Supporting Information

for

Synthesis of fluoranthenes by hydroarylation of alkynes catalyzed by gold(I) or gallium trichloride

Sergio Pascual¹, Christophe Bour¹, Paula de Mendoza¹, and Antonio M. Echavarren*^{1,2}

Address: ¹Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain and ²Additional affiliation: Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·li Domingo s/n, 43007 Tarragona (Spain)

Email: Antonio M. Echavarren* - aechavarren@iciq.es *Corresponding author

Experimental details

Contents

General methods	
Experimental results	S-2
NMR Spectra	S-16

General methods

All reactions were carried out under Ar in solvents dried in a Solvent Purification System (SPS). Thin layer chromatography was carried out by using TLC-aluminum sheets with 0.2 mm of silica gel (Merck GF₂₃₄). Chromatography purifications were carried out using flash-grade silica gel (SDS Chromatogel 60 ACC, 40–60 µm) or automated flash chromatographer CombyFlash Companion. NMR spectra were recorded at 23°C on a Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatus. Mass spectra were recorded on a Waters LCT Premier (ESI) and Waters GCT (EI, CI) spectrometers. Elemental analyses were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid. Melting points were determined by using a Büchi melting-point apparatus.

Complexes 5 [1] and 6 [2] were prepared according to the reported procedures. Complex 5 is also available from Aldrich. Malonate 3 was prepared according to the described procedure [3].

Experimental results

Dimethyl 4-methylnaphthalene-2,2(1H)-dicarboxylate (4') [3].

¹H NMR (400 MHz, CDCl₃) δ 7.22 (m, 4H), 5.97 (s, 1H), 3.71 (s, 6H), 3.37 (s, 2H), 2.13 (d, J = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.90, 134.95, 133.29, 132.59, 127.90, 127.69, 126.91, 123.41, 121.05, 54.73, 52.87, 34.57, 19.38; HRMS -ESI Calcd for C₁₅H₁₆O₄Na (M + Na): 283.0946 Found 283.0945.

Synthesis of fluorenes 7a-i

Procedure A (Propargylation of fluorene): *n*-BuLi 2.5M in hexanes (1.1 equiv) was added dropwise over a solution of fluorene (1.0 equiv) in anhydrous THF at -80 °C and the mixture was stirred at -80 °C for 3 hours. Then, a solution of the corresponding propargylbromide (1.0 equiv) in anhydrous THF was added dropwise and the mixture

was allowed to warm to r.t. overnight. Saturated NaCl solution was added and the organic layer was extracted with ethyl acetate ($3\times$). The combined organic fractions were dried over anhydrous sodium sulfate, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (SiO₂) to give the corresponding alkynyl-fluorene.

Procedure B (Sonogashira Coupling): CuI (0.1 equiv) and $[PdCl_2(PPh_3)_2]$ (0.5 equiv) were suspended in Et₃N and the resulting mixture was stirred for 5 min. The corresponding aryl bromide (1.3 equiv) and 9-(prop-2-ynyl)-9*H*-fluorene (1.0 equiv) in benzene were added sequentially. The reaction was stirred at 80 °C under microwave irradiation until TLC showed total conversion. The crude mixture was diluted with Et₂O, filtered through Celite and purified by flash chromatography (SiO₂) to give the corresponding alkynyl-fluorene.

9-(3-Phenylprop-2-ynyl)-9H-fluorene (7a).

Prepared as a pale yellow solid by procedure A (yield = 87%).

*R*_f (2:1 hexane–CH₂Cl₂) = 0.60; mp = 70–71 °C. ¹H NMR (CDCl₃, 400 MHz) [™] 7.76 (d, *J* = 7.8 Hz, 4H), 7.30–7.43 (m, 9H), 4.15 (t, *J* = 7.3 Hz, 1H), 2.88 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 146.3 (C), 140.8 (C), 131.6 (CH), 128.3 (CH), 127.8 (CH), 127.5 (CH), 127.0 (CH), 124.7 (CH), 123.7 (C), 119.8 (CH), 88.6 (C), 81.9 (C), 46.3 (CH), 24.5 (CH₂). Anal. calcd (%) for C₂₂H₁₆: C 94.25, H 5.75. Found: C 93.85, H 5.93.

