A straightforward approach towards combined α amino and α-hydroxy acids based on Passerini reactions.

Ameer F. Zahoor, Sarah Thies and Uli Kazmaier*

Address: Institute for Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany

Email: Uli Kazmaier - u.kazmaier@mx.uni-saarland.de

* Corresponding author

Experimental section

General Information

All reactions were carried out in oven-dried glassware $\left(100{ }^{\circ} \mathrm{C}\right)$ under nitrogen atmosphere unless otherwise stated. Septa, disposable syringes and needles were used for the transfer of reagents and other liquid chemicals. For drying of organic phases water-free sodium sulfate was used.
${ }^{1} \mathrm{H}$ NMR-spectra were measured on a 400 MHz NMR spectrometer from Bruker (model AV-400). CDCl_{3} was used as the solvent. The solvent peak was calibrated at 7.26 ppm . The analysis of spectra was performed with PC-software MestRe-C. The abbreviations used in the interpretation of NMR spectra are: $s=$ singlet, $d=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or $\mathrm{br}=$ broad. Chemical shifts are δ-values and were measured in ppm.
${ }^{13} \mathrm{C}$ NMR-spectra were also measured at a frequency of 100 MHz on a NMR spectrometer from Bruker (model AV-400). CDCl_{3} was used as the solvent. The solvent peak was calibrated at 77.0 ppm . The analysis of spectra was done with PCsoftware MestRe-C. The abbreviations used for analysis are: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet. Chemical shifts were δ-values and were measured in ppm.

Preparative flash column chromatography was performed through columns packed with silica gel grade $60(35-70 \mu \mathrm{~m})$ purchased from Macherey-Nagel.

Melting points were measured in open glass capillaries on apparatus MEL-TEMP II purchased from Laboratory Devices and are uncorrected.

Thin-layer chromatography was performed with commercially available precoated Polygram® SIL-G/UV 254 plates purchased from Fluka. The detection of spots was achieved under UV-light, I_{2}-vapours or KMnO_{4} solution.

High Pressure liquid chromatography was performed on the instrument purchased from Shimadzu (model 10A VP). As an achiral column, LiChrosorb Si-60 (250-4, diameter $5 \mu \mathrm{~m}$) was used (Phenomenex). The evaluation was performed with Class VP-Software (Schimadzu).

Elemental analyses were performed at the Institute for Organic Chemistry, University of Saarland on the instrument Leco (model CHN900).

High resolution mass spectrometry (HRMS) was performed at the Institute for Organic Chemistry, University of Saarland on a MAT 95Q (Finnigan). The fragmentation was carried out through chemical ionization (CI) or electron ionization (EI).

Solvents were dried by refluxing the corresponding solvent over suitable drying agent. Tetrahydrofuran (THF) was dried over lithium aluminium hydride (LAH), dichloromethane (DCM) was dried over powdered CaH_{2}. Commercial grade solvents, such as ethyl acetate, hexane, and diethyl ether, were distilled prior to use.

tert-Butyl 2-(2,2,2-trifluoroacetamido)acetate (TFA-Gly-Ot-Bu)

In a three neck flask with an intensive cooler and cryostat, ammonia gas was condensed ($\sim 400 \mathrm{ml}$) at $-78{ }^{\circ} \mathrm{C}$. Under a nitrogen atmosphere tert-butyl bromoacetate ($100 \mathrm{~g}, 0.51 \mathrm{~mol}$) was added dropwise. The reaction mixture was stirred for 2 days at $-78{ }^{\circ} \mathrm{C}$ and then it was warmed up to r.t. and the excess of ammonia was evaporated. The resulting solid was filtered off and was washed with diethyl ether. The filtrate was evaporated and the crude product was purified by bulb-to-bulb distillation ($p=10$ torr, $b p=50^{\circ} \mathrm{C}$) giving rise to tert-butyl glycinate as a clear oil in 72% yield ($48.6 \mathrm{~g}, 0.37 \mathrm{~mol}$).
tert-Butyl glycinate ($10.0 \mathrm{~g}, 76.2 \mathrm{mmol}$) was dissolved in methanol (250 ml). At $0^{\circ} \mathrm{C}$ triethylamine ($15.4 \mathrm{~g}, 153 \mathrm{mmol}$) was added, and finally methyl trifluoroacetate $(21.7 \mathrm{~g}, 153 \mathrm{mmol})$ in methanol (100 ml) was added. The reaction mixture was allowed to warm up to r.t. overnight and then the methanol was evaporated. The resulting residue was dissolved in ethyl acetate and washed with water. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The crude product was
purified by bulb-to-bulb distillation ($\mathrm{p}=3$ torr, $\mathrm{bp}=86^{\circ} \mathrm{C}$) and resulting in a clear oil in 84% yield ($14.5 \mathrm{~g}, 64.0 \mathrm{mmol}$).

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=6.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}\right)$, 1.49 (s, 9H, 6-H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3(\mathrm{C}-1), 156.6\left(\mathrm{~J}_{3, \mathrm{~F}}=37.5 \mathrm{~Hz}\right.$, $\mathrm{C}-3), 116.6\left(\mathrm{~J}_{4, \mathrm{~F}}=287 \mathrm{~Hz}, \mathrm{C}-4\right), 83.6(\mathrm{C}-5), 42.0(\mathrm{C}-2), 27.9(\mathrm{C}-6)$.

HRMS (ESI):	Calculated	Found
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+1]^{+}:$	228.0803	228.0843

General procedure for ring opening reactions of epoxides ${ }^{1}$

In a Schlenk tube hexamethyldisilazane ($497 \mathrm{mg}, 3.08 \mathrm{mmol}$) was dissolved in dry THF (5.0 ml). The solution was cooled to $-78^{\circ} \mathrm{C}$, and then a 1.6 M solution of $n-\mathrm{BuLi}$ ($1.72 \mathrm{ml}, 2.75 \mathrm{mmol}$) was added slowly. The solution was stirred for 10 min and the cooling bath was then removed and the solution was stirred for a further 10 min . In a second Schlenk flask ZnCl_{2} ($180 \mathrm{mg}, 1.32 \mathrm{mmol}$) was dried with a heat gun under vacuum, and dissolved in THF (5.0 ml). The solution was cooled to room temperature, then Tfa-Gly-Ot-Bu ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added and the mixture was cooled to $-78^{\circ} \mathrm{C}$. The LHMDS solution was then added slowly. The resulting solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$. Then the corresponding epoxide (1.65 mmol) was added, followed by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(78.1 \mathrm{mg}, 0.55 \mathrm{mmol})$. The reaction mixture was allowed to warm to r.t. overnight and then it was hydrolyzed with 1 M HCl and extracted thrice with ethyl acetate. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was evaporated in vacuo, and the crude product was purified by flash chromatography (silica gel, hexanes/EtOAc).

tert-Butyl 4-hydroxy-2-(2,2,2-trifluoroacetamido)pentanoate (1a) ${ }^{1}$

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg , 1.1 mmol), propylene oxide ($128 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08$ $\mathrm{mmol}, 2.8$ equiv), n-BuLi ($1.72 \mathrm{ml}, 2.75 \mathrm{mmol}, 2.5$ eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2$ mmol) were allowed to react to give 1a after flash chromatography (silica, hexanes/EtOAc 8:2) in 92% yield ($289 \mathrm{mg}, 1.01 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $\left.R_{f}=0.28\right]$.

