_6D_6 solution.

Spectrum 22. Aromatic region of ¹H NMR spectrum of **4** and **5** in C_6D_6 solution.

Spectrum 23. Aromatic region of ${}^{1}H{}^{-1}H$ COSY NMR spectrum of **4** and **5** in C₆D₆ solution.

Spectrum 25. Aliphatic region of ¹H NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline and tBu_2Zn with iodine in C₆D₆ solution.

Spectrum 27. ¹³C NMR (100.62 MHz, 300 K)spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline and tBu_2Zn with iodine in C₆D₆ solution.

Spectrum 28. Aromatic region of ¹³C NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline and tBu_2Zn with iodine in C₆D₆ solution.

Spectrum 29. Aromatic region of ${}^{1}H^{-1}H$ COSY NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline and $tBu_{2}Zn$ with iodine in C₆D₆ solution.

Spectrum 31. Aliphatic region of ¹H NMR spectrum of **6** in d_8 -THF solution.

Spectrum 32. Aromatic region of ¹H NMR spectrum of **6** in d_8 -THF solution.

Spectrum 34. Aliphatic region of ¹³C NMR spectrum of **6** in d_8 -THF solution.

Spectrum 36. ¹H NMR (400.13 MHz, 300 K) from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine in C₆D₆ solution.

Spectrum 38. Aromatic region of ¹H NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine in C₆D₆ solution.

Spectrum 39. ¹H NMR (400.13 MHz, 300 K) spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

Spectrum 40. Aliphatic region of ¹H NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

Spectrum 41. Aromatic region of ¹H NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

Spectrum 42. ¹³C NMR (100.62 MHz, 300 K) spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

Spectrum 43. Aromatic region of ¹³C NMR spectrum from the reaction of BuNa·TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

Spectrum 44. Aromatic region of ¹H-¹H COSY NMR spectrum from the reaction of BuNa-TMEDA, *N*,*N*-dimethylaniline, tBu_2Zn and TMP(H) with iodine following an overnight reflux in C₆D₆ solution.

References

- 1. Gaussian 03, Revision B.0.5; Gaussian, Inc.: Pittsburgh PA, 2003.
- 2. Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi:10.1103/PhysRevA.38.3098
- Lee, C. T.; Yang, W. T.; Parr, R. G. *Phys. Rev. B* 1998, *37*, 785. doi:10.1103/PhysRevB.37.785
- 4. McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. doi:10.1063/1.438980
- Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi:10.1063/1.438955