9-(3-p-Tolylprop-2-ynyl)-9H-fluorene (7b).

Prepared as a pale yellow solid by procedure B (yield = 52%).

*R*_f (3:1 Hexane–CH₂Cl₂) = 0.22; mp = 119–120 °C. ¹H NMR (CDCl₃, 400 MHz) [™] 7.76 (d, *J* = 8.0 Hz, 4H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 4H), 7.12 (d, *J* = 7.9 Hz, 2H), 4.14 (t, *J* = 7.4 Hz, 1H), 2.86 (d, *J* = 7.4 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 146.3 (C), 140.8 (C), 137.8 (C), 131.4 (CH), 129.0 (CH), 127.5 (CH), 127.0 (CH), 124.7 (CH), 120.6 (C), 119.8 (CH), 87.9 (C), 81.9 (C), 46.3 (CH), 24.5 (CH₂), 21.4 (CH₃). HRMS: Calcd for C₂₃H₁₉ (M⁺+H) 295.1487, Found 295.1485.

9-(3-(4-Chlorophenyl)prop-2-ynyl)-9H-fluorene (7c).

Prepared as a pale yellow solid by procedure B (yield = 61%).

*R*_f (3:1 hexane:CH₂Cl₂) = 0.43; mp = 142–143 °C. ¹H NMR (CDCl₃, 400 MHz) [™] 7.76 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.25–7.34 (m, 6H), 4.14 (t, *J* = 7.2 Hz, 1H), 2.89 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 146.1 (C), 140.9 (C), 133.8 (C), 132.8 (CH), 128.6 (CH), 127.6 (CH), 127.1 (CH), 124.6 (CH), 122.1 (C), 119.9 (CH), 89.6 (C), 80.8 (C), 46.1 (CH), 24.5 (CH₂). HRMS: Calcd for C₂₂H₁₆³⁵Cl (M⁺+H) 315.0941, Found 315.0944.

4-(3-(9*H*-Fluoren-9-yl)prop-1-ynyl)benzonitrile (7d)

Prepared as a white solid by procedure B (yield = 60%).

*R*_f (2:1 hexane–CH₂Cl₂) = 0.15; mp = 152–153 °C. ¹H NMR (CDCl₃, 400 MHz) [™] 7.77 (d, *J* = 7.3 Hz, 2H), 7.69 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.58 (dt, *J* = 8.3, 1.6 Hz, 2H), 7.39–7.42 (m, 4H), 7.33 (dt, *J* = 7.4, 1.2 Hz, 2H), 4.16 (t, *J* = 7.2 Hz, 1H),

2.96 (d, J = 7.2 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 145.9 (C), 140.9 (C), 132.1 (CH), 132.0 (CH), 128.6 (C), 127.7 (CH), 127.1 (CH), 124.5 (CH), 119.9 (CH), 118.5 (C), 111.1 (C), 93.5 (C), 80.6 (C), 45.9 (CH), 24.5 (CH₂). HRMS: Calcd for C₂₄H₂₀NO (M⁺+H+MeOH) 338.1545, Found 338.1555.

9-(3-(4-Nitrophenyl)prop-2-ynyl)-9H-fluorene (7e)

Prepared as a pale yellow solid following procedure B (yield = 79%).

 $R_{\rm f}$ (2:1 hexane–CH₂Cl₂): 0.30; mp = 135–136 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.16 (d, J = 8.9 Hz, 2H), 7.78 (d, J = 8.9 Hz, 2H), 7.70 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 8.9, 1.9 Hz, 2H), 7.42 (t, J = 7.3 Hz, 2H), 7.34 (dd, J = 7.3, 6.3 Hz, 2H), 4.18 (t, J = 7.0 Hz, 1H), 2.98 (d, J = 7.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 145.8, 141.0, 132.3, 130.6, 127.7, 127.1, 124.5, 123.5, 120.0, 94.5, 80.5, 45.9, 24.6. HRMS: Calcd for C₂₂H₁₆NO₂ (M⁺+H) 326.1181, Found 326.1169.