[^0]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 4.59\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{2,3}=8.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=\right.$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 3.86-3.89 (m, 1 H, 4-H), $2.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 1.92$ (ddd, $\left.{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.2 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=10.4 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 1.82\left(\mathrm{ddd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=\right.$ $\left.14.3 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 4}=8.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 4}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.48(\mathrm{~s}, 9 \mathrm{H}, 7-\mathrm{H}), 1.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{5,4}=\right.$ 6.2 Hz, $3 \mathrm{H}, 5-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, 157.4 ($\mathrm{q}, J=37.2 \mathrm{~Hz}$), 115.7 (q, $J=285.6 \mathrm{~Hz}$), 83.2, 64.8, 51.5, 39.9, 27.8, 23.5.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 4.42$ ($\mathrm{ddd},{ }^{3} \mathrm{~J}_{2,3}={ }^{3} \mathrm{~J}_{2, \mathrm{H}}=6.2 \mathrm{~Hz}, 1$ $\mathrm{H}, 2-\mathrm{H}), 3.92-3.99(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.03\left(\mathrm{ddd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=5.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 1.96 (s, $1 \mathrm{H}, \mathrm{O}-\mathrm{H}), 1.89$ (ddd, ${ }^{2} \mathrm{~J}_{3 \mathrm{~b}, 3 \mathrm{a}}=14.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=9.3 \mathrm{~Hz}$, $\left.{ }^{3} J_{3 \mathrm{~b}, 4}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, 7-\mathrm{H}), 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{5,4}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8,156.8$, ($\mathrm{q}, J=37.3 \mathrm{~Hz}$), 115.6 ($\mathrm{q}, J=285.8 \mathrm{~Hz}$), 83.1, 65.5, 52.1, 39.4, 27.8, 24.1.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+1]^{+}:$	286.1221	286.1273

Elemental Analysis:

$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{4}$	Calculated	C 46.31	H 6.36	N 4.91
$(285.26):$	Found	C 46.46	H 6.21	N 5.18

tert-Butyl 5-chloro-4-hydroxy-2-(2,2,2-trifluoroacetamido)pentanoate (1b) ${ }^{1}$

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg , 1.1 mmol), epichlorohydrin ($204 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08$ $\mathrm{mmol}, 2.8$ equiv), n-BuLi ($1.72 \mathrm{ml}, 2.75 \mathrm{mmol}, 2.5$ eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2$ mmol) were allowed to react to give 1b after flash chromatography (silica, hexanes/EtOAc $8: 2$) in 82% yield ($288 \mathrm{mg}, 0.90 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $R_{\mathrm{f}}=0.28$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 4.68\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.7\right.$ $\left.\mathrm{Hz},{ }^{3} J_{2,3}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.83-3.90(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.53\left(\mathrm{dd},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{5 \mathrm{a}, 4}\right.$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 3.49\left(\mathrm{dd},{ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=10.0 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~b}, 4}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}\right), 3.35(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 1.94-2.08(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}, 7-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2$, 157.4 (q, $J=37.2 \mathrm{~Hz}$), 115.7 ($\mathrm{q}, J=285.6 \mathrm{~Hz}$), $83.7,66.7$, 51.1, 48.7, 35.5, 27.8.

Minor diastereomer:
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 4.50\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{2,3}=\right.$ $\left.{ }^{3} J_{2, \mathrm{H}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.91-3.98(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.57\left(\mathrm{dd},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=11.2 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{a}, 4}=\right.$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 3.49\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{5 \mathrm{~b}, 5 \mathrm{a}}=11.2 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~b}, 4}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}\right), 2.72(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{OH}, 4}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 2.20\left(\mathrm{ddd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=5.9 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=2.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 1.98-2.06(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}, 7-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=169.4,157.4(\mathrm{q}, J=37.2 \mathrm{~Hz}), 115.7(\mathrm{q}, J=285.6 \mathrm{~Hz}), 83.6,68.4,51.3$, 49.3, 35.0, 27.7.

HRMS (CI):

$\mathrm{C}_{11} \mathrm{H}_{17}{ }^{37} \mathrm{CIF}_{3} \mathrm{NO}_{4}[\mathrm{M}]^{+}$:

Elemental Analysis:

$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{NO}_{4}$	Calculated	C 41.32	H 5.36	N 4.38
$(319.70):$	Found	C 41.43	H 5.08	N 4.54

tert-Butyl 4-hydroxy-5-phenoxy-2-(2,2,2-trifluoroacetamido)pentanoate (1c) ${ }^{1}$

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg , 1.1 mmol), commercially available phenyl glycidyl ether ($330 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08 \mathrm{mmol}, 2.8$ equiv), n - $\mathrm{BuLi}(1.72 \mathrm{ml}, 2.75 \mathrm{mmol}$, 2.5 eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2 \mathrm{mmol})$ were allowed to react to give $\mathbf{1 c}$ after flash chromatography (silica, hexanes/EtOAc 8:2) in 86% yield ($357 \mathrm{mg}, 0.95 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $R_{\mathrm{f}}=0.34$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}$, $7-\mathrm{H}), 6.95\left(\mathrm{dd},{ }^{3}{ }_{9}, 8=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right), 6.85-6.87(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 4.71\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.5\right.$ $\left.\mathrm{Hz},{ }^{3} J_{2,3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.01-4.11(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.91\left(\mathrm{dd},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{5 \mathrm{a}, 4}\right.$
$=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 3.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{5 \mathrm{~b}, 5 \mathrm{a}}=7.8 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~b}, 4}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}\right), 3.83(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 1.98-2.09(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2,158.1,157.4(\mathrm{q}, ~ J=37.4 \mathrm{~Hz}), 129.5,121.4,115.7(\mathrm{q}, \mathrm{J}$ $=285.6 \mathrm{~Hz}), 114.4,83.4,71.3,67.4,51.2,34.5,27.9$.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43$ (bs, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), $7.23-7.28(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 6.96$ (dd, $\left.{ }^{3} J_{9,8}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right), 6.85-6.87(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 4.51$ (ddd, ${ }^{3} J_{2, \mathrm{NH}}={ }^{3} J_{2,3 \mathrm{a}}={ }^{3} J_{2,3 \mathrm{~b}}$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.09-4.16(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.94\left(\mathrm{dd},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=9.4 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{a}, 4}=3.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 3.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{5 \mathrm{~b}, 5 \mathrm{a}}=9.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{5 \mathrm{~b}, 4}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}\right), 2.52\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{J}} \mathrm{OH}, 4=4.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}), 2.05-2.24(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=169.4,158.1,157.4(\mathrm{q}, J=37.4 \mathrm{~Hz}), 129.6,121.4,115.7(\mathrm{q}, J=285.6$ $\mathrm{Hz}), 114.5,83.4,71.4,67.4,51.7,33.8,27.8$.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}]^{+}$:

Calculated
377.1450

Found
377.1447

Elemental Analysis:

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5}$	Calculated	C 54.11	H 5.88	N 3.71
$(377.35):$	Found	C 54.64	H 5.62	N 3.95

tert-Butyl 5-(4-chlorophenoxy)-4-hydroxy-2-(2,2,2-trifluoroacetamido)pentanoate (1d)

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg, 1.1 mmol), commercially available 4-chlorophenyl glycidyl ether ($407 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08 \mathrm{mmol}, 2.8$ equiv), n - $\mathrm{BuLi}(1.72 \mathrm{ml}, 2.75 \mathrm{mmol}$, 2.5 eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2 \mathrm{mmol}$) were allowed to react to give $\mathbf{1 d}$ after flash chromatography (silica, hexanes/EtOAc 8:2) in 88% yield ($399 \mathrm{mg}, 0.97 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $R_{\mathrm{f}}=0.32$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 6.83-6.85(\mathrm{~m}, 4 \mathrm{H}$, $7-\mathrm{H}, 8-\mathrm{H}), 4.73\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, 3.79-3.93 (m, $2 \mathrm{H}, 5-\mathrm{H}), 3.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.5,157.4(\mathrm{q}, \mathrm{J}=37.4 \mathrm{~Hz})$,
152.2, 130.0, 129.0, 115.7 ($q, J=285.6 \mathrm{~Hz}$), 115.4, 114.9, 83.4, 72.6, 65.5, 55.8, 51.2, 27.9.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 4.53$ (ddd, ${ }^{3} \mathrm{~J}_{2, \mathrm{NH}}={ }^{3} \mathrm{~J}_{2,3 \mathrm{a}}={ }^{3} \mathrm{~J}_{2,3 \mathrm{~b}}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.07-4.13(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 2.19-2.25(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{a}-$ $\mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}, 12-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,152.1,129.9$, 129.0, 115.5, 114.7, 83.4, 72.6, 65.5, 55.6, 51.2, 27.8.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{CIF}_{3} \mathrm{NO}_{5}[\mathrm{M}]^{+}$:

