Supporting Information

for

Application of the diastereoselective photodeconjugation of α,β unsaturated esters to the synthesis of gymnastatin H

Ludovic Raffier and Olivier Piva*

Address: Université Lyon 1, UMR 5246 CNRS, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire, 69622 Villeurbanne, France.

E-mail: Olivier Piva* - piva@univ-lyon1.fr

*Corresponding author

Full experimental and spectral data for compounds 10c, 14–27

Ethyl 2-methyl-2-octenoate: 14 [1]

Triethyl 2-phosphonopropionate **13a** (11.98 mmol; 2.85 g; 1.2 equiv) was added dropwise to a suspension of NaH 60% weight in mineral oil (11.98 mmol; 479 mg; 1.2 equiv) in dry THF (100 mL) at 0 °C under an argon atmosphere. After 1 h stirring, hexanal (9.98 mmol; 1 g) was added. The reaction was stirred to

rt for 2 h before being quenched with a saturated aqueous solution of NH₄Cl. The solvent was removed by half in vacuo and the resulting mixture was extracted with DCM (3×30 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (98:2 petroleum ether: EtOAc) afforded the known product 14 as a colorless oil in 83% yield (8.28 mmol; 1.527 g; *E/Z* mixture 5/1).

¹H NMR (CDCl₃, 300 MHz): 0.85–0.98 (m, 3H, H₈); 1.24–1.40 (m, 7H, H_{6.7,11}); 1.40–1.54 (m, 2H, H₅); 1.85 (d, J=1.5 Hz, 2.5H, H_{9E}); 1.91 (d, J=1.3 Hz, 0.5H, H_{9Z}); 2.16 (q, J=6.8 Hz, 1.7H, H_{4E}); 2.43 (q, J = 7.2 Hz, 0.3H, H_{4Z}); 4.18 (q, J = 7.0 Hz, 1.7H, H_{10E}); 4.19 (q, J = 7.1 Hz, 0.3H, H_{10Z}); 5.9 $(tq, {}^{3}J = 5.9 \text{ Hz}, {}^{4}J = 1.5 \text{ Hz}, 0.17\text{ H}, H_{3Z})$; 6.78 $(tq, {}^{3}J = 7.5 \text{ Hz}, {}^{4}J = 1.3 \text{ Hz}, 0.83\text{ H}, H_{3E})$. ¹³**C** NMR (CDCl₃, 75 MHz): 12.3 (q, C₉); 14.0–14.3 (q, 2C, C_{8.11}); 22.6–28.3 - 28.7–31.6 (t, 4C, C₄₋₇); 60.3 (t, C₁₀); 127.7 (s, C₂); 142.4 (d, C₃); 168.3 (s, C₁).

2-Methyl-2-octenoic acid: 15

To a solution of 14 (7.5 mmol; 1.39 g) in EtOH/H₂O (50/10 mL) was added KOH (11.3 mmol; 633 mg; 1.5 equiv). The reaction was heated at reflux for 3 h. After being cooled down, the solution was concentrated by half in vacuo. The resulting mixture was diluted in ether and washed with a saturated aqueous solution of Na_2CO_3 (3 x 15 mL). The combined aqueous layers were acidified

with 1N HCl until pH = 1 and then extracted with EtOAc (4 x 15 mL). The organic extracts were

dried over MgSO₄, filtered and concentrated in vacuo affording the desired product **15** as a pale yellow oil in 93% yield (6.97 mmol; 1.087 g; E/Z mixture 9/1).

¹**H NMR** (CDCl₃, 300 MHz): 0.80–0.99 (m, 3H, H₈); 1.20–1.42 (m, 4H, H_{6,7}); 1.46 (m, 2H, H₅); 1.83 (s, 2.6H, H_{9E}); 1.91 (s, 0.4H, H_{9Z}); 2.19 (q, J = 7.3 Hz, 1.8H, H_{4E}); 2.51 (q, J = 7.1 Hz, 0.2H, H_{4Z}); 6.09 (tq, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.3$ Hz, 0.1H, H_{3Z}); 6.92 (tq, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.1$ Hz, 0.9H, H_{3E}).

(1,2,4,5-Di-O-isopropyliden-α-D-fructopyranose-3-O-yl) 2-methyl-2-octenoate : 16

To a solution of **15** (6.96 mmol; 1.087 g), DMAP (2.09 mmol, 255 mg, 0.3 equiv) and diacetone D-glucose (7.66 mmol; 1.994 g; 1.1 equiv) at 0 °C in DCM (60 mL) was added DCC (7.66 mmol; 1.580 g; 1.1 equiv). The reaction was allowed to warm to rt overnight under stirring. The mixture was washed with water (2×20 mL) and the resulting aqueous layer was extracted with ether (3×15 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo.