9-(3-(2-Methoxyphenyl)prop-2-ynyl)-9H-fluorene (7f)

Prepared as a white solid following procedure B (yield = 45%).

*R*_f (4:1 hexane–CH₂Cl₂): 0.21; mp = 109–110 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (d, *J* = 7.2 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.37–7.42 (m, 3H), 7.39 (dt, *J* = 7.9, 1.8 Hz, 1H), 7.32 (dt, *J* = 7.5, 1.1 Hz, 2H), 6.92 (dt, *J* = 7.5, 1.1 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 4.19 (t, *J* = 7.6 Hz, 1H), 3.92 (s, 3H), 2.92 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 160.1 (C), 146.4 (C), 140.8 (C), 133.5 (CH), 129.2 (CH), 127.4 (CH), 127.0 (CH), 124.9 (CH), 120.4 (CH), 119.8 (CH), 112.9 (C), 110.6 (CH),

92.9 (C), 78.1 (C), 55.7 (CH₃), 46.4 (CH), 24.8 (CH₂). HRMS: Calcd for C₂₃H₁₉O (M⁺+H) 311.1436, Found 311.1427.

9-(3-(2-Bromophenyl)prop-2-ynyl)-9H-fluorene (7g).

Prepared as a colorless oil by procedure A (yield = 74%) or procedure B (yield = 41%).

*R*_f (3:1 hexane–CH₂Cl₂) = 0.60. ¹H NMR (CDCl₃, 400 MHz) [™] 7.80 (d, *J* = 7.5 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.37–7.43 (m, 3H), 7.31–7.34 (m, 2H), 7.22–7.25 (m, 1H), 7.11–7.15 (m, 1H), 4.19 (t, *J* = 7.1 Hz, 1H), 2.97 (d, *J* = 7.1 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 146.1 (C), 140.9 (C), 133.5 (CH), 132.3 (CH), 128.9 (CH), 127.5 (CH), 127.1 (CH), 126.9 (CH), 125.7 (C), 125.4 (C), 124.8 (CH), 119.9 (CH), 93.5 (C), 80.5 (C), 46.1 (CH), 24.6 (CH₂). HRMS: Calcd for $C_{22}H_{16}^{79}$ Br (M⁺+H) 359.0435, Found 359.0441.

9-(3-(Pentafluorophenyl)prop-2-ynyl)-9*H*-fluorene (7h)

Prepared as a white solid following procedure B (yield = 57%).

*R*_f (4:1 hexane–CH₂Cl₂): 0.50; mp = 128–129 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.33 (dt, *J* = 7.4, 1.2 Hz, 2H), 4.17 (t, *J* = 7.1 Hz, 1H), 2.99 (d, *J* = 7.1 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 145.6 (C), 140.9 (C), 127.7 (CH), 127.1 (CH), 124.5 (CH), 120.0 (CH), 101.9 (C), 66.0 (C), 45.6 (CH), 24.8 (CH₂). HRMS: Calcd for C₂₂H₁₂F₅ (M⁺+H) 371.0859, Found 371.0867.

9-(3-Bromoprop-2-ynyl)-9H-fluorene (7i)

Prepared by reaction of 9-(prop-2-ynyl)-9*H*-fluorene with NBS and $AgNO_3$ in acetone at room temperature in the dark in 87% yield.