Calculated
411.1060

Found
411.1075

tert-Butyl 4-hydroxy-5-(2-nitrophenoxy)-2-(2,2,2-trifluoroacetamido)pentanoate (1e)

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg , 1.1 mmol), commercially available 2-nitro phenyl glycidyl ether ($429 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08 \mathrm{mmol}, 2.8$ equiv), n - $\mathrm{BuLi}(1.72 \mathrm{ml}, 2.75 \mathrm{mmol}$, 2.5 eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2 \mathrm{mmol})$ were allowed to react to give $\mathbf{1 e}$ after flash chromatography (silica, hexanes/EtOAc 8:2) in 84% yield ($390 \mathrm{mg}, 0.92 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $R_{\mathrm{f}}=0.31$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (dd, ${ }^{3} ل_{8,9}=8.5 \mathrm{~Hz},{ }^{3} ل_{8,10}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), $7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.52-7.57(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 7.01-7.06(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}$, $10-\mathrm{H}), 4.53$ (ddd, $\left.{ }^{3} J_{2, N H}={ }^{3} J_{2,3}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.13-4.18(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 4.01-4.05$ (m, 1 H, 4-H), $2.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 2.04-2.16(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.49(\mathrm{~s}, 9$ $\mathrm{H}, 13-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.1,157.4(\mathrm{q}, J=37.4 \mathrm{~Hz}$), 151.8, 139.8, 134.4, 125.9, 121.3, 115.7 (q, $J=285.6 \mathrm{~Hz}$), 115.1, 83.5, 73.2, 67.1, 51.1, 34.2, 27.8.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{8,9}=8.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,10}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right.$), $7.53-7.57(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.05-7.11(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}$, $10-\mathrm{H}$), 4.72 ($\left.\mathrm{dt},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.11-4.18(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H})$, $4.00-4.05(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{OH}, 4}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}\right), 2.30\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=14.5\right.$ $\left.\mathrm{Hz},{ }^{3} J_{3 \mathrm{a}, 2}=5.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.10\left(\mathrm{ddd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 4}=9.6\right.$
$\left.\mathrm{Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.51(\mathrm{~s}, 9 \mathrm{H}, 13-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 169.3, 151.9, 134.5, 126.0, 121.3, 115.0, 83.6, 73.2, 66.7, 51.4, 33.6, 27.8.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}]^{+}$:

Calculated
423.1334

Found 423.1413

tert-Butyl 4-hydroxy-5-(4-nitrophenoxy)-2-(2,2,2-trifluoroacetamido)pentanoate (1f)

According to the general procedure for epoxide openings TFA-Gly-Ot-Bu (250 mg , 1.1 mmol), commercially available 4-nitro phenyl glycidyl ether ($429 \mathrm{mg}, 2.2 \mathrm{mmol}$), hexamethyldisilazane ($497 \mathrm{mg}, 3.08 \mathrm{mmol}, 2.8$ equiv), n - $\mathrm{BuLi}(1.72 \mathrm{ml}, 2.75 \mathrm{mmol}$, 2.5 eq.) and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(172 \mathrm{mg}, 1.2 \mathrm{mmol})$ were allowed to react to give 1 f after flash chromatography (silica, hexanes/EtOAc 8:2) in 83% yield ($386 \mathrm{mg}, 0.91 \mathrm{mmol}$) as a colorless oil. [TLC: DCM/Hex 95:5, $R_{\mathrm{f}}=0.31$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=8.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 6.77-6.80(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 4.73\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\right.$ $\mathrm{H}), 4.06-4.16(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.81-3.97(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.49$ ($\mathrm{s}, 9 \mathrm{H}, 12-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2,157.4(\mathrm{q}, J=37.4 \mathrm{~Hz}$), 156.0, $130.0,129.0,115.7$ ($q, J=285.6 \mathrm{~Hz}$), 114.3, 113.9, $83.4,71.6,67.5,51.2,34.5,27.9$.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 4.54\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=\right.$ $\left.{ }^{3} J_{2,3 \mathrm{a}}={ }^{3} J_{2,3 \mathrm{~b}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.03-2.13(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}, 12-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2,155.8,130.7,83.3,71.6,67.4,51.6,33.8,27.8$.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}]^{+}:$	423.1334	423.1416

General procedure for Dess-Martin oxidations

To a solution of the corresponding γ-hydroxy amino acid ester 1 or 4 (1.32 mmol) in dry dichloromethane, Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred at room temperature for 3 h . The reaction was quenched with a saturated solution of NaHCO_{3} containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and then the mixture was extracted with dichloromethane. The organic layers were
washed with a saturated solution of NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The corresponding γ-keto amino acid ester was obtained after column chromatography (silica gel, EtOAc/hexane).

General procedure for Swern oxidations

To a solution of oxalyl chloride ($67 \mathrm{mg}, 0.52 \mathrm{mmol}$) in dry dichloromethane (0.5 ml) at $-78{ }^{\circ} \mathrm{C}$, DMSO ($82.8 \mathrm{mg}, 1.06 \mathrm{mmol}$) was added, the solution was stirred for 10 min , and then a solution of the corresponding γ-hydroxy amino acid ester 1 (0.26 mmol) was added dropwise. The reaction mixture was stirred at the same temperature for another 1 h and then triethylamine ($134 \mathrm{mg}, 1.32 \mathrm{mmol}$) was added. The cooling bath was removed after 15 min , and the reaction mixture was allowed to warm to room temperature. Water (5 ml) was added and the reaction mixture was stirred for an additional 10 min . The reaction mixture was extracted with dichloromethane, the organic layers were washed with 1 N HCl , saturated NaCl soln., dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The corresponding γ-keto amino acid ester was obtained after column chromatography (silica gel, EtOAc/ hexane).

tert-Butyl 4-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (2a)

According to the general procedure for Dess-Martin oxidations alcohol 1a (377 $\mathrm{mg}, 1.32 \mathrm{mmol}$) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to give 2a after flash chromatography (silica, hexanes/EtOAc 8:2) in 91\% yield (340 mg , 1.20 mmol) as a colorless oil. [TLC: Hex/EA 75:25, $R_{\mathrm{f}}=0.53$].

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.37$ (bs, $\left.1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 4.59\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=\right.$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.22\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 3.97(\mathrm{dd}$, $\left.{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=18.6 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}, 7-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.1,168.0,156.8(\mathrm{q}, ~ J=37.4 \mathrm{~Hz}), 115.5(\mathrm{q}, J=285.6$ Hz), 83.4, 49.0, 43.5, 29.7, 27.6.

HRMS (CI)	Calculated	Found
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+1]^{+}$	284.1065	284.1080

tert-Butyl 5-chloro-4-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (2b)

According to the general procedure for Dess-Martin oxidations alcohol 1b (422 $\mathrm{mg}, 1.32 \mathrm{mmol}$) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to
give 2b after flash chromatography (silica, hexanes/EtOAc 8:2) in 90\% yield (377 mg , 1.18 mmol) as a colorless solid with a melting point of $51^{\circ} \mathrm{C}$. [TLC: Hex/EA 75:25, R_{f} $=0.50$]

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 4.69\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2, \mathrm{~N}-\mathrm{H}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=\right.$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.24\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3 \mathrm{~b}, 2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 3.19(\mathrm{dd}$, $\left.{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.17\left(\mathrm{~d},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}={ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, 5-\right.$ H), 1.45 (s, $9 \mathrm{H}, 7-\mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.7,167.7,157.1(\mathrm{q}, \mathrm{J}=$ 37.7 Hz), 118.3 (q, $J=285.8 \mathrm{~Hz}$), 84.0, 49.0, 47.4, 40.5, 27.7.

