Supporting Information

for

Novel fatty acid methyl esters from the actinomycete

Micromonospora aurantiaca

Jeroen S. Dickschat*, Hilke Bruns and Ramona Riclea

Address: Institut für Organische Chemie, Technische Universität Braunschweig,

Hagenring 30, 38106 Braunschweig, Germany

Email: Jeroen S. Dickschat - j.dickschat@tu-braunschweig.de

* Corresponding author

Experimental details and analytical data

Compound ^a	ľ	Ident. ^c	1. ^d	2. ^d
3-Hydroxybutan-2-one (44)		ms, syn	XX	Х
3-Methylbutan-1-ol (47)		ms, syn	xxx	хх
2-Methylbutan-1-ol (48)		ms, syn	xx	хх
Methyl 2-methylbutyrate (3)		ms, syn	х	х
3-Hydroxypentan-2-one (45)	803	ms, syn	х	х
2-Hydroxypentan-3-one (46)	809	ms, syn	х	х
2-Methylpropanoic acid (49)	813	ms	xxx	XXX
Methylpyrazine (64)	822	ms, syn	х	х
Butyric acid (57)	840	ms	х	х
2,2-Dimethylpropanoic acid (52)	841	ms	х	х
3-Methylbutyric acid (50)	870	ms	xxx	xxx
2,5-Dimethylpyrazine (65)	912	ms, syn	xx	хх
2-Methylbutyric acid (51)	922	ms	xxx	XXX
Pentanoic acid (58)	925	ms	х	х
3-Methylbut-2-enoic acid (53)	927	ms	х	х
2-Methylbut-2-enoic acid (54)	939	ms	х	х
Methyl furan-2-carboxylate (75)	976	ms, syn	х	х
Hexanoic acid (59)	993	ms	х	х
Trimethylpyrazine (66)	1003	ms, syn	х	х
2-Acetyl-5-methylfuran (76)	1036	ms, syn	х	х
5-Methylhexanoic acid (55)	1055	ms	х	х
2-Acetylpyrrole (69)	1060	ms, syn	х	х
Methyl 2-methylheptanoate (13)	1062	ms, inc	х	х
4-Methylhexanoic acid (56)	1064	ms	х	х
2-Ethyl-3,6-dimethylpyrazine (67)	1078	ms, syn	х	х
Heptanoic acid (60)	1081	ms	x	х
2-Ethyl-3,5-dimethylpyrazine (68)	1085	ms, syn	x	х
Linalool (80)	1098	ms, syn	x	х
2-Phenylethanol (70)	1112	ms, syn	xx	ХХ
Phenylacetone (71)	1127	ms, syn	х	х
Methyl phenylacetate (73)	1177	ms, syn	х	х
Octanoic acid (61)	1179	ms	х	х

 Table S1: Compounds identified in the headspace extract of *M. aurantiaca*.

Methyl salicylate (74)	1192	ms, syn	х	х
Decanal (77)	1203	ms, syn	х	х
Methyl nonanoate (86)	1223	ms, syn	х	х
1-Phenylbutan-2-one (72)	1224	ms, syn	х	х
Methyl 2-methylnonanoate (14)	1259	ms, inc	Х	х
Nonanoic acid (62)	1269	ms	х	х
Methyl 8-methylnonanoate (98)	1286	ms, inc	х	х
Methyl decanoate (82)	1322	ms, syn	х	х
7-Methyloctan-4-olide (78)	1323	ms, syn	х	х
Methyl 4,8-dimethylnonanoate (106)	1336	ms, inc	х	х
Methyl 2-methyldecanoate (10)	1357	ms, inc, syn	х	х
Nonan-4-olide (79)	1361	ms, syn	х	х
Decanoic acid (63)	1364	ms	х	х
Methyl 4-methyldecanoate (89)	1375	ms, inc	х	х
Methyl 9-methyldecanoate (8)	1385	ms, inc, syn	х	х
Methyl 8-methyldecanoate (95)	1392	ms, inc, syn	х	х
6,10-Dimethylundecan-2-one	1402	ms, syn	х	х
Methyl 2,9-dimethyldecanoate (24)	1419	ms, inc, syn	х	х
Methyl undecanoate (87)	1421	ms, syn	х	х
Methyl 4,9-dimethyldecanoate (109)	1437	ms, inc	х	х
Methyl 4,8-dimethyldecanoate (112)	1441	ms, syn	Х	х
6,10-Dimethylundeca-5,9-dien-2-one (81)	1450	ms, syn	х	Х
Methyl 2-methylundecanoate (15)	1456	ms, inc	Х	х
Methyl 4-methylundecanoate (92)	1473	ms, inc	х	х
Methyl 10-methylundecanoate (99)	1484	ms, inc	Х	х
Methyl 2,10-dimethylundecanoate (104)	1517	ms, inc	х	Х
Methyl dodecanoate (83)	1520	ms, syn	х	х
Methyl 4,8-dimethylundecanoate (114)	1525	ms, syn	х	х
Methyl 4,10-dimethylundecanoate (107)	1534	ms, inc	х	х
Methyl 2-methyldodecanoate (11)	1555	ms, inc	х	х
Methyl 4-methyldodecanoate (90)	1572	ms, inc	х	х
Methyl 11-methyldodecanoate (102)	1584	ms, inc	х	х
Methyl 10-methyldodecanoate (96)	1591	ms, inc	х	х
Methyl 2,11-dimethyldodecanoate (25)	1617	ms, inc	х	х

Methyl tridecanoate (88)1620ms, synxMethyl 4,11-dimethyldodecanoate (110)1633ms, synxMethyl 4,10-dimethyldodecanoate (113)1641ms, incxMethyl 2-methyltridecanoate (16)1653ms, incxMethyl 3,7,11-trimethyldodecanoate1660ms, incxMethyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, sincxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 4,12-dimethyltridecanoate (12)1753ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (111)1833ms, incxMethyl 12-methyltetradecanoate (111)1833ms, incxMethyl 12-methyltetradecanoate (103)1780ms, incxMethyl 12-methyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (111)1883ms, incxMethyl 4-methylpentadecanoate (12)1869ms, incxMethyl 4-methylpentadecanoate (111)1883ms, incxMethyl 4-methylpentadecanoate (111)1883ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxM	Methyl 4,8-dimethyldodecanoate (115)	1618	ms	х	Х
Methyl 4,11-dimethyldodecanoate (110)1633ms, synxMethyl 4,10-dimethyldodecanoate (113)1641ms, incxMethyl 2-methyltridecanoate (16)1653ms, incxMethyl 3,7,11-trimethyldodecanoate1660ms, incxMethyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 4-methyltetradecanoate (103)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 4,13-dimethyltetradecanoate (17)1869ms, incxMethyl 4-methylpentadecanoate (17)1883ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incx	Methyl tridecanoate (88)	1620	ms, syn	Х	х
Methyl 4,10-dimethyldodecanoate (113)1641ms, incxMethyl 2-methyltridecanoate (16)1653ms, incxMethyl 3,7,11-trimethyldodecanoate1660ms, incxMethyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 4,12-dimethyltridecanoate (12)1753ms, incxMethyl 13-methyltetradecanoate (91)1770ms, incxMethyl 12-methyltetradecanoate (103)1783ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (17)1869ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incx	Methyl 4,11-dimethyldodecanoate (110)	1633	ms, syn	Х	х
Methyl 2-methyltridecanoate (16)1653ms, incxMethyl 3,7,11-trimethyldodecanoate1660ms, incxMethyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl 4.12-dimethyltridecanoate (108)1733ms, incxMethyl 4,12-dimethyltridecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (94)1869ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 4-methylpentadecanoate (17)1852ms, incx	Methyl 4,10-dimethyldodecanoate (113)	1641	ms, inc	х	х
Methyl 3,7,11-trimethyldodecanoate1660ms, incxMethyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl 4,12-dimethyltridecanoate (108)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 4,12-dimethyltridecanoate (12)1753ms, incxMethyl 13-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (17)1869ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incx	Methyl 2-methyltridecanoate (16)	1653	ms, inc	Х	х
Methyl 4-methyltridecanoate (93)1670ms, incxMethyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl tetradecanoate (84)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 13-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (111)1852ms, incxMethyl 4,14-methylpentadecanoate (111)1869ms, incxMethyl 4-methylpentadecanoate (12)1780ms, incxMethyl 4,13-dimethyltetradecanoate (111)1852ms, incxMethyl 4,13-dimethyltetradecanoate (111)1852ms, incxMethyl 4-methylpentadecanoate (111)1869ms, incxMethyl 4-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incx	Methyl 3,7,11-trimethyldodecanoate	1660	ms, inc	х	х
Methyl 12-methyltridecanoate (100)1683ms, incxMethyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl tetradecanoate (84)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (17)1869ms, incxMethyl 4-methylpentadecanoate (104)1869ms, incxMethyl 14-methylpentadecanoate (105)1918ms, synx	Methyl 4-methyltridecanoate (93)	1670	ms, inc	х	х
Methyl 8-ethyl-4-methyldodecanoate (116)1713msxMethyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl tetradecanoate (84)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 13-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 2,13-dimethyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2,-methylpentadecanoate (17)1852ms, incxMethyl 4,13-dimethyltetradecanoate (17)1852ms, incxMethyl 14-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (105)1918ms, synx	Methyl 12-methyltridecanoate (100)	1683	ms, inc	х	х
Methyl 2,12-dimethyltridecanoate (105)1716ms, incxMethyl tetradecanoate (84)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (105)1918ms, synx	Methyl 8-ethyl-4-methyldodecanoate (116)	1713	ms	х	х
Methyl tetradecanoate (84)1720ms, synxMethyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 2,12-dimethyltridecanoate (105)	1716	ms, inc	х	х
Methyl 4,12-dimethyltridecanoate (108)1733ms, incxMethyl 2-methyltetradecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (161)1813ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl tetradecanoate (84)	1720	ms, syn	х	х
Methyl 2-methyltetradecanoate (12)1753ms, incxMethyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (85)1918ms, synx	Methyl 4,12-dimethyltridecanoate (108)	1733	ms, inc	х	х
Methyl 4-methyltetradecanoate (91)1770ms, incxMethyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (85)1918ms, synx	Methyl 2-methyltetradecanoate (12)	1753	ms, inc	х	х
Methyl 13-methyltetradecanoate (103)1783ms, incxMethyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (85)1918ms, synx	Methyl 4-methyltetradecanoate (91)	1770	ms, inc	х	х
Methyl 12-methyltetradecanoate (97)1790ms, incxMethyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl 14-methylpentadecanoate (85)1918ms, synx	Methyl 13-methyltetradecanoate (103)	1783	ms, inc	х	х
Methyl 2,13-dimethyltetradecanoate (26)1816ms, incxMethyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 12-methyltetradecanoate (97)	1790	ms, inc	х	х
Methyl 4,13-dimethyltetradecanoate (111)1833ms, incxMethyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 2,13-dimethyltetradecanoate (26)	1816	ms, inc	х	х
Methyl 2-methylpentadecanoate (17)1852ms, incxMethyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 4,13-dimethyltetradecanoate (111)	1833	ms, inc	х	х
Methyl 4-methylpentadecanoate (94)1869ms, incxMethyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 2-methylpentadecanoate (17)	1852	ms, inc	х	х
Methyl 14-methylpentadecanoate (101)1883ms, incxMethyl hexadecanoate (85)1918ms, synx	Methyl 4-methylpentadecanoate (94)	1869	ms, inc	х	х
Methyl hexadecanoate (85) 1918 ms, syn x	Methyl 14-methylpentadecanoate (101)	1883	ms, inc	х	х
	Methyl hexadecanoate (85)	1918	ms, syn	х	х