*R*_f (Hexane): 0.21; mp = pale yellow oil. ¹H NMR (CDCl₃, 400 MHz) [™] 7.74 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.39 (dd, *J* = 7.5 Hz, *J* = 7.5 Hz, 2H), 7.32 (ddd, *J* = 7.5 Hz, *J* = 7.5 Hz, *J* = 7.5 Hz, *J* = 1.1 Hz, 2H), 4.05 (t, *J* = 7.4 Hz, 1H), 2.67 (d, *J* = 7.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) [™] 145.9 (C), 140.8 (C), 127.6 (CH), 127.1 (CH), 124.6 (CH), 119.9 (CH), 78.9 (C), 45.8 (CH), 39.6 (C-Br), 24.7 (CH₂)

9-(Hept-2-ynyl)-9H-fluorene (7j)

Prepared as a pale yellow oil following procedure A (yield = 89%).

R_f (5.1 hexane:CH₂Cl₂): 0.46. ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, J = 7.5 Hz, 2H), 7.70 (d, J = 7.4 Hz, 2H), 7.37 (dd, J = 7.4 Hz, J = 7.4 Hz, 2H), 7.31 (dd, J = 7.4 Hz, J = 7.4 Hz, 2H), 4.02 (t, J = 7.1 Hz, 1H), 2.63–2.66 (m, 2H), 2.17–2.21 (m, 2H), 1.32– 1.51 (m, 4H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 146.5 (C), 140.8 (C), 127.3 (CH), 126.9 (CH), 124.6 (CH), 119.7 (CH), 81.7 (C), 78.4 (C), 46.5 (CH), 30.0 (CH₂), 23.8 (CH₂), 21.9 (CH₂), 18.5 (CH₂), 13.7 (CH₃). HRMS: Calcd for C₂₀H₁₉ (M⁺-H) 259.1487, Found 259.1483.

9-(3-(3,4-Dimethoxyphenyl)prop-2-ynyl)-9H-fluorene (7k)

Prepared as a pale orange solid following procedure B (yield = 85%).

¹H NMR (CDCl₃, 400 MHz) δ 7.75–7.77 (m, 4H), 7.40 (dd, J = 7.7, 7.2 Hz, 2H), 7.33 (dt, J = 7.4, 1.0 Hz, 2H), 7.02 (dd, J = 8.3, 1.9 Hz, 1H), 6.90 (d, J = 1.9 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 4.16 (t, J = 7.3 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 2.88 (d, J = 7.3 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 149.1 (C), 148.6 (C), 146.3 (2C), 140.9 (C), 127.5 (2CH), 127.0 (2CH), 124.7 (2CH), 124.6 (CH), 119.8 (2CH), 115.9 (C), 114.4 (CH), 111.0 (CH), 87.0 (C), 81.8 (C), 55.9 (2CH₃), 46.3 (CH), 24.5 (CH₂). HRMS: Calcd for C₂₄H₂₀O₂Na (M⁺+Na) 363.1361, Found 363.1364.

General procedure for the hydroarylation reaction

A mixture of alkynylfluorene and the cationic gold catalyst or $GaCl_3$ in anhydrous CH_2Cl_2 (ca. 0.2 M) was stirred at the stated temperature (Tables 2 and 3). The solvent was evaporated under reduced pressure and the crude product was dissolved in toluene (ca. 0.1 M). This solution was added over a solution of DDQ (3 equiv) in toluene (final concentration ca. 0.03 M) and the mixture was heated under reflux overnight. The solvent was evaporated and the crude product was purified by flash chromatography (SiO₂, eluent: hexane).

Microwave irradiations were carried out in sealed tubes in a Biotage Initiator apparatus.

3-Phenylfluoranthene (8a) [4]

Prepared as a pale yellow solid with **6** as catalyst (yield = 70%).

 R_{f} (hexane:CH₂Cl₂/3:1): 0.63; mp = 146–147 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.92–7.99 (m, 5H), 7.60–7.63 (m, 4H), 7.51–7.54 (m, 2H), 7.37–7.47 (m, 3H). ¹³C NMR

(CDCl₃, 100 MHz, DEPT) δ 140.3 (C), 139.8 (C), 139.5 (C), 139.1 (C), 137.1 (C), 136.3 (C), 132.7 (C), 130.3 (CH), 128.6 (CH), 128.3 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 125.6 (CH), 121.5 (CH), 121.4 (CH), 120.0 (CH). Elemental analysis calcd (%) for C₂₂H₁₄: C 94.93, H 5.07; found: C 94.50, H 5.29

3-*p***-Tolylfluoranthene (8b)**

Prepared as a yellow solid with $GaCl_3$ (yield = 45%) or 6 (yield = 28%) as catalyst.