HRMS (CI):
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{CIF}_{3} \mathrm{NO}_{4}[\mathrm{M}]^{+}$

Calculated
317.0642

Found
317.0764

tert-Butyl 4-oxo-5-phenoxy-2-(2,2,2-trifluoroacetamido)pentanoate (2c)

According to the general procedure for Dess-Martin oxidations alcohol 1c (498 $\mathrm{mg}, 1.32 \mathrm{mmol}$) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to give 11 f after flash chromatography (silica, hexanes/EtOAc 8:2) in 93\% yield (461 $\mathrm{mg}, 1.23 \mathrm{mmol}$) as a colorless solid with a melting point of $58^{\circ} \mathrm{C}$. [TLC: Hex/EA 7:3, $\left.R_{\mathrm{f}}=0.55\right]$

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.33(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 7.02\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{9,8 \mathrm{a}}={ }^{3} \mathrm{~J}_{9,8 \mathrm{~b}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 4.73\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2, \mathrm{~N}-\mathrm{H}}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\right.$ H), $4.57\left(\mathrm{~d},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}={ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.21\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=4.4\right.$ $\mathrm{Hz} 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.42\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, 11-$ H). ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,168.0,157.3157 .2$ (q, $J=37.4 \mathrm{~Hz}$), 129.7, 122.1, 115.5 (q, $J=289.0 \mathrm{~Hz}), 114.4,83.7,72.5,48.7,40.4,27.7$.

HRMS (CI)
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}]^{+}$

Calculated
375.1294

Found 375.1289

Elemental Analysis:

| $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5}$ | Calculated | C | 54.40 | H 5.37 | N 3.73 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(375.34):$ | Found | C | 54.73 | H | 5.75 | N 3.79 |

tert-Butyl 5-(4-chlorophenoxy)-4-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (2d)

According to the general procedure for Dess-Martin oxidations alcohol 1d (544 $\mathrm{mg}, 1.32 \mathrm{mmol}$) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to give 2d after flash chromatography (silica, hexanes/EtOAc 8:2) in 82% yield (444 mg , 1.08 mmol) as a colorless oil. [TLC: Hex/EA 7:3, $R_{\mathrm{f}}=0.51$]

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.22-7.25(\mathrm{~m}, 2$ $\mathrm{H}, 7-\mathrm{H}), 6.77-6.81(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 4.71\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$, $4.53\left(\mathrm{~d},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}={ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.36\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=4.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.19\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}, 12-\mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.1,167.9,157.2(\mathrm{q}, \mathrm{J}=37.4 \mathrm{~Hz}$), 155.9, 129.6, 127.0, 115.7, 115.5 ($q, J=285.8 \mathrm{~Hz}$), 114.0, 83.8, 72.6, 48.7, 40.3, 27.7.

HRMS (Cl):
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClF}_{3} \mathrm{NO}_{5}[\mathrm{M}]^{+}$

Calculated 409.0904

Found
409.0883

tert-Butyl 5-(2-nitrophenoxy)-4-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (2e)

According to the general procedure for Dess-Martin oxidations alcohol 1e (558 $\mathrm{mg}, 1.32 \mathrm{mmol}$) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to give $\mathbf{2 e}$ after flash chromatography (silica, hexanes/EtOAc 8:2) in 87% yield (483 mg , 1.15 mmol) as a white solid with a melting point of $91^{\circ} \mathrm{C}$. [TLC: Hex/EA $8: 2, R_{\mathrm{f}}=$ $0.48]$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93$ (dd, ${ }^{3} \mathrm{~J}_{8,9}=8.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8,10}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}$), 7.53-7.57 (m, 1 H, 9-H), 7.28 (bs, 1 H, N-H), 7.12-7.16 (m, $1 \mathrm{H}, 10-\mathrm{H}$), 6.96 (dd, $\left.{ }^{3} J_{11,10}=8.5 \mathrm{~Hz},{ }^{3} J_{11,9}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 4.79\left(\mathrm{td},{ }^{3} J_{2, \mathrm{NH}}=7.8 \mathrm{~Hz},{ }^{3} J_{2,3}=4.3 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 2-\mathrm{H}), 4.72\left(\mathrm{~d},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}={ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.50\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=\right.$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.32\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=18.8 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}$,

12-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.2,168.0,157.2(\mathrm{q}, \mathrm{J}=37.4 \mathrm{~Hz})$, 150.7, 134.4, 126.2, 122.0, 115.5 ($\mathrm{q}, J=285.8 \mathrm{~Hz}$), 114.6, 83.9, 73.3, 48.8, 40.6, 27.7.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}]^{+}$

Calculated
420.1144

Found 420.1156

tert-Butyl 5-(4-nitrophenoxy)-4-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (2f)

According to the general procedure for Dess-Martin oxidations alcohol $1 f$ (558 mg , 1.32 mmol) and Dess-Martin periodinane ($721 \mathrm{mg}, 1.7 \mathrm{mmol}$) were reacted to give $\mathbf{2 f}$ after flash chromatography (silica, hexanes/EtOAc 8:2) in 84% yield ($466 \mathrm{mg}, 1.11$ mmol) as white solid with a melting point of $90^{\circ} \mathrm{C}$. [TLC: Hex/EA 7:3, $R_{\mathrm{f}}=0.49$]

${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21-8.27(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 7.35\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=6.5 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{N}-\mathrm{H}), 6.95-6.99(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 4.75\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$, $4.72\left(\mathrm{~d},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}={ }^{2} J_{5 \mathrm{~b}, 5 \mathrm{a}}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.37\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=18.5 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=4.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 3.32\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{~b}, 3 \mathrm{a}}=18.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3 \mathrm{~b}, 2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H})$. ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.1,167.9,157.2(\mathrm{q}, \mathrm{J}=37.4 \mathrm{~Hz}), 155.9$, 129.6, 127.0, 115.7, 115.5 ($q, J=285.8 \mathrm{~Hz}$), 114.0, 83.8, 72.6, 48.7, 40.3, 27.7.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}]^{+}$

Calculated
420.1144

Found
420.1171

General procedure for Passerini reactions

To a sample of pure γ-keto amino acid ester 2 or the aldehydes 5 and 7 (0.27 mmol) under N_{2} in a 5 ml round bottom flask, acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and the corresponding isonitrile (0.29 mmol) were added. The resulting homogeneous solution was stirred at r.t. under nitrogen for 20 h . The crude product was purified by column chromatography (silica gel, EtOAc/hexane).

tert-Butyl 4-acetoxy-4-(chloromethyl)-5-(2-methoxy-2-oxoethylamino)-5-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (3b)

According to the general procedure for Passerini reactions ketone $\mathbf{2 b}$ ($86 \mathrm{mg}, 0.27$ mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and methyl 2 -isocyanoacetate ($29 \mathrm{mg}, 0.29$ mmol) were reacted to give $\mathbf{3 b}$ after flash chromatography (silica, hexanes/EtOAc $8: 2$) in 65% yield ($84 \mathrm{mg}, 0.18 \mathrm{mmol}$) as white solid with a melting point of $93^{\circ} \mathrm{C}$. [TLC: $\left.\mathrm{Hex} / E A \mathrm{7}: 3, R_{\mathrm{f}}=0.34\right]$

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFAA }}-\mathrm{H}\right), 7.40(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{NH}, 6}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 4.64-4.69(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.44\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $11 \mathrm{a}-\mathrm{H}), 4.31\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{1 \mathrm{bb}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right), 4.08\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=18.3 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 2}=\right.$ $5.27 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.92-3.98(\mathrm{~m}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 2.90\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=\right.$ $\left.15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.53\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $3 b-H), 2.27$ (s, $3 \mathrm{H}, 10-\mathrm{H}$), 1.44 (s, $9 \mathrm{H}, 13-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 170.1, 169.3, 168.8, 168.3, 157.0, 117.1, 83.9, 83.6, 52.6, 50.2, 45.7, 41.2, 34.8, 27.7, 21.6.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 6}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NHTFA}, 2}=\right.$ $\left.8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 4.44-4.50(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.16\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\right.$ $\mathrm{H}), 3.89-3.98(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.01\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=3.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.43\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 1.44(\mathrm{~s}, 9 \mathrm{H}$, $13-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,168.9,168.8,168.1,83.8,83.5,49.1$, 34.3, 21.3.