^aUnidentified compounds, compounds originating from the medium, and artifacts are not listed. ^bRetention indices *I* were determined from a homologous series of alkanes (C8–C36). ^cCompound identification was based on the mass spectrum (ms), comparison of the retention index to tabulated data from the literature (ri), comparison to a synthetic reference compound (syn), or an increment system for retention indices (inc). ^dResults from two different headspace extracts. Relative amounts of the volatile components are indicated by x: 0–2%, xx: 2–8%, xxx: > 8% of total area in the gas chromatogram.

Compound	ſª	<i>N</i> (<i>n</i>) ^b	n ^c	FG(n) _{FAME, HP-5 MS} d
Methyl hexanoate	924	600	6	324
Methyl heptanoate	1023	700	7	323
Methyl octanoate	1123	800	8	323
Methyl nonanoate (86)	1223	900	9	323
Methyl decanoate (82)	1322	1000	10	322
Methyl undecanoate (87)	1421	1100	11	321
Methyl dodecanoate (83)	1520	1200	12	320
Methyl tridecanoate (88)	1620	1300	13	320
Methyl tetradecanoate (84)	1720	1400	14	320
Methyl pentadecanoate	1819	1500	15	319
Methyl hexadecanoate (85)	1918	1600	16	318
Methyl octadecanoate	2118	1800	18	318

Table S2: Determination of $FG(n)_{FAME, HP-5 MS}$ from a homologous series of unbranched FAMEs.

^aMeasured retention index *I* on a HP-5 MS column. ^bIncrement for the longest alkyl chain with *n* carbons, N(n) = 100 n. ^cNumber of carbons n in the longest alkyl chain. ^dIncrement for the functional group of a FAME on a HP-5 MS column,

FG(n)FAME, HP-5 MS.

Compound	ľ	n ^b	$I_{\text{calc.}}(n)^{c}$	$I_{\text{calc.}}(n)^{d}$
Methyl 2-methylheptanoate (13)	1062	7	1058	1061
Methyl 2-methylnonanoate (14)	1259	9	1257	1259
Methyl 2-methyldecanoate (10)	1357	10	1357	1357
Methyl 2-methylundecanoate (15)	1456	11	1456	1456
Methyl 2-methyldodecanoate (11)	1555	12	1556	1555
Methyl 2-methyltridecanoate (16)	1653	13	1655	1654
Methyl 2-methyltetradecanoate (12)	1753	14	1754	1752
Methyl 2-methylpentadecanoate (17)	1852	15	1854	1851

Table S3: Calculated retention indices $I_{calc.}(n)$ for α -methyl branched FAMEs.

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3, $Me_{\alpha} = 35$. ^dCalculated retention indices after Equation 3 and Equation 4.

Table 34. Calculated retention indices $I_{Calc}(n)$ for γ -methy branched rate	Table S4: Calculated	retention indices	$I_{calc}(n)$ for	γ -methyl branc	hed FAMEs.
---	----------------------	-------------------	-------------------	------------------------	------------

Compound	ľ	n ^b	$I_{\text{calc.}}(n)^{c}$	$I_{\text{calc.}}(n)^{d}$
Methyl 4-methyldecanoate (89)	1375	10	1373	1374
Methyl 4-methylundecanoate (92)	1473	11	1472	1473
Methyl 4-methyldodecanoate (90)	1572	12	1572	1572
Methyl 4-methyltridecanoate (93)	1670	13	1671	1671
Methyl 4-methyltetradecanoate (91)	1770	14	1770	1770
Methyl 4-methylpentadecanoate (94)	1869	15	1870	1869

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3, $Me_{\gamma} = 51$. ^dCalculated retention indices after Equation 3 and Equation 5.

Compound	ſª	n ^b	$I_{\rm calc.}(n)^{\rm c}$
Methyl 5-methylheptanoate (118b) ^[d]	1093	7	1093
Methyl 6-methyloctanoate (121c) ^[d]	1193	8	1193
Methyl 8-methyldecanoate (95)	1392	10	1392
Methyl 10-methyldodecanoate (96)	1591	12	1591
Methyl 12-methyltetradecanoate (97)	1790	14	1889

Table S5: Calculated retention indices $I_{calc.}(n)$ for $(\omega-2)$ -methyl branched FAMEs.

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3, $Me_{\omega-2} = 70$. ^dNot produced by *M. aurantiaca*, intermediates in the syntheses of **95** and **112**.

Table S6: Calculated retention indices	s $I_{calc.}(n)$ for $(\omega - 1)$ -methyl branched FAMEs.
--	---

Compound	ſª	n ^b	$I_{\rm calc.}(n)^{\rm c}$
Methyl 6-methylheptanoate (118a) ^[d]	1086	7	1086
Methyl 8-methylnonanoate (98)	1286	9	1285
Methyl 9-methyldecanoate (8)	1385	10	1385
Methyl 10-methylundecanoate (99)	1484	11	1484
Methyl 11-methyldodecanoate (102)	1584	12	1584
Methyl 12-methyltridecanoate (100)	1683	13	1683
Methyl 13-methyltetradecanoate (103)	1783	14	1782
Methyl 14-methylpentadecanoate (101)	1883	15	1882

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3, $Me_{\omega-1} = 63$. ^dNot produced by *M. aurantiaca*, intermediate in the synthesis of **8**.

Compound	p	n ^b	$I_{\text{calc.}}(n)^{c}$
Methyl 2,9-dimethyldecanoate (24)	1419	10	1420
Methyl 2,10-dimethylundecanoate (104)	1517	11	1519
Methyl 2,11-dimethyldodecanoate (25)	1617	12	1618
Methyl 2,12-dimethyltridecanoate (105)	1716	13	1716
Methyl 2,13-dimethyltetradecanoate (26)	1816	14	1815

Table S7: Calculated retention indices $I_{calc.}(n)$ for α - and $(\omega$ -1)-methyl branched FAMEs.

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3 and Equation 4, $Me_{\omega-1} = 63$.

Table S8: Calculated retention indices $I_{calc.}(n)$ for γ - and (ω -1)-methyl branched FAMEs.

Compound	ſª	n ^b	$I_{\text{calc.}}(n)^{c}$
Methyl 4,8-dimethylnonanoate (106)	1336	9	1338
Methyl 4,9-dimethyldecanoate (109)	1437	10	1437
Methyl 4,10-dimethylundecanoate (107)	1534	11	1536
Methyl 4,11-dimethyldodecanoate (110)	1633	12	1635
Methyl 4,12-dimethyltridecanoate (108)	1733	13	1734
Methyl 4,13-dimethyltetradecanoate (111)	1833	14	1833

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3 and Equation 5, $Me_{\omega-1} = 63$.

Table S9: Calculated retention indices $I_{calc.}(n)$ for γ - and (ω -2)-methyl branched FAMEs.

Compound	ľ	n ^b	$I_{\rm calc.}(n)^{\rm c}$
Methyl 4,8-dimethyldecanoate (112)	1441	10	1444
Methyl 4,10-dimethyldodecanoate (113)	1641	12	1642

^aMeasured retention index *I* on a HP-5 MS column. ^bNumber of carbons *n* in the longest alkyl chain. ^cCalculated retention indices after Equation 3 and Equation 5, $Me_{\omega-2} = 70$.

Figure S1: GC analysis of a mixture of unbranched FAMEs for the determination of the functional group increment $FG(n)_{FAME, HP-5 MS}$ (Table 2 and Figure 6 of main text). Numbers above the peaks indicate the lengths of the fatty acyl chains.

Figure S2: Mass spectra of **3** (A), of $[{}^{2}H_{9}]$ -**3** after feeding of $[{}^{2}H_{10}]$ isoleucine (B), of **51** (C), of $[{}^{2}H_{9}]$ -**51** after feeding of $[{}^{2}H_{10}]$ isoleucine, of **97** (E), and of $[{}^{2}H_{9}]$ -**97** after feeding of $[{}^{2}H_{10}]$ isoleucine. Asterisks indicate completely deuterated carbons.

Figure S3: Mass spectra of 9-methyldecanoic acid (A), of $[{}^{2}H_{9}]$ -9-methyldecanoic acid after feeding of $[{}^{2}H_{10}]$ leucine (B), of **102** (C), of $[{}^{2}H_{9}]$ -**102** after feeding of $[{}^{2}H_{10}]$ leucine (D), of **103** (E), and of $[{}^{2}H_{9}]$ -**103** after feeding of $[{}^{2}H_{10}]$ leucine (F).

Figure S4: Mass spectra of **49** (A), of $[^{2}H_{7}]$ -**49** after feeding of $[^{2}H_{8}]$ valine (B), of **100** (C), of $[^{2}H_{7}]$ -**100** after feeding of $[^{2}H_{8}]$ valine (D), of **101** (E), and of $[^{2}H_{7}]$ -**101** after feeding of $[^{2}H_{8}]$ valine (F).