R_f (4:1 hexane–CH₂Cl₂): 0.61; mp = 147–148 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.90– 7.97 (m, 5H), 7.60 (t, J = 7.8 Hz, 2H), 7.50 (d, J = 7.6 Hz, 2H), 7.37–7.39 (m, 2H), 7.33 (d, J = 7.6 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 140.3 (C), 139.5 (C), 139.1 (C), 137.1 (C), 137.0 (C), 136.8 (C), 136.1 (C), 130.1 (CH), 129.1 (CH), 128.5 (CH), 127.9 (CH), 127.5 (CH), 127.4 (CH), 125.7 (CH), 121.4 (CH), 121.3 (CH), 120.0 (CH), 119.9 (CH), 21.2 (CH₃). HRMS: Calcd for C₂₃H₁₇ (M⁺+H) 293.1330, Found 293.1324

3-(4-Chlorophenyl)fluoranthene (8c)

Prepared as a yellow solid with $GaCl_3$ as catalyst (yield = 71%).

R_f (4.1 hexane:CH₂Cl₂): 0.54; mp = 188–189 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.92– 7.98 (m, 4H), 7.86 (d, J = 8.2 Hz, 1H), 7.62 (dd, J = 8.4, 6.8 Hz, 1H), 7.57 (d, J = 7.1 Hz, 1H), 7.48–7.52 (m, 4H), 7.39–7.41 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 139.5 (C), 139.0 (C), 138.9 (C), 138.2 (C), 137.2 (C), 136.7 (C), 133.6 (C), 132.7 (C), 131.5 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.2 (C), 127.7 (CH), 127.6 (CH), 125.2 (CH), 121.5 (CH), 121.4 (CH), 120.1 (CH), 119.9 (CH). HRMS: Calcd for C₂₂H₁₃³⁵Cl (M⁺) 312.0700, Found 312.0715.

4-(Fluoranthen-3-yl)benzonitrile (8d)

Prepared as a solid with $GaCl_3$ as catalyst (yield = 88%).

¹H NMR (CDCl₃, 400 MHz) d 8.00 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 6.9 Hz, 1H), 7.92– 7.95 (m, 2H), 7.80–7.83 (m, 3H), 7.71–7.74 (m, 2H), 7.65 (dd, J = 8.4, 6.9 Hz, 1H), 7.60 (d, J = 7.1 Hz, 1H), 7.41–7.43 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) d 144.8, 139.8, 139.0, 138.1, 137.8, 137.6, 132.9, 132.4, 131.1, 129.1, 128.9, 128.1, 128.0, 124.9, 121.9, 121.8, 120.6, 120.0, 119.1, 111.4 (CH).

3-(4-Nitrophenyl)fluoranthene (8e)

Prepared as a solid with $GaCl_3$ as catalyst (yield = 92%).

¹H NMR (CDCl₃, 400 MHz) δ 8.40 (dd, J = 8.6, 1.8 Hz, 2H), 8.00 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 6.9 Hz, 1H), 7.91–7.96 (m, 2H), 7.83 (d, J = 8.5 Hz, 1H), 7.78 (dd, J = 8.6, 1.8 Hz, 2H), 7.66 (dd, J = 8.6, 7.9 Hz, 1H), 7.63 (d, J = 7.1 Hz, 1H), 7.40–7.45 (m, 2H).