HRMS (CI):
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+1]^{+}$

Calculated
477.1252

Found
477.1209
tert-Butyl 4-acetoxy-5-(2-methoxy-2-oxoethylamino)-5-oxo-4-(phenoxymethyl)-2-(2,2,2-trifluoroacetamido)pentanoate (3c)

According to the general procedure for Passerini reactions ketone 2c $(101 \mathrm{mg}$, 0.27 mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and methyl 2-isocyanoacetate (29 mg , 0.29 mmol) were reacted to give 3 c after flash chromatography (silica, hexanes/EtOAc 8:2) in 57% yield ($82 \mathrm{mg}, 0.15 \mathrm{mmol}$) as a white solid with a melting point of $109{ }^{\circ} \mathrm{C}$. [TLC: Hex/EA 7:3, $R_{\mathrm{f}}=0.35$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=7.61$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}$), 7.44 (t , $\left.{ }^{3} J_{\mathrm{NH}, 6}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}, 13-\mathrm{H}, 14-\mathrm{H}, 15-\mathrm{H}), 4.73\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=\right.$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}), 4.54-4.59(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.43\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right)$, 4.17-4.29 (m, 2 H, 6-H), $3.80(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 2.93\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=15.2 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=9.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.65\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}, 10-$ H), 1.48 (s, $9 \mathrm{H}, 17-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,169.7,169.1,168.5$, 156.7, 129.5, 121.8, 115.0, 114.9, 114.7, 83.5, 83.1, 68.5, 52.3, 50.1, 41.2, 34.2, 27.8, 21.5.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=6.98-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}, 15-\mathrm{H}), 6.89-6.93(\mathrm{~m}, 5 \mathrm{H}$, $\left.13-\mathrm{H}, 14-\mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 4.88\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.69-4.74(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $4.22\left(\mathrm{~d},{ }^{2} J_{1 \mathrm{~b}, 11 \mathrm{a}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right), 3.92-4.04(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H})$, $2.532 .65\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{~b}, 3 \mathrm{a}}=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3 \mathrm{~b}, 2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.48$ (s, $9 \mathrm{H}, 17-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,169.5,169.1,168.4,129.5$, 83.4, 83.0, 68.3, 48.9, 33.0, 27.8, 21.3.

HRMS (CI):
$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$

Calculated
477.1121

Found
477.1175

tert-Butyl 4-acetoxy-4-[(4-chlorophenoxy)methyl]-5-(2-methoxy-2-oxoethyl-amino)-5-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (3d)

According to the general procedure for Passerini reactions ketone 2d (111 mg, 0.27 mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and methyl 2-isocyanoacetate (29 mg , 0.29 mmol) were reacted to give 3d after flash chromatography (silica, hexanes/EtOAc 8:2) in 69% yield ($107 \mathrm{mg}, 0.19 \mathrm{mmol}$) as a white solid with a melting point of $102{ }^{\circ} \mathrm{C}$. [TLC: Hex/EA 7:3, $R_{\mathrm{f}}=0.33$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 7.41(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{NH}, 6}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}, 14-\mathrm{H}), 6.79-6.83(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{H}), 4.83$ (d, $\left.{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.50-4.53(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.41\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}), 4.10-4.28(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=15.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3 \mathrm{a}, 2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.60\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right)$, 2.18 (s, $3 \mathrm{H}, 10-\mathrm{H}$), 1.46 (s, $9 \mathrm{H}, 17-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1$, 169.5, 169.1, 168.5, 156.4, 129.5, 129.4, 126.7, 116.2, 116.0, 83.6, 83.1, 68.9, 52.5, 50.0, 41.2, 34.1, 27.8, 21.6.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.23(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{H}, \mathrm{N}-\mathrm{H}), 6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA }, 2}=\right.$ $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 6.80-6.83(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{H}), 4.66\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{11 \mathrm{a}, 11 \mathrm{~b}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\right.$ H), 4.66-4.72 (m, $1 \mathrm{H}, 2-\mathrm{H}), 4.17\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right), 3.87-4.00(\mathrm{~m}, 2$ $\mathrm{H}, 6-\mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 2.97\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.50$ (dd, ${ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}$), $2.06(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 17-$ H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,169.5,168.4,129.4,116.2,83.5,83.1$, 68.6, 48.8, 41.1, 32.9, 27.8, 21.3.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{23} \mathrm{H}_{28}{ }^{37} \mathrm{CIF}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}[\mathrm{M}]^{+}$	570.1400	570.1473

tert-Butyl 4-acetoxy-5-(2-methoxy-2-oxoethylamino)-4-[(2-nitrophenoxy)-methyl]-5-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (3e)

According to the general procedure for Passerini reactions ketone $\mathbf{2 e}(113 \mathrm{mg}$, 0.27 mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and methyl 2-isocyanoacetate (29 mg , 0.29 mmol) were reacted to give $\mathbf{3 e}$ after flash chromatography (silica, hexanes/ EtOAc 8:2) in 62% yield ($97 \mathrm{mg}, 0.17 \mathrm{mmol}$) as a white solid with a melting point of $105^{\circ} \mathrm{C}$. [TLC: Hex/EA 7:3, $R_{\mathrm{f}}=0.33$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84-7.88(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{H}), 7.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{NHTFA}, 2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}$), $7.45\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 6}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.51-7.55(\mathrm{~m}, 1 \mathrm{H}, 17-\mathrm{H}), 6.99-7.09$ ($\mathrm{m}, 2 \mathrm{H}, 15-\mathrm{H}, 16-\mathrm{H}$), $4.93\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.57-4.73(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $4.53\left(\mathrm{~d},{ }^{2} J_{1 \mathrm{~b}, 11 \mathrm{a}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{6 \mathrm{a}, 6 \mathrm{~b}}=17.9 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, \mathrm{NH}}=6.7 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{6 \mathrm{~b}, 6 \mathrm{a}}=17.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6 \mathrm{~b}, \mathrm{NH}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H})$, $2.65\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.55\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=15.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3 \mathrm{~b}, 2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 19-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=170.2,169.6,169.4,168.3,151.0,139.5,134.5,125.9,121.3$, 117.0, 114.6, 83.4, 82.6, 69.4, 52.5, 50.2, 48.8, 41.3, 33.2, 27.7, 21.3.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 6}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 6.99-7.09(\mathrm{~m}, 2 \mathrm{H}$, $15-\mathrm{H}, 16-\mathrm{H}), 5.08\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.50-4.56(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.36(\mathrm{~d}$, $\left.{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}\right), 4.01-4.03(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 2.96-3.02$ (m, $2 \mathrm{H}, 3-\mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 19-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=169.7,169.5,169.3,168.2,151.1,139.4,125.6,121.3,114.4,82.4,69.5,52.4$, 41.2, 32.5, 21.5.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{11}[\mathrm{M}+1]^{+}$	580.1709	580.1798

tert-Butyl 4-acetoxy-5-(2-ethoxy-2-oxoethylamino)-4-[(4-nitrophenoxy)methyl]-5-0xo-2-(2,2,2-trifluoroacetamido)pentanoate (3f)