Figure S5: Mass spectra of **25** (A), of $[{}^{2}H_{3}]$ -**25** after feeding of $[{}^{2}H_{5}]$ sodium propionate (B), of **26** (C), of $[{}^{2}H_{3}]$ -**26** after feeding of $[{}^{2}H_{5}]$ sodium propionate (D), of **119** (E), and of $[{}^{2}H_{3}]$ -**119** after feeding of $[{}^{2}H_{5}]$ sodium propionate (F).

Figure S6: Mass spectra of **103** (A), and of $[{}^{2}H_{3}]$ -**103** after feeding of [*methyl*- ${}^{2}H_{3}$]methionine (B).

Strains, growth conditions, and feeding experiments: *Micromonospora aurantiaca* ATCC 27029 was cultivated at 28°C in GYM 65 liquid medium (glucose: 4 g L⁻¹, yeast extract: 4 g L⁻¹, malt extract: 10 g L⁻¹, agar: 12 g L⁻¹, pH = 7.2) for 3 – 4 days. The GYM medium for the agar plates was additionally supplemented with calcium carbonate (2 g L⁻¹). The agar plates were inoculated with 1000 μ L of the preculture, and spiked for feeding experiments with 2 mM of the respective deuterated precursor ([²H₁₀]-L-isoleucine, [²H₁₀]-D,L-leucine, [²H₈]-L-valine, [*methyl*-²H₃]-L-methionine, or [²H₅]sodium propionate), incubated for 2 – 3 days at 37°C, and then analysed by closed-loop stripping analysis (CLSA) at 37°C.

Collection of volatiles [1]: The volatiles emitted by the agar plate cultures were collected by use of a closed-loop stripping apparatus (CLSA). Therefore, a circulating air flow was directed through a charcoal filter (Chromtech GmbH, Idstein, Precision Charcoal Filter, 5 mg) in a closed apparatus containing the agar plate, for 24 h. The charcoal filter was extracted with 20 μ L of analytically pure dichloromethane and the obtained solutions were immediately analysed by GC-MS.

GC-MS: GC-MS analyses were carried out on a HP7890A GC system connected to a HP5975C mass selective detector fitted with a HP-5 fused silica capillary column (30 m, 0.22 mm i. d., 0.25 μ m film, Hewlett-Packard, Wilmington, USA). Conditions were as follows: inlet pressure: 67 kPa, He 23.3 mL min⁻¹; injection volume 1 μ L; injector 250°C; transfer line 300°C; electron energy 70 eV. The GC was programmed as follows: 50°C (5 min isothermic), increasing at 5°C min⁻¹ to 320°C. Retention indices were determined from a homologous series of n-alkanes (C8–C32). The identification of compounds was performed by comparison of mass spectra to database spectra. Chiral GC analyses were performed by using a hydrodex-6-TBDMS fused silica capillary column (50 m, 0.25 mm i.d., 0.25 μ m film, Macherey-Nagel).

General synthetic methods: Chemicals were purchased from Acros Organics (Geel, Belgium) or Sigma Aldrich Chemie GmbH (Steinheim, Germany) and used without further purification. Solvents were purified by distillation and dried according to standard methods. For all general procedures, the relative amounts of the reagents are given as equivalents (eq.) referring to the molar ratios of the compounds, and the relative amounts of the solvents are given as the final

concentrations of the transformed starting material (set to 1.0 eq.). Thin-layer chromatography was performed with 0.2 mm precoated plastic sheets Polygram® Sil G/UV254 (Machery- Nagel). Column chromatography was carried out using Merck silica gel 60 (70–200 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AMX400 spectrometer and IR spectra were recorded with a Bruker Tensor 27 ATR. GC-MS analyses were carried out with an Agilent 7890A connected to an Agilent 5975C inert mass detector fitted with a HP-5 MS or BPX-5 fused silica capillary column (25 m, 0.25 mm i. d., 0.25 µm film). Instrumental parameters were (1) inlet pressure: 77.1 kPa, He 23.3 mL min⁻¹; (2) injection volume: 2 µL; (3) transfer line: 300 °C; and (4) electron energy: 70 eV. The GC was programmed as follows: 5 min at 50 °C increasing at 5 °C min⁻¹ to 320 °C, and operated in splitless mode. The carrier gas was He at 1 mL min⁻¹. Retention indices *I* were determined from a homologous series of *n*-alkanes (C8–C38).

General procedure for the preparation of methyl esters via 1,4-addition to methyl acrylate [2]: To a solution of alkylmagnesium bromide, prepared from the alkyl bromide (1 M in THF, 1 eq.) and magnesium (1 eq.), DMAP (2 eq.) and CuBr \cdot SMe₂ (1 eq.) were added. The mixture was cooled to -78°C and a mixture of methyl acrylate (1 M in THF, 1 eq.) and TMSCI (2 M in THF, 2 eq.) was added dropwise over 30 min. After the mixture had been stirred for 3 h at -78°C, diethyl ether and HCI (2 N) were added. The aqueous phase was separated and extracted three times with diethyl ether. The combined organic layers were dried with MgSO₄. The pure 1,4-adduct was obtained as a colourless liquid after solvent evaporation and column chromatography.

Methyl 9-methyldecanoate (8): Yield: 5.3 g (26.5 mmol, 73%); TLC (hexane/ethyl acetate = 10:1): $R_f = 0.52$; GC (HP-5 MS): I = 1385; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.66$ (s, 3H, CH₃), 2.30 (t, 2H, ³ $J_{H,H} = 7.6$ Hz, CH₂), 1.62 (quint, 2H, ³ $J_{H,H} = 7.4$ Hz, CH₂), 1.51 (non, 1H, ³ $J_{H,H} = 6.6$ Hz, CH), 1.30-1.25 (m, 8H, 4 x CH₂), 1.17-1.12 (m, 2H, CH₂), 0.86 (d, 6H, ³ $J_{H,H} = 6.6$ Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.9$ (C=O), 51.0 (CH₃), 38.6 (CH₂), 33.7 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 27.6 (CH), 27.0 (CH₂), 24.6 (CH₂), 22.2 (2 x CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 200 (3) [M]⁺, 185 (1), 169 (6), 157 (19), 143 (16), 129 (7), 101 (13), 87 (70), 74 (100), 69 (18), 59 (20), 55 (41); IR (ATR): $1/\lambda = 2952$ (m), 2926 (s), 2885 (m), 1742 (s),

1465 (m), 1437 (m) 1366 (m), 1248 (m), 1198 (m), 1167 (s), 1115 (w), 1012 (w), 724 (w) cm⁻¹.

Methyl 8-methyldecanoate (95): Yield: 2.91 g (14.5 mmol, 52%); TLC (hexane/ethyl acetate = 20:1): R_f = 0.22; GC (HP-5 MS): I = 1392; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.66 (s, 3H, CH₃), 2.30 (t, 2H, ³J_{H,H} = 7.6 Hz, CH₂), 1.62 (quint, 2H, ³J_{H,H} = 7.5 Hz, CH₂), 1.37-1.23 (m, 9H, CH, 4 x CH₂), 1.17-1.04 (m, 2H, CH₂), 0.85 (t, 3H, ³J_{H,H} = 7.2 Hz, CH₃), 0.84 (d, 3H, ³J_{H,H} = 6.4 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 174.2 (C=O), 51.3 (CH₃), 36.5 (CH₂), 34.3 (CH), 34.1 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 26.8 (CH₂), 24.9 (CH₂), 19.1 (CH₃), 11.3 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 200 (2) [M]⁺, 171 (8), 143 (91), 139 (15), 115 (11), 97 (21), 87 (90), 74 (100), 69 (35), 59 (28) 57 (31), 55 (54), 43 (26), 41 (52); IR (ATR): 1/λ = 2956 (m), 2926 (m), 2856 (m), 1741 (s), 1461 (m), 1436 (m), 1376 (w), 1249 (m), 1197 (m), 1166 (m), 1113 (m), 1101 (w), 877 (w), 726 (w) cm⁻¹.

Methyl-4,8-dimethylundecanoate (114): Yield: 0.95 g (0.42 mmol, 16%); TLC (hexane/ethyl acetate = 20:1): $R_f = 0.23$; GC (HP-5 MS): I = 1525; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.67$ (s, 3H, CH₃), 2.38-2.24 (m, 2H, CH₂), 1.71-1.61 (m, 1H, CH), 1.49-1.36 (m, 3H, CH, CH₂), 1.33-1.19 (m, 8H, 4 x CH₂), 1.13-1.04 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{H,H} = 7.1$ Hz, CH₃), 0.87 (d, 3H, ³ $J_{H,H} = 6.2$ Hz, CH₃) 0.84 (d, 3H, ³ $J_{H,H} = 6.6$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 174.6$ (C=O), 51.4 (CH₃), 39.4 (CH₂), 37.3 (CH₂), 37.0 (CH₂), 32.46 (CH), 32.42 (CH), 31.96 (CH₂), 31.88 (CH₂), 24.3 (CH₂), 20.1 (CH₂), 19.7 (CH₃) 19.3 (CH₃), 14.4 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 228 (1) [M⁺], 213 (<1), 199 (3), 171 (13), 157 (16), 155 (14), 115 (8), 97 (9), 87 (100), 74 (39), 69 (19), 55 (31), 43 (30), 41 (20); HRMS Calcd. for C₁₄H₂₈O₂: 228.20893; found: 228.21124; IR (ATR): $1/\lambda = 2955$ (m), 2926 (s), 2870 (m), 1742 (s), 1460 (m), 1436 (m), 1378 (m), 1255 (w), 1194 (m), 1168 (s), 1117 (w), 1018 (w), 992 (w), 740 (w) cm⁻¹.

Methyl 6-methylheptanoate (118a): Yield: 8.4 g (53.1 mmol, 53%); TLC (hexane/ethyl acetate = 5:1): $R_{\rm f}$ = 0.36; GC (HP-5 MS): I = 1086; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.67 (s, 3H, CH₃), 2.31 (t, 2H, ³J_{H,H} = 7.5 Hz, CH₂), 1.61 (quint, 2H, ³J_{H,H} = 7.5 Hz, CH₂), 1.53 (non, 1H, ³J_{H,H} = 6.6 Hz, CH), 1.35-1.27 (m, 2H, CH₂), 1.21-1.15 (m, 2H, CH₂), 0.87 (d, 6H, ³J_{H,H} = 6.6 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃,

100 MHz): $\delta = 174.3$ (C=O), 51.4 (CH₃), 38.5 (CH₂), 34.1 (CH₂), 27.8 (CH), 26.9 (CH₂), 25.1 (CH₂), 22.5 (2 x CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 158 (1) [M]⁺, 143 (3), 127 (14), 115 (18), 109 (21), 87 (85), 83 (30), 82 (23), 74 (100), 69 (16), 59 (32), 57 (18), 55 (60); IR (ATR): $1/\lambda = 2953$ (m), 2869 (m), 1740 (s), 1464 (m), 1436 (m), 1366 (m), 1239 (m), 1197 (m), 1168 (s), 1111 (w), 996 (w), 882 (w), 741 (w) cm⁻¹.