Flash chromatography (90:10 petroleum ether:EtOAc) afforded the desired product **16** as a colorless oil in 77% yield (5.35 mmol; 2.123 g; *E/Z* mixture 5.7/1).

¹**H NMR** (CDCl₃, 300 MHz): 0.77–0.91(m, 3H, H₈); 1.17–1.33 (m, 12H, H_{5-7,15-16}); 1.36 (s, 3H, H₂₀); 1.48 (s, 3H, H₂₁); 1.78 (s, 2.5H, H_{9E}); 1.99 (s, 0.5H, H_{9Z}); 2.13 (q, J = 7.3 Hz, 2H, H₄); 3.92–4.10 (m, 2H, H₁₈); 4.15–4.27 (m, 2H, H_{13,17}); 4.48 (d, J = 3.8 Hz, 1H, H₁₁); 5.23 (m, 1H, H₁₀); 5.84 (d, J = 3.8Hz, 1H, H₁₂); 6.73 (t, J = 7.5 Hz, 1H, H₃). ¹³**C NMR** (CDCl₃, 75 MHz): 12.4–14.0 (q, 2C, C_{8,9}); 22.5–28.2–28.8–31.6 (t, 4C, C₄₋₇); 25.3–26.3–26.8 (q, 4C, C_{15-16, 20-21}); 67.3 (t, C₁₈); 72.7–76.3 - 80.1–83.4–105.2 (d, 5C, C_{10-13,17}); 109.3–112.2 (s, 2C, C_{14,19}); 127.1 (s, C₂); 144.2 (d, C₃); 166.8 (s, C₁).

(2R)-(1,2,4,5-Di-O-isopropyliden-α-D-fructopyranose-3-O-yl) 2-methyl-3-octenoate : 17

To a solution of **16** (0.9 mmol; 360 mg) in DCM (90 mL) was added *N*,*N*-dimethylethanolamine (0.9 mmol; 80.2 mg; 1 equiv). The resulting solution was degassed by bubbling argon and equally distributed in 6 quartz tubes which were irradiated (254 nm) at -60 °C for 6 h. The combined solutions were then passed without concentration through a silica pad then was washed with a 80:20 petroleum ether:EtOAc solution, affording after concentration in vacuo, the

desired product **17** as a colorless oil in 91% yield (0.82 mmol; 326 mg; E/Z mixture 3/1) with a d.e. > 95% determined by ¹H NMR.

¹**H** NMR (CDCl₃, 300 MHz): 0.84–0.94 (m, 3H, H₈); 1.24 (d, J = 7.0 Hz, 0.7H, H_{9Z}); 1.25 (d, J = 7.0 Hz, 2.3H, H_{9E}); 1.27–1.38 (m, 10H, H_{6-7,15-16}); 1.40 (s, 3H, H₂₀); 1.52 (s, 3H, H₂₁); 2.01 (q, J = 6.7 Hz, 1.5H, H_{5E}); 2.05 (q, J = 7.0 Hz, 0.5 Hz, H_{5Z}); 3.12 (q_t, J = 7.1 Hz, 0.7H, H_{2E}); 3.33–3.4 (m, 0.3H, H_{2Z}); 3.94–4.12 (m, 2H, H₁₈); 4.16–4.24 (m, 2H, H_{13,17}); 4.45 (d, J = 3.6 Hz, 1H, H₁₁); 5.25–5.26 (m, 1H, H₁₀); 5.32–5.63 (m, 2H, H₃₋₄); 5.87 (d, J = 3.8 Hz, 1H, H₁₂). ¹³C NMR (CDCl₃, 75 MHz) : 13.8–17.1 (q, 2C, C_{8,9E}); 17.7 (q, C_{9Z}); 22.1–31.2–32.0 (t, 3C, C_{5E-7}); 31.5 (t, C_{5Z}); 67.2 (t, C₁₈); 72.2–75.8 –80.0–83.3–105.0 (d, 5C, C_{10-13,17}); 109.1–112.1 (s, 2C, C_{14,19}); 128.1–132.7 (d, 2C, C_{3E-4E}); 127.9–132.2 (d, 2C, C_{3Z-4Z}); 173.2 (s, C₁). [α]²²_D = -83.0 (c 1.9; CHCl₃). HRMS: Calculated for M + Na⁺: 421.2202; Found M + Na⁺: 421.2201.

To a solution of **17** (2.4 mmol; 964 mg) in dry ether (20 mL) was added PtO_2 (0.12 mmol; 46 mg; 0.05 equiv). The reaction mixture was allowed to stir at room temperature for 6 h under a H₂ atmosphere. The catalyst was then removed by filtration and the resulting solution was concentrated in vacuo to afford the desired product **18** as a colourless oil in 99% yield (2.38 mmol; 952 mg).