According to the general procedure for Passerini reactions ketone $\mathbf{2 f}(111 \mathrm{mg}$, 0.27 mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and ethyl 2-isocyanoacetate (33 mg , 0.29 mmol) were reacted to give 3 f after flash chromatography (silica, hexanes/ EtOAc 8:2) in 69% yield ($108 \mathrm{mg}, 0.19 \mathrm{mmol}$) as a white solid with a melting point of $108^{\circ} \mathrm{C}$. [TLC: $\left.\mathrm{Hex} / E A 7: 3, R_{\mathrm{f}}=0.34\right]$

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFAA }}-\mathrm{H}\right), 7.39(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{NH}, 6}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{H}), 6.78-6.82(\mathrm{~m}, 2 \mathrm{H}, 14-\mathrm{H}), 4.83$ (d, $\left.{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.50-4.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.40\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}), 4.16-4.26(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}), 2.90\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=10.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.60\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}$, $11-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 18-\mathrm{H}), 1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}_{9,8}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.9,169.5,169.1,168.5,156.7,156.4,129.4,126.7,116.3,115.5$, 83.5, 83.1, 68.9, 61.8, 50.1, 41.3, 33.9, 27.8, 21.6, 14.0.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 6.79-6.83$ ($\mathrm{m}, 2 \mathrm{H}, 14-\mathrm{H}$), $4.67\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.64-4.67(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.97$ $\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right), 2.50\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=\right.$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 18-\mathrm{H}), 1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}_{9,8}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $9-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7,169.1,169.1,168.4,116.3,83.4,83.1$, 68.6, 48.8, 41.3, 32.8, 21.3.

HRMS (CI):

$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{11}[\mathrm{M}+1]^{+}$

Calculated
594.1866

Found
594.1933
tert-Butyl 4-acetoxy-4-[(4-chlorophenoxy)methyl]-5-(2-ethoxy-2-oxoethylamino)-5-oxo-2-(2,2,2-trifluoroacetamido)pentanoate (3g)

According to the general procedure for Passerini reactions ketone 2d (111 mg, 0.27 mmol), acetic acid ($17.6 \mathrm{mg}, 0.29 \mathrm{mmol}$) and ethyl 2-isocyanoacetate (33 mg , 0.29 mmol) were reacted to give $\mathbf{3 g}$ after flash chromatography (silica, hexanes/ EtOAc 8:2) in 68% yield ($108 \mathrm{mg}, 0.19 \mathrm{mmol}$) as a white solid with a melting point of $107{ }^{\circ} \mathrm{C}$. [TLC: $\mathrm{Hex} / \mathrm{EA} 7: 3, R_{\mathrm{f}}=0.33$]

Major diastereomer:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {NHTFA, } 2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 7.38(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{NH}, 6}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}\right), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{H}), 6.78-6.82(\mathrm{~m}, 2 \mathrm{H}, 14-\mathrm{H}), 4.83$ (d, $\left.{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\mathrm{H}\right), 4.50-4.55(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.40\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{~b}, 11 \mathrm{a}}=9.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}), 4.16-4.26(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}), 2.90\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{3 \mathrm{a}, 3 \mathrm{~b}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=10.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.60\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}$, $11-\mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}, 18-\mathrm{H}), 1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}_{9,8}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.9,169.5,169.1,168.5,156.7,156.4,129.4,126.7,116.3,115.5$, 83.5, 83.1, 68.9, 61.8, 50.1, 41.3, 33.9, 27.8, 21.6, 14.0.

Minor diastereomer (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N}-\mathrm{H}, 15-\mathrm{H}), 7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NHTFA}, 2}=\right.$ $\left.8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\text {TFA }}-\mathrm{H}\right), 6.79-6.83(\mathrm{~m}, 2 \mathrm{H}, 14-\mathrm{H}), 4.67\left(\mathrm{~d},{ }^{2} J_{11 \mathrm{a}, 11 \mathrm{~b}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 11 \mathrm{a}-\right.$ H), 4.64-4.67 (m, 1 H, 2-H), $2.97\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.7 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}\right)$, $2.50\left(\mathrm{dd},{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=15.0 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~b}-\mathrm{H}\right), 2.06(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.45(\mathrm{~s}, 9$ $\mathrm{H}, 18-\mathrm{H}$), 1.28 (t, ${ }^{3} \mathrm{~J}_{9,8}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, 169.1, 169.1, 168.4, 116.3, 83.4, 83.1, 68.6, 48.8, 41.3, 32.8, 21.3.

HRMS (Cl):
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}[\mathrm{M}]^{+}$

Calculated
582.1592

Found
582.1563

(E)-tert-Butyl 6-oxo-2-(2,2,2-trifluoroacetamido)hex-4-enoate (5)

According to the general procedure for Dess-Martin oxidations alcohol 4^{2} (595 mg , 2.00 mmol) and Dess-Martin periodinane ($1.10 \mathrm{~g}, 2.60 \mathrm{mmol}$) were reacted to give 5 after flash chromatography (silica, hexanes/EtOAc 9:1, 8:2, 7:3) in 79% yield (467 $\mathrm{mg}, 1.58 \mathrm{mmol}$) as a pale yellow oil. [TLC: Hex/EA $1 / 1, R_{\mathrm{f}}=0.78$]

[^1]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{6,5}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$, $6.67\left(\mathrm{dt},{ }^{3} J_{4,5}=15.6 \mathrm{~Hz},{ }^{3} J_{4,3}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.69\left(\mathrm{ddt},{ }^{3} J_{5,4}=15.6 \mathrm{~Hz},{ }^{3} J_{5,6}=7.7\right.$ $\mathrm{Hz},{ }^{4} J_{5,3}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $4.58\left(\mathrm{td},{ }^{3} J_{2,3}={ }^{3} J_{2, N H}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right.$), 2.99 (dddd, ${ }^{2} J_{3 \mathrm{a}, 3 \mathrm{~b}}=14.9 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=7.4 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 2}=5.8 \mathrm{~Hz},{ }^{4} J_{3 \mathrm{a}, 5}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{Ha}$), 2.82 (dddd, $\left.{ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.9 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 4}=7.4 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{~b}, 2}=5.8 \mathrm{~Hz},{ }^{4} J_{3 \mathrm{~b}, 5}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{Hb}\right), 1.49(\mathrm{~s}, 9 \mathrm{H}$, $8-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.8,168.5,149.2,136.1,84.6,52.0,35.0$, 28.0, (C-9, C-10 could not be detected).