Methyl 5-methylheptanoate (118b): Yield: 6.73 g (42.51 mmol, 66%); TLC (hexane/ethyl acetate = 20:1): $R_f = 0.18$; GC (HP-5 MS): I = 1093; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.66$ (s, 3H, CH₃), 2.29 (t, 2H, ³ $J_{H,H} = 7.5$ Hz, CH₂), 1.72-1.53 (m, 2H, CH₂), 1.40-1.28 (m, 3H, CH, CH₂), 1.18-1.09 (m, 2H, CH₂), 0.86 (d, 3H, ³ $J_{H,H} = 6.5$ Hz, CH₃), 0.86 (t, 3H, ³ $J_{H,H} = 7.3$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 174.0$ (C=O), 51.1 (CH₃), 35.9 (CH₂), 34.2 (CH₂), 34.0 (CH), 29.1 (CH₂), 22.4 (CH₂), 18.8 (CH₃), 11.1 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 158 (<1) [M]⁺, 143 (1), 129 (12), 115 (19), 109 (16), 101 (19), 87 (33), 74 (100), 69 (34), 59 (19), 55 (24), 41 (25); IR (ATR): 1/λ = 2957 (m), 2931 (m), 2874 (m), 1740 (s), 1460 (m), 1436 (m), 1377 (w), 1361 (w), 1244 (m), 1170 (s), 1110 (m), 1020 (w), 983 (w), 862 (w), 740 (w) cm⁻¹.

Methyl 6-methyloctanoate (121c): Yield: 8.0 g (46.3 mmol, 65%); TLC (hexane/ethyl acetate = 10:1): $R_f = 0.38$; GC (HP-5 MS): I = 1193; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.66$ (s, 3H, CH₃), 2.31 (t, 2H, ³ $J_{H,H} = 7.5$ Hz, CH₂), 1.68-1.53 (m, 2H, CH₂), 1.41-1.24 (m, 5H, 2 x CH₂, CH), 1.18-1.06 (m, 2H, CH₂), 0.85 (t, 3H, ³ $J_{H,H} = 8.0$ Hz, CH₃), 0.84 (d, 3H, ³ $J_{H,H} = 7.3$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.9$ (C=O), 51.2 (CH₃), 36.1 (CH₂), 34.1 (CH), 34.0 (CH₂), 29.3 (CH₂), 26.5 (CH₂), 25.1 (CH₂), 19.0 (CH₃), 11.2 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 172 (<1) [M]⁺, 157 (1), 143 (10), 123 (18), 115 (20), 96 (33), 87 (72), 83 (39), 74 (100), 69 (22), 59 (26), 55 (54), 43 (20), 41 (45); IR (ATR): $1/\lambda = 2957$ (m), 2931 (m), 2872 (m), 1742 (s), 1460 (m), 1436 (m) 1376 (w), 1198 (m), 1168 (s), 1112 (m), 1011 (w), 822 (w), 734 (w) cm⁻¹.

Methyl 5-methyloctanoate (127): Yield: 6.4 g (36.9 mmol, 44%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.20; GC (BPX-5): I = 1190; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.66 (s, 3H, CH₃), 2.29 (t, 2H, ³ $J_{\rm H,H}$ = 7.7 Hz, CH₂), 1.72-1.53 (m, 2H, CH₂), 1.46-1.37 (m, 1H, CH), 1.36-1.21 (m, 2H, 2 x CH₂), 1.17-1.06 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{\rm H,H}$ =

7.0 Hz, CH₃), 0.86 (d, 3H, ${}^{3}J_{H,H} = 6.6$ Hz, CH₃) ppm; 13 C-NMR (CDCl₃, 100 MHz): $\delta =$ 174.1 (C=O), 51.3 (CH₃), 39.1 (CH₂), 36.4 (CH₂), 34.4 (CH₂), 32.2 (CH), 22.4 (CH₂), 20.0 (CH₂), 19.4 (CH₃), 14.2 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 172 (<1) [M]⁺, 157 (1), 141 (5), 129 (38), 123 (13), 101 (19), 97 (20), 87 (34), 74 (100), 69 (35), 59 (24), 55 (33), 43 (38), 41 (39); IR (ATR): $1/\lambda = 2955$ (m), 2928 (m), 2872 (m), 1741 (s), 1460 (m), 1437 (m), 1378 (w), 1361 (w), 1248 (m), 1198 (m), 1169 (s), 1112 (m), 1015 (w), 874 (w), 742 (w) cm⁻¹.

General procedure for the preparation of alcohols via reduction: A solution of the ester (0.8 M in Et₂O, 1 eq.) was added to a suspension of LiAlH₄ (0.2 M in Et₂O, 0.75 eq.). After being heated under reflux for 12 h the mixture was cooled to 0°C and H₂O was added slowly until the H₂ formation stopped. One spatula of MgSO₄ was added and the mixture was stirred vigorously for 10 min. The precipitate was filtered off and the filter cake was washed excessively with Et₂O. After solvent evaporation and column chromatography on silica gel the pure alcohol was afforded as a colourless liquid.

6-Methylheptan-1-ol (119a): Yield: 5.72 g (43.9 mmol, 91%); TLC (hexane/ethyl acetate = 2:1): $R_{\rm f}$ = 0.27; GC (BPX-5): I = 1050; ¹H-NMR (CDCI₃, 400 MHz): δ = 3.61 (t, 2H, ³J_{H,H} = 6.7 Hz, CH₂), 2.47 (s br, 1H, OH), 1.56 (quint, 2H, ³J_{H,H} = 7.0 Hz, CH₂), 1.53 (non, 1H, ³J_{H,H} = 6.6 Hz, CH), 1.35-1.27 (m, 4H, 2 x CH₂), 1.44-1.20 (m, 2H, CH₂), 0.87 (d, 6H, ³J_{H,H} = 6.7 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCI₃, 100 MHz): δ = 62.7 (CH₂), 38.9 (CH₂), 32.7 (CH₂), 27.8 (CH), 27.1 (CH₂), 26.0 (CH₂), 22.5 (2 x CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 130 (<1) [M]⁺, 97 (26), 84 (23), 83 (8), 70 (32), 69 (84), 68 (26), 57 (41), 56 (100), 55 (91), 53 (9); IR (ATR): 1/ λ = 3322 (m br), 2953 (s), 2928 (s), 2866 (m), 1465 (m), 1384 (w), 1366 (w), 1053 (s), 1029 (m), 985 (w), 726 (w) cm⁻¹.

5-Methylheptan-1-ol (119b): Yield: 4.54 g (34.20 mmol, 83%); GC (BPX-5): I = 1057; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.61$ (dt, 2H, ³ $J_{H,H} = 6.4$ Hz, 5.3 Hz, CH₂), 2.61 (t, 1H, ³ $J_{H,H} = 5.2$ Hz, OH), 1.60-1.49 (m, 2H, CH₂), 1.41-1.26 (m, 5H, CH, 2 x CH₂), 1.19-1.09 (m, 2H, CH₂), 0.86 (t, 3H, ³ $J_{H,H} = 7.3$ Hz, CH₃), 0.85 (d, 3H, ³ $J_{H,H} = 6.3$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 62.7$ (CH₂), 36.3 (CH₂), 34.3 (CH), 33.0 (CH₂), 29.3 (CH₂), 23.2 (CH₂), 19.0 (CH₃), 11.2 (CH₃) ppm; MS (70 eV, EI): m/z (%) =

130 (<1) $[M]^+$, 112 (<1), 97 (8), 84 (24), 83 (97), 70 (45), 69 (21), 56 (38), 55 (100), 43 (19), 41 (52), 39 (16); IR (ATR): $1/\lambda = 3323$ (m br), 2959 (m), 2930 (s), 2871 (m), 1460 (m), 1377 (m), 1124 (w), 1054 (m), 927 (w), 769 (w), 645 (w) cm⁻¹.

5-Methyloctan-1-ol (128): Yield: 0.94 g (6.52 mmol, 91%); TLC (hexane/ethyl acetate = 5:1): $R_{\rm f}$ = 0.18; GC (BPX-5): I = 1078; ¹H-NMR (CDCI₃, 400 MHz): δ = 3.64 (t, 2H, ³ $J_{\rm H,H}$ = 6.6 Hz, CH₂), 1.59 (s br, 1H, OH), 1.57-1.51 (m, 2H, CH₂), 1.44-1.21 (m, 7H, CH, 3 x CH₂), 1.17-1.04 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 0.85 (d, 3H, ³ $J_{\rm H,H}$ = 6.5 Hz, CH₃) ppm; ¹³C-NMR (CDCI₃, 100 MHz): δ = 63.0 (CH₂), 39.3 (CH₂), 36.8 (CH₂), 33.1 (CH₂), 32.4 (CH), 23.2 (CH₂), 20.1 (CH₂), 19.6 (CH₃), 14.3 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 144 (<1) [M]⁺, 126 (<1), 111 (3), 97 (22), 84 (41), 83 (98), 70 (32), 69 (33), 56 (46), 55 (100), 43 (49), 41 (43); IR (ATR): 1/ λ = 3327 (w br), 2956 (m), 2929 (s), 2868 (m), 1461 (m), 1378 (m), 1125 (w), 1055 (m), 909 (w), 734 (s), 646 (w) cm⁻¹.

General procedure for the preparation of bromides: Bromine (1.33 eq.) was added dropwise to a solution of triphenylphosphane (0.7 M in dichloromethane, 1.33 eq.) at 0°C until the yellow colour persisted. The alcohol (in dichloromethane) was added in one batch. After being stirred for 2 h at 0°C, the reaction mixture was diluted with diethyl ether and washed with saturated NaHSO₃ solution to remove excess bromine. The aqueous phase was separated and extracted three times with diethyl ether. The combined organic layers were dried with MgSO₄, filtered and 2/3 of the solvents were evaporated. Pentane was added and the precipitated triphenylphosphane oxide was filtered off. Evaporation of the solvents and column chromatography provided the pure bromide as a colourless liquid.