3-(2-Methoxyphenyl)fluoranthene (8f)

Prepared as a pale yellow solid with GaCl₃ (yield = 57%) or **6** (yield = 17%) as catalyst. R_f (2:1 hexane–CH₂Cl₂): 0.30; mp = 162–163 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (d, J = 7.1 Hz, 1H), 7.88–7.91 (m, 3H), 7.51–7.62 (m, 3H), 7.42 (dt, J = 7.7, 1.7 Hz, 1H), 7.35–7.37 (m, 3H), 7.09 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 8.3 Hz, 1H), 3.71 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 139.7 (C), 139.4 (C), 137.1 (C), 137.0 (C), 136.4 (C), 132.5 (C), 132.4 (CH), 129.4 (CH), 129.3 (C), 129.2 (CH), 128.6 (C), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.1 (CH), 121.5 (CH), 121.4 (CH), 120.6 (CH), 119.9 (CH), 119.8 (CH), 111.2 (CH). HRMS: Calcd for $C_{23}H_{17}O$ (M⁺+H) 309.1279, Found 309.1269.

3-(2-Bromophenyl)fluoranthene (8g) [5]

Prepared as a pale yellow oil with $GaCl_3$ as catalyst (yield = 44%).

R_f (4:1 hexane–CH₂Cl₂): 0.32. ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (d, J = 7.1 Hz, 1H), 7.89–7.93 (m, 3H), 7.75 (d, J = 8.0 Hz, 1H), 7.48–7.58 (m, 3H), 7.37–7.43 (m, 4H), 7.29–7.33 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 140.3 (C), 139.7 (C), 139.2 (C), 139.0 (C), 137.1 (C), 136.9 (C), 132.8 (CH), 132.4 (C), 132.3 (CH), 129.2 (CH), 129.0 (CH), 128.7 (C), 128.1 (CH), 127.6 (CH), 127.0 (CH), 125.5 (CH), 124.1 (C), 121.5 (CH), 120.1 (CH), 119.6 (CH). HRMS: Calcd for C₂₂H₁₄⁷⁹Br (M⁺+H) 357.0279, Found 357.0271

3-(Pentafluorophenyl)fluoranthene (8h)

Prepared as a pale yellow solid with $GaCl_3$ as catalyst (yield = 74%).

R_f (4:1 hexane–CH₂Cl₂): 0.57; ¹H NMR (CDCl₃, 400 MHz) δ 8.00 (d, J = 7.2 Hz, 1H), 7.95 (d, J = 6.8 Hz, 1H), 7.90–7.93 (m, 2H), 7.58–7.65 (m, 2H), 7.48 (dt, J = 8.4, 1.6 Hz, 1H), 7.38–7.43 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 139.8 (C), 139.1 (C), 139.0 (C), 137.7 (C), 132.8 (C), 131.1 (CH), 129.2 (CH), 128.8 (C), 128.5 (CH), 128.1 (CH), 124.4 (CH), 123.4 (C), 122.1 (CH), 121.9 (CH), 120.8 (CH), 119.7 (CH). HRMS: Calcd for C₂₂H₉F₅ (M⁺) 368.0619, Found 368.0645.

3-Bromofluoranthene (8i)

Prepared as a pale yellow solid with $GaCl_3$ (yield = 21%) or 6 (yield = 44%) as catalyst.

R_f (3:1 hexane–CH₂Cl₂): 0.67; mp = 111–112 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 6.9 Hz, 1H), 7.78–7.83 (m, 2H), 7.76 (d, J = 7.4 Hz, 1H), 7.61–7.66 (m, 2H), 7.31–7.38 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 139.0 (C), 138.7 (C), 137.2 (C), 136.7 (C), 133.5 (C), 131.1 (CH), 129.8 (C), 129.1 (CH), 127.9 (CH), 125.9 (CH), 121.8 (C), 121.6 (CH), 121.5 (CH), 120.7 (CH), 120.6 (CH). HRMS: Calcd for C₁₆H₉⁷⁹Br (M⁺) 279.9882, Found 279.9894.