HRMS (ESI):	Calculated	Found
$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$	318.0929	318.0925

(E)-tert-Butyl 6-acetoxy-7-(2-ethoxy-2-oxoethylamino)-7-oxo-2-(2,2,2-trifluoro-acetamido)hept-4-enoate (6a)

According to the general procedure for Passerini reactions aldehyde $5(44 \mathrm{mg}$, 0.15 mmol), acetic acid ($10 \mathrm{mg}, 0.17 \mathrm{mmol}$) and ethyl 2-isocyanoacetate (19 mg , 0.17 mmol) were reacted to give $\mathbf{6 a}$ after flash chromatography (silica, hexanes/ EtOAc 6/4, 1/1) in 64% yield ($45 \mathrm{mg}, 0.096 \mathrm{mmol}$) as a colorless oil. [TLC: Hex/EA $\left.1 / 1, R_{\mathrm{f}}=0.36\right]$

Diastereomer 1:
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 6.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 8}=5.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.82, 5.79 ($2 \mathrm{dt},{ }^{3} \mathrm{~J}_{4,5}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4,3}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 5.72, 5.68 (2dd, $\left.{ }^{3} J_{5,4}=15.3 \mathrm{~Hz},{ }^{3} J_{5,6}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 5.59\left(\mathrm{~d},{ }^{3} J_{6,5}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.60,4.56$ ($2 \mathrm{dt},{ }^{3} J_{2, \mathrm{NH}}=7.3 \mathrm{~Hz},{ }^{3} J_{2,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $4.24\left(\mathrm{q},{ }^{3} J_{10,11}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}\right.$), 4.09 (dd, $\left.{ }^{2} J_{8 \mathrm{a}, 8 \mathrm{~b}}=18.3 \mathrm{~Hz},{ }^{3} J_{8 \mathrm{a}, \mathrm{NH}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Ha}\right), 4.00\left(\mathrm{dd},{ }^{2} J_{8 \mathrm{~b}, 8 \mathrm{a}}=18.3 \mathrm{~Hz},{ }^{3} J_{8 \mathrm{~b}, \mathrm{NH}}=\right.$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Hb}), 2.71(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{Ha}), 2.60(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{Hb}), 2.18(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 1.49$
($\mathrm{s}, 9 \mathrm{H}, 13-\mathrm{H}$), 1.31 (t, ${ }^{3} \mathrm{~J}_{11,10}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $169.5,169.0,168.9,167.9,156.7\left(J_{14, F}=37.9 \mathrm{~Hz}\right), 129.5,128.5,115.6\left(J_{15, F}=287.6\right.$ $\mathrm{Hz}), 83.7,73.6,61.7,52.4,41.0,34.6,27.9,20.8,14.0$.

Diastereomer 2: (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.2 \mathrm{~Hz}, \mathrm{NH}\right), 6.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 8}=5.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NH}), 5.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{6,5}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.07\left(\mathrm{dd},{ }^{2} ل_{8 \mathrm{a}, 8 \mathrm{~b}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{a}, \mathrm{NH}}=5.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 8-\mathrm{Ha}), 3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{8 \mathrm{~b}, 8 \mathrm{a}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{~b}, \mathrm{NH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Hb}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.5,169.0,156.6\left(J_{14, \mathrm{~F}}=37.9 \mathrm{~Hz}\right), 129.3,128.4$, 83.6, 73.4, 52.4, 34.5.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]^{+}$	409.1586	409.1628

(E)-7-tert-Butoxy-1-(2-ethoxy-2-oxoethylamino)-1,7-dioxo-6-(2,2,2-trifluoro-acetamido)hept-3-en-2-yl benzoate (6b)

According to the general procedure for Passerini reactions aldehyde 5 (44 mg , 0.15 mmol), benzoic acid ($21 \mathrm{mg}, 0.17 \mathrm{mmol}$) and ethyl 2-isocyanoacetate (19 mg , 0.17 mmol) were reacted to give $\mathbf{6 b}$ after flash chromatography (silica, hexanes/ EtOAc 6/4) in 44% yield ($35 \mathrm{mg}, 0.066 \mathrm{mmol}$) as a colorless oil. [TLC: Hex/EA 1/1, R_{f} $=0.45$]

Diastereomer 1:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.05(\mathrm{~m}, 2 \mathrm{H}, 18-\mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}$, $19-\mathrm{H}), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 6.72,6.58\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{NH}, 8}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right)$, $5.87(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}), 4.62,4.59\left(2 \mathrm{dt},{ }^{3} J_{2, \mathrm{NH}}=7.0 \mathrm{~Hz},{ }^{3} J_{2,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$, $4.22\left(\mathrm{q},{ }^{3} J_{10,11}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}\right), 4.10(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{Ha}), 4.06(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{Hb}), 2.73(\mathrm{~m}$, $1 \mathrm{H}, 3-\mathrm{Ha}), 2.61(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{Hb}), 1.46(\mathrm{~s}, 9 \mathrm{H}, 13-\mathrm{H}), 1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}_{11,10}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,168.9,168.0,164.8,157.0\left(J_{14, \mathrm{~F}}=37.9 \mathrm{~Hz}\right)$, 133.7, 129.8, 129.2, 129.0, 128.6, 128.5, 83.7, 74.0, 61.7, 52.4, 41.1, 34.6, 27.9, 14.1, C-15 could not be detected.

Diastereomer 2 (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.14\left(\mathrm{dd},{ }^{2} J_{8 \mathrm{Ba}, 8 \mathrm{~b}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{a}, \mathrm{NH}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\right.$ Ha), 4.02 (dd, $\left.{ }^{2} \mathrm{~J}_{8 \mathrm{~b}, 8 \mathrm{a}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{~b}, \mathrm{NH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Hb}\right), 1.44$ (s, $9 \mathrm{H}, 13-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,168.8,168.0,129.8,129.1,128.9,128.483 .7$, 73.8, 34.5.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right]^{+}$	474.1250	474.1206

(E)-tert-Butyl 6-(2-(benzyloxycarbonylamino)acetoxy)-7-(2-ethoxy-2-oxoethyl-amino)-7-oxo-2-(2,2,2-trifluoroacetamido)hept-4-enoate (6c)

According to the general procedure for Passerini reactions aldehyde 5 (44 mg , 0.15 mmol), Cbz-glycine ($36 \mathrm{mg}, 0.17 \mathrm{mmol}$) and ethyl 2 -isocyanoacetate (19 mg , 0.17 mmol) were reacted to give $\mathbf{6 c}$ after flash chromatography (silica, hexanes/ EtOAc $6 / 4,1 / 1$) in 43% yield ($37 \mathrm{mg}, 0.064 \mathrm{mmol}$) as a colorless oil. [TLC: Hex/EA $\left.1 / 1, R_{\mathrm{f}}=0.26\right]$

Diastereomer 1:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~m}, 5 \mathrm{H}, 21-\mathrm{H}, 22-\mathrm{H}, 23-\mathrm{H}), 7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=8.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.85\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{4,5}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4,3}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.75$, $5.70\left(2 \mathrm{dd},{ }^{3} J_{5,4}=15.1 \mathrm{~Hz},{ }^{3} J_{5,6}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 5.66,5.64\left(2 \mathrm{~d},{ }^{3} \mathrm{~J}_{6,5}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $6-\mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.14(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}_{10,11}=7.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 3.98(\mathrm{~m}, 4 \mathrm{H}, 8-\mathrm{H}, 17-\mathrm{H}), 2.70\left(\mathrm{ddd},{ }^{2}{ }_{3 \mathrm{Ja}, 3 \mathrm{~b}}=14.4 \mathrm{~Hz},{ }^{3} J_{3 \mathrm{a}, 4}=8.6 \mathrm{~Hz}\right.$, ${ }^{3} J_{3 \mathrm{a}, 2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{Ha}$), 2.56 (ddd, ${ }^{2} J_{3 \mathrm{~b}, 3 \mathrm{a}}=14.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3 \mathrm{~b}, 4}={ }^{3} \mathrm{~J}_{3 \mathrm{~b}, 2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ Hb), 1.49 (s, $9 \mathrm{H}, 13-\mathrm{H}$), $1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{11,10}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.4,168.9,168.5,167.7,156.7\left(\mathrm{~J}_{14, \mathrm{~F}}=37.3 \mathrm{~Hz}\right), 136.1,130.4,128.5$, 128.3, 128.1, 127.8, $115.5\left(\mathrm{~J}_{15.5}=288.3 \mathrm{~Hz}\right), 83.7,74.1,67.3,61.6,52.5,42.9,41.1$, 34.7, 27.9, 14.1.

Diastereomer 2 (selected signals):
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,168.8,168.4,129.8,127.6$.