1-Bromo-6-methylheptane (**120a**): Yield: 7.04 g (36.5 mmol, 85%); TLC (hexane/ethyl acetate = 10:1): $R_{\rm f}$ = 0.96; GC (BPX-5): I = 1116; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.34 (t, 2H, ³ $J_{\rm H,H}$ = 6.9 Hz, CH₂), 1.79 (quint, 2H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₂), 1.46 (non, 1H, ³ $J_{\rm H,H}$ = 6.6 Hz, CH), 1.38-1.30 (m, 2H, CH₂),1.27-1.19 (m, 2H, CH₂), 1.13-1.08 (m, 2H, CH₂), 0.80 (d, 6H, ³ $J_{\rm H,H}$ = 6.7 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 39.1 (CH₂), 34.3 (CH₂), 33.2 (CH₂), 28.7 (CH₂), 28.2 (CH), 26.8 (CH₂), 22.9 (2 x CH₃) ppm; MS (70 eV, EI): m/z (%) = 193 (<1) [M]⁺, 149 (77), 147 (79), 137 (13), 135 (14), 109 (5), 107 (5), 97 (21), 69 (56), 57 (23), 55 (57), 43 (87), 41 (100); IR

(ATR): $1/\lambda = 2954$ (m), 2929 (s), 2866 (m), 1464 (m), 1384 (w), 1367 (w), 1260 (w), 1230 (w), 1170 (w), 1096 (w), 1019 (w), 804 (m), 728 (w), 647 (w), 564 (m) cm⁻¹.

1-Bromo-5-methylheptane (120b): Yield: 5.66 g (29.31 mmol, 91%); TLC (pentane/diethylether = 10:1): $R_{\rm f}$ = 0.86; GC (BPX-5): I = 1122; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.41 (t, 1H, ³ $J_{\rm H,H}$ = 6.9 Hz, CH₂), 1.88-1.80 (m, 2H, CH₂), 1.52-1.38 (m, 2H, CH₂), 1.37-1.27 (m, 3H, CH, CH₂), 1.18-1.08 (m, 2H, CH₂), 0.86 (t, 3H, ³ $J_{\rm H,H}$ = 7.3 Hz, CH₃), 0.86 (d, 3H, ³ $J_{\rm H,H}$ = 6.5 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 36.6 (CH₂), 34.2 (CH), 33.9 (CH₂), 33.1 (CH₂), 29.4 (CH₂), 25.7 (CH₂), 19.1 (CH₃), 11.3 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 192 (<1) [M]⁺, 165 (8), 163 (8), 137 (99), 135 (100), 123 (5), 121 (5), 109 (5), 107 (6), 97 (5), 95 (4), 83 (59), 57 (52), 55 (77), 41 (68), 39 (26); IR (ATR): $1/\lambda$ = 2960 (s), 2931 (m), 2871 (m), 1460 (m), 1378 (w), 1251 (w), 1202 (w), 976 (w), 770 (w), 732 (w), 648 (m), 564 (m) cm⁻¹.

1-Bromo-3-methylpentane (**120c**): Yield: 13.8 g (83.3 mmol, 71%); TLC (hexane/ethyl acetate = 10:1): $R_{\rm f}$ = 0.86; GC (BPX-5): I = 911; ¹H-NMR (CDCI₃, 400 MHz): δ = 3.37 (ddd, 1H, ³ $J_{\rm H,H}$ = 9.9 Hz, 8.1 Hz, 5.9 Hz, C*H*H), 3.40 (dt, 1H, ³ $J_{\rm H,H}$ = 9.8 Hz, 7.6 Hz, CH*H*), 1.93-1.83 (m, 1H C*H*H), 1.67 (dtd, 1H, ³ $J_{\rm H,H}$ = 13.7 Hz, 7.8 Hz, 5.9 Hz, CH*H*), 1.56 (oct, 1H, ³ $J_{\rm H,H}$ = 6.5 Hz, CH), 1.42-1.32 (m, 2H, C*H*H), 1.39-1.26 (m, 1H, CH*H*), 0.89 (t, 3H, ³ $J_{\rm H,H}$ = 7.4 Hz, CH₃), 0.88 (d, ³ $J_{\rm H,H}$ = 6.6 Hz, CH₃) ppm; ¹³C-NMR (CDCI₃, 100 MHz): δ = 39.6 (CH₂), 33.2 (CH), 32.2 (CH₂), 28.9 (CH₂), 18.4 (CH₃), 11.1 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 165 (<1) [M]⁺, 164 (5) [M-1]⁺, 137 (4), 135 (4), 109 (6), 107 (6), 85 (99), 84 (45), 69 (42), 57 (100), 55 (85), 41 (78), 39 (33); IR (ATR): 1/ λ = 2962 (m), 2927 (m), 2874 (m), 1461 (m), 1379 (w), 1255 (m), 1215 (w), 1154 (w), 1038 (w), 1002 (w), 965 (w), 877 (w), 776 (w), 643 (m), 566 (m) cm⁻¹.

1-Bromo-2-methylpentane (126): Yield: 14.7 g (89.3 mmol, 76%); TLC (hexane/ethyl acetate = 10:1): $R_{\rm f} = 0.92$; GC (BPX-5): I = 903; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.40$ (dd, 1H, ³ $J_{\rm H,H} = 4.9$ Hz, ² $J_{\rm H,H} = 9.8$ Hz, CHH), 3.32 (dd, 1H, ³ $J_{\rm H,H} = 6.2$ Hz, ² $J_{\rm H,H} = 9.8$ Hz, CHH), 1.80 (oct, 1H, ³ $J_{\rm H,H} = 6.4$ Hz, CH), 1.47-1.46 (m, 4H, 2 x CH₂), 1.01 (d, 3H, ³ $J_{\rm H,H} = 6.7$ Hz, CH₃), 0.91 (t, 3H, ³ $J_{\rm H,H} = 7.1$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 41.5$ (CH₂), 37.1 (CH₂), 34.9 (CH), 20.0 (CH₂), 18.7

(CH₃), 14.1 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 165 (<1) [M]⁺, 164 (2) [M-1]⁺, 123 (6), 121 (6), 95 (4), 93 (4), 86 (7), 85 (100), 71 (18), 69 (12), 57 (9), 55 (18), 43 (62), 41 (49), 39 (25); IR (ATR): $1/\lambda$ = 2959 (s), 2929 (m), 2872 (m), 1460 (m), 1379 (m), 1322 (w), 1247 (w), 1228 (m), 947 (w), 845 (w), 813 (w), 739 (w), 650 (s), 619 (m), 553 (w) cm⁻¹.

2-Bromo-6-methylnonane (131): Yield: 1.03 g (4.58 mmol, 87%); TLC (pentane/diethyl ether = 10:1): $R_f = 0.88$; GC (BPX-5): I = 1257; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 4.14$ (sextt, 1H, ³ $J_{H,H} = 6.6$ Hz, ⁴ $J_{H,H} = 1.8$ Hz, CH), 1.87-1.73 (m, 3H, CH, CH₂), 1.71 (d, 3H, ³ $J_{H,H} = 7.0$ Hz, CH₃), 1.49-1.21 (m, 6H, 3 x CH₂), 1.17-1.05 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{H,H} = 7.0$ Hz, CH₃), 0.86 (d, 3H, ³ $J_{H,H} = 6.6$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 52.0$ (CH), 41.5 (CH₂), 39.3 (CH₂), 36.3 (CH₂), 32.4 (CH), 26.5 (CH₃), 25.3 (CH₂), 20.1 (CH₂), 19.6 (CH₃), 14.4 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 221 (<1) [M]⁺, 179 (2), 177 (2), 151 (59), 149 (60), 141 (23), 99 (18), 97 (40), 85 (78), 71 (86), 69 (51), 57 (66), 55 (100), 43 (86), 41 (68); IR (ATR): $1/\lambda = 2956$ (s), 2926 (m), 2869 (m), 1458 (m), 1378 (m), 1230 (w), 1213 (w), 1146 (w), 1098 (w), 961 (w), 740 (w), 620 (w), 543 (m) cm⁻¹.

General procedure for α -methylation of esters: To a cooled (0°C) solution of diisopropylamine (0.13 M in THF, 1.1 eq.) *n*-butyllithium (1.6 M in Hexan, 1.1 eq.) was added slowly and stirred for 1 h at 0°C. After being cooled to -78°C the ester (1 eq.) was added and the solution was stirred for 30 min. Iodomethane was added dropwise and the reaction mixture stirred for 2 h at -78°C. The mixture was allowed to warm to room temperature, the reaction was quenched with saturated NH₄Cl solution, and the layers were separated. The aqueous layer was extracted with Et₂O, the combined organic layers were dried over MgSO₄, filtered, and the solvents were evaporated. Column chromatography of the residue on silica gel afforded the methylated ester as a colourless liquid.

Methyl 2-methyldecanoate (10): Yield: 5.28 g (26.4 mmol, 82%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.37; GC (HP-5 MS): I = 1357; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.67 (s, 3H, CH₃), 2.43 (sext, 1H, ³ $J_{\rm H,H}$ = 6.9 Hz, CH), 1.69-1.60 (m, 1H, C*H*H), 1.44-1.36 (m, 1H, CH*H*), 1.30-1.24 (m, 12H, 6 x CH₂), 1.14 (d, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 0.88 (t, 3H, ³ $J_{\rm H,H}$ = 6.8 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 177.3 (C=O),

51.3 (CH₃), 39.4 (CH), 33.8 (CH₂), 31.8 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 27.2 (CH₂), 22.6 (CH₂), 17.0 (CH₃), 14.0 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 200 (<1) [M]⁺, 157 (5), 143 (6), 101 (27), 88 (100), 69 (6), 57 (15), 55 (13); IR (ATR): $1/\lambda$ = 2925 (s), 2856 (m), 1738 (s), 1462 (m), 1435 (m), 1377 (w), 1195 (s), 1164 (s), 1092 (w), 987 (w), 835 (w), 713 (w) cm⁻¹.