3-(3,4-Dimethoxyphenyl)-1,10b-dihydrofluoranthene (9)

¹H NMR (CDCl₃, 400 MHz) δ 7.81 (d, *J* = 7.5, 1H), 7.65 (d, *J* = 7.2, 1H), 7.58 (d, *J* = 7.7, 1H), 7.41 (t app, *J* = 7.2 Hz, 1H), 7.07–7.09 (m, 3H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.22 (dd, *J* = 6.5, 2.4 Hz, 1H), 4.05 (q, *J* = 7.6 Hz, xH), 3.94 (s, 3H), 3.90 (s, 3H), 3.07 (td, *J* = 15.9, 7.0 Hz, 1H), 2.12 (td, *J* = 15.9, 2.5 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 148.8, 148.6, 147.0, 144.6, 142.4, 139.8, 138.7, 132.8, 132.0, 127.8, 127.2, 126.6, 124.4, 122.2, 120.7, 120.5, 119.1, 119.0, 111.4, 111.1, 56.0, 42.4, 26.8. HRMS: Calcd for C₂₄H₂₁O₂ (M⁺+H) 341.1542, Found 341.1556.

General procedure for the synthesis of trialkylated truxenes: *n*BuLi 2.5M in hexanes (3.5 equiv) was added dropwise over a solution of the truxene (1 equiv) in anhydrous THF at -80 °C and the mixture was allowed to warm up to -10 °C for 4 hours. Then, a solution of the alkynylbromide (4.0 equiv) in anhydrous THF was added dropwise and the mixture was allowed to warm to room temperature overnight. Saturated NaCl solution (x mL) was added and the organic layer was extracted with ethyl acetate. The combined organic fractions were dried over anhydrous Na₂SO₄ and

filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (SiO₂, eluent = hexane:CH₂Cl₂).

4,9,14-Trimethoxy-5,10,15-tris(3-phenylprop-2-ynyl)-10,15-dihydro-5*H*-diindeno[1,2-*a*:1',2'-*c*]fluorene (1a).

White solid (yield = 57%).

R_f (1:1 hexane:CH₂Cl₂): 0.35; mp =130–131 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.82– 7.85 (m, 3H), 7.55–7.59 (m, 3H), 7.35–7.43 (m, 6H), 7.21–7.23 (m, 2H), 7.10–7.15 (m, 3H), 7.00 (d, J = 8.2 Hz, 3H), 5.29–5.35 (m, 2H), 5.22–5.25 (m, 1H), 4.20 (s, 6H), 4.17 (s, 3H), 3.39–3.51 (m, 3H), 2.23–2.30 (m, 1H), 2.08–2.17 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 154.2 (C), 154.2 (C), 154.1 (C), 151.2 (C), 151.0 (C), 150.4 (C), 141.2 (C), 139.8 (C), 139.8 (C), 136.5 (C), 136.1 (C), 136.0 (C), 133.5 (CH), 133.4 (CH), 132.4 (CH), 132.3 (CH), 128.7 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.0 (C), 127.6 (C), 127.5 (C), 126.9 (CH), 126.9 (CH), 126.8 (CH), 126.2 (C), 126.1 (C), 125.2 (C), 125.1 (C), 117.8 (CH), 117.7 (CH), 117.5 (CH), 109.6 (CH), 95.2 (C), 95.2 (C), 95.1 (C), 80.4 (C), 80.3 (C), 80.2 (C), 55.5 (CH₃), 55.4 (CH₃), 49.3 (CH), 48.8 (CH), 48.7 (CH), 27.6, (CH₂), 27.4 (CH₂), 26.3 (CH₂). Elemental analysis calcd (%) for C₅₇H₄₂O₃·H₂O: C 86.34, H 5.59; found: C 86.60, H 5.72.

5,10,15-Tris(3-(2-bromophenyl)prop-2-ynyl)-4,9,14-trimethoxy-10,15-dihydro-5H-

diindeno[1,2-a:1',2'-c]fluorene (1b).

White solid (yield = 54%).