HRMS (CI):	Calculated	Found
$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{10}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right]^{+}$	561.1570	561.1561

tert-Butyl 6-oxo-2-(2,2,2-trifluoroacetamido)hexanoate (7)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.76\left(\mathrm{t},{ }^{3} \mathrm{~J}_{6,5}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$, $4.47\left(\mathrm{td},{ }^{3} \mathrm{~J}_{2,3}={ }^{3} J_{2, \mathrm{NH}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.53\left(\mathrm{td},{ }^{3} J_{5 \mathrm{a}, 4}=7.0 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{a}, 6}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $5-\mathrm{Ha}), 2.52\left(\mathrm{td},{ }^{3} \mathrm{~J}_{5 \mathrm{~b}, 4}=7.0 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~b}, 6}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{Hb}\right), 1.94(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{Ha}), 1.80$ $(\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{Hb}), 1.65(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 201.2, 169.7, $156.8\left(J_{9, F}=37.4 \mathrm{~Hz}\right), 115.6\left(\mathrm{~J}_{10, F}=287.7 \mathrm{~Hz}\right), 83.7,52.9,42.9,31.2$, 27.9, 17.2.

HRMS (ESI):	Calculated	Found
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}:$	320.1086	320.1080

tert-Butyl 6-acetoxy-7-(2-ethoxy-2-oxoethylamino)-7-oxo-2-(2,2,2-trifluoroacetamido)heptanoate (8)

According to the general procedure for Passerini reactions aldehyde $7(37 \mathrm{mg}$, 0.12 mmol), acetic acid ($8 \mathrm{mg}, 0.13 \mathrm{mmol}$) and ethyl 2-isocyanoacetate ($15 \mathrm{mg}, 0.13$ mmol) were reacted to give 8 after flash chromatography (silica, hexanes/ EtOAc 6/4, $1 / 1$) in 80% yield ($47 \mathrm{mg}, 0.099 \mathrm{mmol}$) as colourless oil. [TLC: Hex/EA $1 / 1, R_{\mathrm{f}}=0.31$]

Diastereomer 1:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.08,7.05\left(2 \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 6.59(\mathrm{t}$, ${ }^{3} J_{\mathrm{NH}, 8}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $5.23\left(\mathrm{t},{ }^{3} J_{6,5}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.45\left(\mathrm{ddd},{ }^{3} J_{2, \mathrm{NH}}={ }^{3} J_{2,3 \mathrm{a}}=\right.$ $\left.7.3 \mathrm{~Hz},{ }^{3} J_{2,3 \mathrm{~b}}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.23\left(\mathrm{q},{ }^{3} J_{10,11}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}\right), 4.07\left(\mathrm{dd},{ }^{2} J_{8 \mathrm{a}, 8 \mathrm{~b}}\right.$ $\left.=18.3 \mathrm{~Hz},{ }^{3} ل_{8 \mathrm{a}, \mathrm{NH}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Ha}\right), 3.99\left(\mathrm{dd},{ }^{2} J_{8 \mathrm{~b}, 8 \mathrm{a}}=18.3 \mathrm{~Hz},{ }^{3} J_{8 \mathrm{~b}, \mathrm{NH}}=2.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 8-\mathrm{Hb}), 2.16(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 1.93(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{Ha}, 5-\mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{Hb}), 1.48(\mathrm{~m}$, $11 \mathrm{H}, 4-\mathrm{H}, 13-\mathrm{H}), 1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{11,10}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 169.8, 169.7, 169.6, 169.5, $156.8\left(J_{14, \mathrm{~F}}=37.2 \mathrm{~Hz}\right)$, $115.9\left(J_{15, \mathrm{~F}}=288.2 \mathrm{~Hz}\right)$, 83.3, 73.1, 61.7, 52.9, 41.0, 31.4, 31.2, 27.9, 20.8, 20.2, 14.1.

Diastereomer 2 (selected signals):
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{8 \mathrm{a}, 8 \mathrm{bb}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{a}, \mathrm{NH}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $8-\mathrm{Ha}), 3.97\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{8 \mathrm{~b}, 8 \mathrm{a}}=18.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{~b}, \mathrm{NH}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Hb}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.5,156.8\left(\mathrm{~J}_{14, \mathrm{~F}}=37.5 \mathrm{~Hz}\right), 83.3,52.9,40.9,31.3,30.9,27.9,20.8$, 20.0.

HRMS (CI):
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right]^{+}$

Calculated
397.1223

Found
397.1190

tert-Butyl 6-(N -benzylacetamido)-7-(2-ethoxy-2-oxoethylamino)-7-oxo-2-(2,2,2trifluoroacetamido)heptanoate (9)

Aldehyde 7 ($37 \mathrm{mg}, 0.12 \mathrm{mmol}$) and benzylamine ($15 \mathrm{mg}, 0.13 \mathrm{mmol}$) were stirred for 15 min at $0^{\circ} \mathrm{C}$. Acetic acid ($8 \mathrm{mg}, 0.13 \mathrm{mmol}$) and ethyl 2 -isocyanoacetate (15 $\mathrm{mg}, 0.13 \mathrm{mmol}$) were added and the mixture was allowed to warm up to r.t. overnight. The solvent was evaporated to give 9 after flash chromatography (silica, hexanes/ EtOAc $7 / 3,1 / 1$) in 34% yield ($24 \mathrm{mg}, 0.043 \mathrm{mmol}$) as a colorless oil. [TLC: Hex/EA $\left.1 / 1, R_{\mathrm{f}}=0.43\right]$

Diastereomer 1:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{~m}, 3 \mathrm{H}, 21-\mathrm{H}, 22-\mathrm{H}), 7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{20,21}=7.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 20-\mathrm{H}), 7.11,7.09\left(2 \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 7.00\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 8}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right)$, $5.00(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}, 18-\mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}_{10,11}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $10-\mathrm{H}), 3.94\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{8 \mathrm{a}, 8 \mathrm{~b}}=18.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{8 \mathrm{a}, \mathrm{NH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Ha}\right), 3.89(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{Hb})$, 2.14 (s, 3H, 17-H), 1.96, 1.82, 1.70, 1.59 (m, 4H, 3-H, 5-H), 1.48 (s, 9H, 13-H), 1.29 (m, 5H, 4-H, 11-H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=173.4,170.7,169.7,169.7$, $156.8\left(J_{14, \mathrm{~F}}=37.7 \mathrm{~Hz}\right), 137.1,128.8$, 127.4, 126.0, $115.7\left(J_{15, \mathrm{~F}}=288.0 \mathrm{~Hz}\right)$, 83.2, $61.4,57.1,53.1,49.4,41.0,31.8,27.7,27.9,22.3,22.0,14.1$.
Diastereomer 2 (selected signals):
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=6.94\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 8}=5.6 \mathrm{~Hz}, \mathrm{NH}\right), 4.60(\mathrm{~s}, 2 \mathrm{H}, 18-\mathrm{H}), 3.95$ (dd, ${ }^{2} J_{8 \mathrm{a}, 8 \mathrm{~b}}=18.1 \mathrm{~Hz},{ }^{3} J_{8 \mathrm{a}, \mathrm{NH}}=6.1 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad 8-\mathrm{Ha}$), 3.85 (dd, ${ }^{2} J_{8 \mathrm{~b}, 8 \mathrm{a}}=18.1 \mathrm{~Hz}$, $\left.{ }^{3} J_{8 \mathrm{~b}, \mathrm{NH}}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{Hb}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=83.1,57.0,52.9,49.2$, 31.3, 27.5, 21.7.

HRMS (CI):
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}]^{+}$

Calculated
559.2505

Found
559.2480

[^0]: ${ }^{1}$ Kazmaier, U., Zahoor, A. F. Arkivoc 2011, IV, 6-16.

[^1]: ${ }^{2}$ Thies, S., Kazmaier U. Synlett 2010, 137-141.