Methyl 2,9-dimethyldecanoate (24): Yield: 2.29 g (10.67 mmol, 79%); TLC (hexane/ethyl acetate = 10:1): $R_{\rm f}$ = 0.50; GC (HP-5 MS): I = 1419; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.66 (d, 3H, ⁴ $J_{\rm H,H}$ = 0.5 Hz, CH₃), 2.44 (sext, 1H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH), 1.69-1.60 (m, 1H, C*H*H), 1.51 (non, 1H, ³ $J_{\rm H,H}$ = 6.6 HZ, CH), 1.44-1.36 (m, 1H, CH*H*), 1.31-1.24 (m, 8H, 4 x CH₂), 1.17-1.12 (m, 5H, CH₂, CH₃), 0.86 (d, 6H, ³ $J_{\rm H,H}$ = 6.6 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 177.4 (C=O), 51.4 (CH₃), 39.4 (CH), 39.0 (CH₂), 33.8 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 27.9 (CH), 27.3 (CH₂), 27.2 (CH₂), 22.6 (CH₃), 17.0 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 214 (5) [M]⁺, 199 (1), 183 (4), 171 (11), 157 (18), 143 (12), 115 (4), 101 (53), 88 (100), 69 (19), 59 (21), 57 (20), 55 (28), 43 (44), 41 (46); HRMS Calcd. for C₁₃H₂₆O₂: 214.19328; found: 214.19503; IR (ATR): 1/λ = 2926 (s), 2856 (m), 1739 (s), 1463 (m), 1436 (m), 1366 (m), 1249 (m), 1195 (s), 1165 (s), 1090 (w), 989 (w), 835 (w), 760 (w), 724 (w) cm⁻¹.

Methyl 2,6-dimethyloctanoate (122c): Yield: 7.00 g (37.6 mmol, 85%); TLC (hexane/ethyl acetate = 20:1): $R_f = 0.36$; GC (BPX-5): I = 1228; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.66$ (d, 3H, ⁴ $J_{H,H} = 0.9$ Hz, CH₃), 2.44 (sext, 1H, ³ $J_{H,H} = 6.9$ Hz, CH), 1.69-1.58 (m, 1H, CH), 1.43-1.21 (m, 6H, 3 x CH₂), 1.14 (d, 3H, ³ $J_{H,H} = 7.0$ Hz, CH₃), 1.13-1.05 (m, 2H, CH₂), 0.85 (t, ³ $J_{H,H} = 6.9$ Hz, CH₃), 0.84 (d, 3H, ³ $J_{H,H} = 5.8$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 177.2$ (C=O), 51.2 (CH₃), 39.4 (CH), 36.3 (CH₂), 34.14 (CH), 34.06 (CH₂), 29.3 (CH₂), 24.6 (CH₂), 19.0 (CH₃), 17.0 (CH₃), 11.2 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 186 (2) [M]⁺, 171 (1), 157 (16), 129 (8), 115 (4), 101 (48), 97 (20), 88 (100), 69 (17), 57 (19), 55 (27), 41 (28); IR (ATR): $1/\lambda = 2958$ (m), 2934 (m), 2874 (m), 1738 (s), 1461 (m), 1435 (m), 1377 (m), 1256 (m), 1201 (m), 1169 (s), 1150 (s), 826 (w), 764 (w), 735 (w) cm⁻¹.

General procedure for the reduction of esters to aldehydes: A solution of the ester (0.4 M in Et₂O, 1 eq.) was cooled to -78°C and DIBAH (1 M in Hexan, 1.4 eq.) was added slowly. The reaction was monitored with TLC and upon completion of the

reaction the solution was poured into an ice-cold, stirred solution of HCI (4 N). After separation of the layers the aqueous phase was extracted three times with Et_2O . The combined organic layers were dried with MgSO₄, filtered, and the solvents were evaporated. Column chromatography of the residue on silica gel afforded the aldehyde as a colourless liquid.

2,9-Dimethyldecanal (123a): Yield: 0.98 g (5.33 mmol, 54%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.24; GC (BPX-5): I = 1342; ¹H-NMR (CDCl₃, 400 MHz): δ = 9.61 (d, 1H, ³ $J_{\rm H,H}$ = 2.0 Hz, CHO), 1.73-1.64 (m, 1H, CH), 1.51 (non, 1H, ³ $J_{\rm H,H}$ = 6.6 Hz, CH), 1.47-1.39 (m, 1H, CH*H*), 1.36-1.22 (m, 9H, C*H*H, 4 x CH₂), 1.18 (d, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 1.17-1.12 (m, 2H, CH₂), 0.86 (d, 6H, ³ $J_{\rm H,H}$ = 6.6 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 205.5 (CHO), 46.3 (CH), 39.0 (CH₂), 33.5 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 27.9 (CH), 27.3 (CH₂), 27.1 (CH₂), 22.6 (2 x CH₃), 16.8 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 184 (1) [M]⁺, 142 (5), 126 (8), 109 (6), 95 (12), 81 (14), 71 (25), 69 (18), 58 (100), 57 (39), 55 (32), 43 (65), 41 (68); IR (ATR): 1/ λ = 2952 (m), 2926 (s), 2855 (m), 2702 (w), 1729 (s), 1463 (m), 1382 (w), 1367 (w), 1132 (m), 955 (w), 920 (w), 723 (w) cm⁻¹.

2,6-Dimethyloctanal (123c): Yield: 4.55 g (29.1 mmol, 81%); TLC (hexane/ethyl acetate = 10:1): $R_{\rm f}$ = 0.45; GC (BPX-5): I = 1142; ¹H-NMR (CDCl₃, 400 MHz): δ = 9.62 (d, 1H, ³ $J_{\rm H,H}$ = 2.1 Hz, CH), 2.34 (sextd, 1H, ³ $J_{\rm H,H}$ = 6.8 Hz, 2.0 Hz, CH), 1.75-1.63 (m, 1H, CH), 1.40-1.26 (m, 6H, 3 x CH₂), 1.18-1.10 (m, 2H, CH₂), 1.09 (d, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 0.85 (t, 3H, ³ $J_{\rm H,H}$ = 8.1 Hz, CH₃), 0.84 (d, 3H, ³ $J_{\rm H,H}$ = 7.2 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 205.4 (CHO), 46.4 (CH), 36.6 (CH₂), 34.2 (CH), 30.9 (CH₂), 29.4 (CH₂), 24.4 (CH₂), 19.1 (CH₃), 13.4 (CH₃), 11.3 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 156 (<1) [M]⁺, 114 (7), 109 (16), 98 (16), 81 (13), 71 (22), 69 (18), 58 (100), 57 (53), 55 (30), 43 (35), 41 (53); IR (ATR): $1/\lambda$ = 2960 (m), 2931 (m), 2873 (m), 1705 (s), 1462 (m), 1417 (w), 1378 (w9, 1291 (w), 1238 (w), 1184 (m), 942 (w), 734 (w) cm⁻¹.

2-Methyldecanal (123d): Yield: 2.98 g (17.5 mmol, 76%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.33; GC (BPX-5): I = 1273; ¹H-NMR (CDCl₃, 400 MHz): δ = 9.61 (d, 1H, ³ $J_{\rm H,H}$ = 2.0 Hz, CH), 2.33 (sextd, 1H, ³ $J_{\rm H,H}$ = 6.8 Hz, 2.0 Hz, CH), 1.73-1.64 (m, 2H, CH₂), 1.36-1.25 (m, 12H, 6x CH₂), 1.09 (d, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 0.88 (t, 3H, ³ $J_{\rm H,H}$

= 6.9 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 205.4 (CHO), 46.3 (CH), 31.8 (CH₂), 30.5 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 26.9 (CH₂), 22.6 (CH₂), 14.1 (CH₃), 13.3 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 170 (<1) [M]⁺, 128 (5), 112 (8), 95 (5), 85 (5), 81 (6), 71 (17), 58 (100), 57 (26), 55 (17), 43 (30), 41 (30); IR (ATR): 1/ λ = 2924 (s), 2855 (s), 1706 (s), 1464 (m), 1417 (w), 1378 (w), 1292 (w), 1237 (w), 1184 (m), 1111 (w), 939 (w), 722 (w), 637 (w), 543 (w) cm⁻¹.

General procedure for the preparation of α ,β-unsaturated methyl esters via Horner-Wadsworth-Emmons reaction: To a cooled (0°C) solution of diisopropylamine (0.1 M in THF, 1.05 eq.) *n*-butyllithium (1.6 M in Hexan, 1.05 eq.) was added slowly and the solution stirred for 30 min at 0°C. After being cooled to -78°C trimethylphosphonoacetate (1.05 eq.) was added and the solution was stirred for 1 h. The aldehyde (0.4 M in THF, 1 eq.) was added and the reaction mixture stirred for 3 h at -78°C. The mixture was allowed to warm to room temperature, the reaction was quenched with H₂O and saturated NaCl solution, and the layers were separated. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over MgSO₄, filtered, and the solvents were evaporated. Column chromatography of the residue on silica gel afforded the α ,β-unsaturated methyl ester as a colourless liquid.

Methyl (*E***)- and (***Z***)-4,11-dimethyldodec-2-enoate (124a):** Yield: 0.38 g (1.56 mmol, 70%), diastereomeric ratio *E* : *Z* = 87 : 13.

Methyl (*Z*)-4,11-dimethyldodec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.22; GC (BPX-5): *I* = 1587; ¹H-NMR (CDCl₃, 400 MHz): δ = 5.97 (dd, 1H, ³*J*_{H,H} = 11.5 Hz, 10.3 Hz, =CH), 5.71 (dd, 1H, ³*J*_{H,H} = 11.5 Hz, ⁴*J*_{H,H} = 0.9 Hz, =CH), 3.70 (s, 3H, CH₃), 3.5-3.43 (m, 1H, CH), 1.51 (non, 1H, ³*J*_{H,H} = 6.6 Hz, CH), 1.36-1.23 (m, 10H, 5 x CH₂), 1.16-1.11 (m, 2H, CH₂), 1.00 (d, 3H, ³*J*_{H,H} = 6.7 Hz, CH₃), 0.86 (d, 6H, ³*J*_{H,H} = 6.6 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 166.8 (C=O), 156.6 (=CH), 117.7 (=CH), 50.9 (CH₃), 39.0 (CH₂), 37.0(CH₂), 32.7 (CH), 29.8 (CH₂), 29.7 (CH₂), 27.9 (CH), 27.4 (CH₂), 27.2 (CH₂), 22.6 (2 x CH₃), 20.3 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 240 (36) [M]⁺, 209 (12), 128 (38), 127 (100), 114 (30), 96 (34), 95 (49), 81 (40), 69 (29), 67 (33), 55 (47), 43 (69), 41 (61); HRMS Calcd. for C₁₅H₂₈O₂: 240.20893; found: 240.21014; IR (ATR): 1/ λ = 2953 (m), 2925 (m), 2854 (m), 1726

(s), 1645 (m) 1462 (m), 1437 (m), 1368 (w), 1194 (s), 1174 (s), 1135 (m), 1007 (m), 932 (w), 822 (s), 724 (w) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 230 (3.28) nm.