R_f (1:1 hexane:CH₂Cl₂): 0.35; mp = 144–145 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.82– 7.85 (m, 3H), 7.55–7.59 (m, 3H), 7.35–7.43 (m, 6H), 7.21–7.23 (m, 2H), 7.10–7.15 (m, 3H), 7.00 (d, J = 8.2 Hz, 3H), 5.29–5.35 (m, 2H), 5.22–5.25 (m, 1H), 4.20 (s, 6H), 4.17 (s, 3H), 3.39–3.51 (m, 3H), 2.23–2.30 (m, 1H), 2.08–2.17 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, DEPT) δ 154.3 (C), 153.2 (C), 153.1 (C), 151.2 (C), 151.0 (C), 150.4 (C), 141.2 (C), 139.8 (C), 139.7 (C), 136.5 (C), 136.1 (C), 136.0 (C), 133.5 (CH), 133.4 (CH), 132.3 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.0 (C), 127.6 (C), 127.5 (C), 126.9 (CH), 126.2 (C), 126.1 (C), 125.2 (C), 125.1 (C), 117.8 (CH), 117.7 (CH), 117.5 (CH), 109.5 (CH), 95.2 (C), 95.1 (C), 95.0 (C), 80.4 (C), 80.3 (C), 80.2 (C), 55.5 (CH₃), 55.4 (CH₃), 49.3 (CH), 48.8 (CH), 48.7 (CH), 27.6 (CH₂), 27.4 (CH₂), 26.3 (CH₂). Elemental analysis calcd (%) for C₅₇H₃₉Br₃O₃: C 67.67, H 3.89; found: C 67.30, H 4.00. 1,7,13-Trimethoxy-4,10,16-triphenyldiacenaphtho[1,2-*j*:1',2'-*l*]fluoranthene (2a).

Yellow solid (yield = 72%).

mp = > 300 °C. ¹H NMR (CDCl₂CDCl₂, 500 MHz, 403 K) δ 8.24 (d, *J* = 7.4 Hz, 3H), 8.01 (d, *J* = 9.0 Hz, 3H), 7.66 (d, *J* = 7.0 Hz, 6H), 7.60 (d, *J* = 7.4 Hz, 3H), 7.51 (t, *J* = 7.4 Hz, 6H), 7.43 (d, *J* = 9.0 Hz, 6H), 4.04 (s, 9H). MS (MALDI): 768.5 (M⁺).

4,10,16-Tris(2-bromophenyl)-1,7,13-trimethoxydiacenaphtho[1,2-*j*:1',2'-*l*]fluoranthene (2b).

Yellow solid (yield = 77%).

mp = > 300 °C. ¹H NMR (CDCl₂CDCl₂, 500 MHz, 403 K) δ 8.27 (d, *J* = 7.4 Hz, 3H), 7.78 (d, *J* = 8.0 Hz, 3H), 7.62 (d, *J* = 8.9 Hz, 3H), 7.53 (t, *J* = 7.2 Hz, 6H), 7.44 (t, *J* = 7.3 Hz, 3H), 7.39 (d, *J* = 8.9 Hz, 3H), 7.31 (t, *J* = 7.4 Hz, 3H), 4.04 (s, 9H). MS (MALDI): 1004.1, 1006.1 (M⁺).

ppm 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

1b

2a

2b

QMe

S-74

References

- 1. Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado,
- C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44, 6146–6148.
- 2. Amijs, C. H. M.; López-Carrillo, V.; Raducan, M.; Pérez-Galán, P.; Ferrer, C.; Echavarren, A. M. *J. Org. Chem.* **2008**, *73*, 7721–7730.
- 3. Li, H. J.; Guillot, R.; Gandon, V. J. Org. Chem. 2010, 75, 8435-8449.
- 4. Berlman, I. B.; Wirth, H. O.; Steingraber, O. J. J. Am. Chem. Soc. **1968**, 90, 566–569.
- Ikeda, H.; Ido, M.; Funahashi, M. PCT Int. Appl. 2004, WO 2004018587. CAN 140:243295.