Methyl (*E*)-4,11-dimethyldodec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.10; GC (BPX-5): *I* = 1679; ¹H-NMR (CDCl₃, 400 MHz): δ = 6.87 (dd, 1H, ³J_{H,H} = 15.7 Hz, 7.9 Hz, =CH), 5.78 (dd, 1H, ³J_{H,H} = 15.7 Hz, ⁴J_{H,H} = 1.2 Hz, =CH), 3.73 (s, 3H, CH₃), 2.34-2.24 (m, 1H, CH), 1.51 (non, 1H, ³J_{H,H} = 6.6 Hz, CH), 1.36-1.25 (m, 10H, 5 x CH₂), 1.18-1.11 (m, 2H, CH₂), 1.04 (d, 3H, ³J_{H,H} = 6.7 Hz, CH₃), 0.86 (d, 6H, ³J_{H,H} = 6.6 Hz, 2 x CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 167.4 (C=O), 155.1 (=CH), 119.1 (=CH), 51.4 (CH₃), 40.0 (CH₂), 36.6 (CH), 36.0 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 27.9 (CH), 27.3 (CH₂), 27.1 (CH₂), 22.6 (2 x CH₃), 19.4 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 240 (5) [M]⁺, 209 (21), 185 (6), 166 (14), 128 (100), 127 (48), 110 (38), 96 (69), 95 (48), 87 (36), 81 (53), 69 (50), 67 (35), 55 (69), 43 (93), 41 (81); HRMS Calcd. for C₁₅H₂₈O₂: 240.20893; found: 240.21040; IR (ATR): 1/ λ =2953 (m), 2926 (s), 2855 (m), 1726 (s), 1656 (m) 1464 (m), 1436 (m), 1367 (w), 1311 (w), 1270 (m), 1195 (m), 1172 (s), 1035 (w), 1015 (w), 984 (m), 863 (w), 824 (w), 724 (m) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 231 (3.16) nm.

Methyl (*E*)- and (*Z*)-4,8-dimethyldec-2-enoate (124c): Yield: 1.78 g (98.4 mmol, 65%); diastereomeric ratio E: Z = 67: 33.

Methyl (*Z*)-4,8-dimethyldec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.33; GC (BPX-5): *I* = 1389; ¹H-NMR (CDCl₃, 400 MHz): δ = 5.97 (ddd, 1H, ³*J*_{H,H} = 11.4 Hz, 10.3 Hz, ⁴*J*_{H,H} = 1.2 Hz, =CH), 5.71 (dd, 1H, ³*J*_{H,H} = 11.6 Hz, ⁴*J*_{H,H} = 0.6 Hz, =CH), 3.70 (s, 3H, CH₃), 3.58-3.45 (m, 1H, CH), 1.36-1.21 (m, 7H, 3 x CH₂, CH), 1.00 (d, 3H, ³*J*_{H,H} = 6.7 Hz, CH₃), 0.84 (t, 3H, ³*J*_{H,H} = 7.3 Hz, CH₃) 0.84-0.82 (m, 3H, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 166.7 (C=O), 156.5 (=CH), 117.8 (=CH), 50.8 (CH₃), 37.3 (CH₂), 36.3 (CH₂), 34.3 (CH), 32.7 (CH), 29.4 (CH₂), 24.7 (CH₂), 20.2 (CH₃), 19.1 (CH₃), 11.3 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 212 (20), [M]⁺, 197 (1), 181 (9), 151 (13), 128 (27), 127 (100), 114 (38), 113 (18), 96 (27), 95 (52), 81 (42), 67 (37), 57 (33), 55 (44), 41 (50); HRMS Calcd. for C₁₃H₂₄O₂: 212.17763; found: 212.17859; IR (ATR): 1/ λ = 2958 (m), 2927 (m), 2872 (m), 1726 (s), 1645 (m), 1460 (m), 1437 (m), 1407 (m), 1376 (w), 1196 (s), 1174 (s), 1007 (m), 934 (w), 822 (s), 729 (w) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 229 (3.43) nm.

Methyl (*E*)-4,8-dimethyldec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.17; GC (BPX-5): *I* = 1478; ¹H-NMR (CDCl₃, 400 MHz): δ = 6.87 (ddd, 1H, ³J_{H,H} = 15.7 Hz, 7.9 Hz, ⁴J_{H,H} = 1.8 Hz, =CH), 5.78 (dd, 1H, ³J_{H,H} = 15.7 Hz, ⁴J_{H,H} = 1.1 Hz, =CH), 3.73 (s, 3H, CH₃), 2.30 (sept, 1H, ³J_{H,H} = 6.7 Hz, CH), 1.36-1.23 (m, 7H, 3 x CH₃, CH), 1.15-1.07 (m, 2H, CH₂), 1.04 (d, 3H, ³J_{H,H} = 6.7 Hz, CH₃), 0.85 (t, 3H, ³J_{H,H} = 7.2 Hz, CH₃), 0.83 (d, 3H, ³J_{H,H} = 6.0 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 167.4 (C=O), 155.1 (=CH), 119.1 (=CH), 51.4 (CH₃), 36.7 (CH), 36.6 (CH₂), 36.3 (CH₂), 34.3 (CH), 29.5 (CH₂), 24.7 (CH₂), 19.4 (CH₃), 19.2 (CH₃), 11.4 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 212 (3), [M]⁺, 197 (1), 181 (24), 151 (25), 138 (20), 128 (100), 127 (66), 123 (40), 114 (42), 110 (45), 96 (70), 95 (57), 87 (52), 83 (52), 82 (52), 81 (74), 70 (41) 69 (60), 57 (67), 55 (88), 41 (77); HRMS Calcd. for C₁₃H₂₄O₂: 212.17763; found: 212.17966; IR (ATR): 1/ λ = 2959 (m), 2928 (m), 2873 (m), 1725 (s), 1657 (m), 1460 (m), 1435 (m), 1378 (w), 1352 (w), 1269 (s), 1199 (m), 1173 (s), 1152 (m), 1016 (m), 984 (m), 865 (m), 724 (w) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 229 (3.38) nm.

Methyl (*E*)- and (*Z*)-4-methyldodec-2-enoate (124d): Yield: 2.26 g (9.97 mmol, 85%); diastereomeric ratio E: Z = 65: 35.

Methyl (*Z*)-2-methyldodec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.20; GC (BPX-5): *I* = 1528; ¹H-NMR (CDCl₃, 400 MHz): δ = 5.97 (dd, 1H, ³J_{H,H} = 11.5 Hz, 10.3 Hz, =CH), 5.71 (dd, 1H, ³J_{H,H} = 10.5 Hz, ⁴J_{H,H} = 0.9 Hz, =CH), 3.70 (s, 3H, CH₃), 3.54-3.44 (m, 1H, CH), 1.36-1.25 (m, 14H, 7 x CH₂), 1.00 (d, 3H, ³J_{H,H} = 6.7 Hz, CH₃), 0.87 (d, 3H, ³J_{H,H} = 7.0 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 166.8 (C=O), 156.6 (=CH), 117.7 (=CH), 50.9 (CH₃), 37.0 (CH₂), 32.7 (CH), 31.9 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 27.3 (CH₂), 22.6 (CH₂), 20.2 (CH₃), 14.0 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 226 (31) [M]⁺, 195 (15), 152 (10), 128 (31), 127 (100), 114 (30), 96 (29), 95 (43), 87 (15), 81 (31), 69 (18), 67 (28), 55 (33), 43 (26), 41 (37); HRMS Calcd. for C₁₄H₂₆O₂: 226.19328; found: 226.19283; IR (ATR): 1/ λ = 2955 (m), 2924 (s), 2854 (m), 1725 (s), 1645 (m), 1460 (m), 1437 (m), 1407 (m), 1194 (s), 1174 (s), 1007 (m), 931 (w), 822 (s), 723 (w) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 230 (3.36) nm.

Methyl (*E*)-2-methyldodec-2-enoate: TLC (hexane/ethyl acetate = 30:1): $R_{\rm f}$ = 0.10; GC (BPX-5): *I* = 1619; ¹H-NMR (CDCl₃, 400 MHz): δ = 6.87 (dd, 1H, ³J_{H,H} = 15.7 Hz, 7.9 Hz, =CH), 5.77 (dd, 1H, ³J_{H,H} = 15.7 Hz, ⁴J_{H,H} = 1.2 Hz, =CH), 3.73 (s, 3H, CH₃),

2.34-2.24 (m, 1H, CH), 1.30-1.23 (m, 14H, 7 x CH₂), 1.04 (d, 3H, ${}^{3}J_{H,H} = 6.7$ Hz, CH₃), 0.88 (d, 3H, ${}^{3}J_{H,H} = 6.9$ Hz, CH₃) ppm; 13 C-NMR (CDCl₃, 100 MHz): $\delta = 167.4$ (C=O), 155.1 (=CH), 119.1 (=CH), 51.4 (CH₃), 36.5 (CH), 36.0 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 27.2 (CH₂), 22.6 (CH₂), 19.4 (CH₃), 14.1 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 226 (3) [M]⁺, 195 (26), 152 (24), 128 (100), 127 (51), 114 (28), 110 (31), 96 (69), 95 (40), 87 (37), 81 (46), 69 (40), 68 (29), 55 (58), 43 (39), 41 (50); HRMS Calcd. for C₁₄H₂₆O₂: 226.19328; found: 226.19424; IR (ATR): $1/\lambda = 2956$ (m), 2925 (s), 2854 (m), 1726 (s), 1657 (m) 1460 (m), 1435 (m), 1351 (w), 1269 (s), 1194 (m), 1172 (s), 1149 (m), 1035 (m), 1017 (m), 983 (m), 863 (m), 723 (m) cm⁻¹; UV/VIS (CH₂Cl₂): λ_{max} (log ε) = 230 (3.29) nm.

General procedure for hydrogenation of α , β -unsaturated methyl esters: Upon addition of Pt/C (5% Pt on charcoal, 0.1 eq.) the α , β -unsaturated methyl ester (0.1 M in EtOH, 1 eq.) was hydrogenated for 1 h at 25°C and an H₂ pressure of 40 bar. After filtration over celite the solvent was evaporated. Column chromatography of the residue on silica gel afforded the saturated ester as a colourless liquid.

Methyl 4-methyldodecanoate (90): Yield: 0.28 g (1.24 mmol, 92%); TLC (hexane/ethyl acetate = 30:1): $R_f = 0.30$; GC (HP-5 MS): I = 1572; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 3.66$ (s, 3H, CH₃), 2.38-2.24 (m, 2H, CH₂), 1.71-1.61 (m, 1H, CH), 1.48-1.37 (m, 2H, CH₂), 1.32-1.19 (m, 14H, 7 x CH₂), 0.88 (t, 3H, ³ $J_{H,H} = 6.9$ Hz, CH₃) 0.87 (d, 3H, ³ $J_{H,H} = 6.3$ Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 174.6$ (C=O), 51.4 (CH₃), 36.6 (CH₂), 32.4 (CH), 31.89 (2 x CH₂), 31.87 (CH₂), 29.9 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.9 (CH₂), 22.7 (CH₂), 19.2 (CH₃), 14.1 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 228 (2) [M]⁺, 197 (11), 171 (35), 155 (21), 115 813), 87 (100), 85 (17), 74 (56), 71 (17), 57 (29), 55 (39), 43 (32), 41 (32); IR (ATR): $1/\lambda = 2955$ (m), 2924 (s), 2854 (m), 1742 (s), 1461 (m), 1436 (m), 1378 (w), 1254 (m), 1192 (m), 1168 (s), 1018 (w), 991 (w), 722 (w) cm⁻¹.

Methyl 4,11-dimethyldodecanoate (110): Yield: 0.92 g (0.38 mmol, 91%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.18; GC (HP-5 MS): I = 1633; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.66 (s, 3H, CH₃), 2.38-2.24 (m, 2H, CH₂), 1.71-1.61 (m, 1H, CH), 1.51 (non, 1H, ³J_{H,H} = 6.6 Hz, CH), 1.46-1.37 (m, 2H, CH₂), 1.29-1.25 (m, 10H, 5 x CH₂),

1.17-1.12 (m, 2H, CH₂), 0.87 (d, 3H, ${}^{3}J_{H,H} = 6.4$ Hz, CH₃), 0.86 (d, 6H, ${}^{3}J_{H,H} = 6.6$ Hz, 2 x CH₃) ppm; 13 C-NMR (CDCI₃, 100 MHz): $\delta = 174.5$ (C=O), 51.4 (CH₃), 39.0 (CH₂), 36.6 (CH₂), 32.4 (CH), 31.89 (CH₂), 31.88 (CH₂), 29.9 (CH₂), 29.9 (CH₂), 27.9 (CH), 27.4 (CH₂), 26.9 (CH₂), 22.6 (2 x CH₃), 19.3 (CH₃) ppm; MS (70 eV, EI): *m/z* (%) = 242 (2) [M]⁺, 211 (6), 185 (32), 169 (14), 115 (11), 99 (8), 87 (100), 74 (50), 69 (17), 57 (23), 55 (30), 43 (32), 41 (24); IR (ATR): $1/\lambda = 2953$ (m), 2925 (s), 2854 (m), 1742 (s), 1464 (m), 1436 (m), 1381 (w), 1253 (m), 1192 (m), 1168 (s), 1019 (w), 991 (w) cm⁻¹.

Methyl 4,8-dimethyldecanoate (112): Yield: 0.28 g (1.30 mmol, 92%); TLC (hexane/ethyl acetate = 20:1): $R_{\rm f}$ = 0.31; GC (HP-5 MS): I = 1442; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.67 (s, 3H, CH₃), 2.38-2.24 (m, 2H, CH₂), 1.71-1.62 (m, 1H, CH), 1.49-1.38 (m, 2H, CH₂), 1.37-1.21 (m, 6H, 3 x CH₂), 1.17-1.04 (m, 3H, CH₂, CH), 0.87 (d, 3H, ³*J*_{H,H} = 6.3 Hz, CH₃), 0.85 (t, 3H, ³*J*_{H,H} = 7.4 Hz, CH₃) 0.84 (d, 3H, ³*J*_{H,H} = 6.1 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 174.5 (C=O), 51.4 (CH₃), 37.0 (CH₂), 36.8 (CH₂), 34.3 (CH), 32.4 (CH), 31.9 (CH₂), 31.8 (CH₂), 29.5 (CH₂), 24.3 (CH₂), 19.2 (CH₃), 19.1 (CH₃), 11.3 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 214 (1) [M]⁺, 185 (5), 157 (32), 141 (18), 115 (11), 97 (8), 87 (100), 74 (44), 69 (24), 57 (31), 55 (41), 43 (21), 41 (32); IR (ATR): 1/ λ = 2957 (m), 2926 (m), 2872 (m), 1741 (s), 1460 (m), 1436 (m), 1378 (m), 1255 (m), 1194 (m), 1169 (s), 1116 (m), 1016 (w), 992 (w), 773 (w) cm⁻¹.

Preparation of 5-methyloctanal (129): To a cooled solution (-60°C) of oxalyl chloride (0.91 mL, 10.6 mmol) in dichloromethane (70 mL), DMSO (1.51 mL, 21.3 mmol) in dichloromethane (15 mL) was added and the solution was stirred for 10 min. The alcohol **128** (1.28 g, 8.86 mmol) in dichloromethane (15 mL) was added, and the solution stirred for 30 min. Upon the addition of NEt₃ (6.30 mL, 44.3 mmol) and stirring for another 10 min the solution was allowed to warm to room temperature, and H₂O (50 mL) was added. After separation of the layers the aqueous layer was extracted with Et₂O (3 x 100 mL) and the combined organic layers were dried with MgSO₄, filtered, and the solvents were evaporated. The pure compound **129** (1.09 g, 7.63 mmol, 86%) was afforded as a colourless liquid after column chromatography on silica gel.

TLC (hexane/ethyl acetate = 10:1): $R_{\rm f}$ = 0.41; GC (BPX-5): I = 1077; ¹H-NMR (CDCl₃, 400 MHz): δ = 9.76 (t, 1H, ³ $J_{\rm H,H}$ = 1.9 Hz, CH), 2.43-2.31 (m, 2H, CH₂), 1.73-1.54 (m, 2H, CH₂), 1.48-1.38 (m, 1H, CH), 1.37-1.22 (m, 4H, 2 x CH₂), 1.20-1.05 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{\rm H,H}$ = 7.5 Hz, CH₃), 0.87 (d, 3H, ³ $J_{\rm H,H}$ = 6.6 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 202.9 (CHO), 44.1 (CH₂), 39.1 (CH₂), 36.4 (CH₂), 32.2 (CH), 20.0 (CH₂), 19.6 (CH₂), 19.4 (CH₃) 14.3 (CH₃) ppm; MS (70 eV, EI): *m*/*z* (%) = 142 (<1) [M]⁺, 124 (15), 109 (21), 96 (20), 95 (80), 81 (60), 70 (65), 69 (63), 57 (50), 55 (100), 43 (97), 41 (80); IR (ATR): 1/ λ = 2956 (s), 2927 (m), 2871 (m), 1709 (s), 1461 (m), 1412 (w), 1378 (w), 1283 (w), 1155 (w), 1117 (m), 1066 (w), 940 (m), 741 (w) cm⁻¹.

Preparation of 6-methylnonan-2-ol (130): The aldehyde **129** (1.21 g, 8.49 mmol) was added to a cooled (0°C) solution of methylmagnesium bromide (3.39 mL, 10.2 mmol) in Et₂O (20 mL). The solution was allowed to warm to room temperature and after the solution was stirred for 12 h, HCl (2 N, 40 mL) was added. Upon separation of the layers the aqueous layer was extracted with ethyl acetate (3 x 40 mL) and the solvents were evaporated. Column chromatography on silica gel afforded the alcohol **130** (0.99 g, 6.24 mmol, 74%) as a colourless liquid.

TLC (hexane/ethyl acetate = 5:1): $R_{\rm f}$ = 0.25; GC (BPX-5): I = 1172; ¹H-NMR (CDCl₃, 400 MHz): δ = 3.79 (sext, 1H, ³ $J_{\rm H,H}$ = 6.2 Hz, CH), 1.83 (s br, 1H, OH), 1.45-1.23 (m, 9H, CH, 4 x CH₂), 1.19 (d, 3H, ³ $J_{\rm H,H}$ = 6.2 Hz, CH₃), 1.15-1.05 (m, 2H, CH₂), 0.88 (t, 3H, ³ $J_{\rm H,H}$ = 7.0 Hz, CH₃), 0.85 (d, 3H, ³ $J_{\rm H,H}$ = 6.5 Hz, CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ = 68.1 (CH), 39.7 (CH₂), 39.3 (CH₂), 37.0 (CH₂), 32.4 (CH), 23.4 (CH₂), 23.2 (CH₂), 20.1 (CH₂), 19.5 (CH₃), 14.3 (CH₃) ppm; MS (70 eV, EI): m/z (%) = 158 (<1) [M⁺], 143 (5), 140 (1), 112 (6), 98 (16), 97 (46), 84 (34), 70 (42), 69 (45), 55 (57), 45 (100), 43 (51), 41 (37); IR (ATR): $1/\lambda$ = 3341 (w br), 2958 (s), 2928 (s), 2869 (m), 1461 (m) 1376 (m), 1143 (w), 1116 (m), 1079 (w), 1012 (w), 936 (w), 912 (w), 740 (w) cm⁻¹.

References

- 1. Dickschat, J. S.; Brock, N. L.; Citron, C. A.; Tudzynski, B. ChemBioChem 2011,
- 12, 2088–2095. doi:10.1002/cbic.201100268
- 2. Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986,
- 27, 4025-4028. doi:10.1016/S0040-4039(00)84901-1