¹**H NMR** (CDCl₃, 300 MHz): 0.82–0.94 (m, 3H, H₈); 1.16 (d, J = 6.8 Hz, 3H, H₉); 1.23–1.35 (m, 14H, H_{4-7,15-16}); 1.40 (s, 3H, H₂₀); 1.52 (s, 3H, H₂₁); 1.56–1.75 (m, 2H, H₃); 2.46 (sext, J = 6.9 Hz, 1H, H₂); 3.96–4.15 (m, 2H, H₁₈); 4.17–4.27 (m, 2H, H_{13,17}); 4.44 (d, J = 3.8 Hz, 1H, H₁₁); 5.26 (d, J = 2.1 Hz, 1H, H₁₀); 5.87 (d, J = 3.6 Hz, 1H, H₁₂). [α]²²_D = -26.0 (c 1.6; CHCl₃). **HRMS:** Calculated for M + Na⁺: 423.2359; Found: M + Na⁺: 423.2358.

(2R)-2-Methyloctanol: 19 [2]

To a solution of **18** (2.4 mmol; 952 g) in dry ether (15 mL) at 0 °C, was slowly added LiAlH₄ (3.6 mmol; 135 mg; 1.5 equiv). The reaction was allowed to stir to rt for 1 h. The reaction was cooled down to 0 °C and quenched by adding dropwise and respectively water (140 μ L), 1N NaOH (140 μ L), and water again (280 μ L). The formed precipitate was removed by filtration

and the filtrate was concentrated in vacuo. Flash chromatography (90:10 petroleum ether:EtOAc) afforded the desired and known product **19** as a colorless oil in 83% yield (2.0 mmol; 288 mg) [2].

¹**H NMR** (CDCl₃, 300 MHz): 0.82 (t, J = 7.0 Hz; 3H, H₈); 0.85 (d, J = 6.8 Hz, 3H, H₉); 1.08–1.13 (m, 1H, H_{3a}); 1.28–1.35 (m, 9H, H_{4-7,3b}); 1.61 (m, 1H, H₂); 3.46 (ddd, ²J=28.4 Hz, ³ J_1 = 10.3 Hz, ³ J_2 = 5.6 Hz, 2H, H₁). ¹³**C NMR** (CDCl₃, 75 MHz): 14.2 (q, C₈); 16.7 (q, C₉); 22.8–27.1–29.7–32.0–33.3 (t, 5C, C₃₋₇); 35.9 (d, C₂); 68.6 (t, C₁). [α]²²_D = +5.0 (c 1.2; CHCl₃). Literature: [α]²²_D = +10.3 (c 1.0; CH₂Cl₂) [1].

(2R)-2-Methyloctanal: 20 [3]

To a solution of **19** (1.88 mmol; 272 mg) in dry DCM (15 mL) at 0 °C was added the Dess-Martin periodinane 15% weight in DCM (2.26 mmol; 4.85 mL; 1.2 equiv). The reaction was allowed to stir to rt for 2.5 h and was then quenched by adding a 1:1 mixture of saturated aqueous $NH_4CI:Na_2S_2O_3$. The aqueous layer was extracted with DCM (3 × 10 mL) and the combined organic extracts were dried over MgSO₄, filtered and

concentrated in vacuo. Flash chromatography (95:5 petroleum ether:EtOAc) afforded the desired and known compound **20** as a colorless oil in 70% yield (1.32 mmol; 190 mg) [3].

¹**H NMR** (CDCl₃, 300 MHz): 0.83–0.94 (m, 3H, H₈); 1.07 (d, J = 7.0 Hz, 3H, H₉); 1.27 (m, 9H, H₂₋₇, 3_a); 1.68 (m, 1H, H_{3b}); 2.32 (s_xd, $J_1 = 6.8$ Hz, $J_2 = 2.1$ Hz, 1H, H₂); 9.60 (d, J = 2.1 Hz, 1H, H₁). **[\alpha]**²²_D = -17.2 (c 1.9; CHCl₃).Literature [3]: **[\alpha]**²²_D = -19.7 (c 5.8; CHCl₃).

To a solution of 20 (0.86 mmol; 123 mg) in toluene (5 mL) was added the (carbethoxyethylidene) triphenylphosphorane (2.6 mmol; 1 g; 3 equiv). The reaction was heated at reflux for 16 h. After being cooled down, the solution was concentrated in vacuo. Flash chromatography (99:1 petroleum

ether:EtOAc) afforded the known product **21** as a colorless oil in 80% yield (0.69 mmol; 155 mg) [2].

¹**H NMR** (CDCl₃, 300 MHz): 0.82–0.93 (m, 3H, H₁₀); 0.99 (d, J = 6.6 Hz, 3H, H₁₂); 1.20–1.40 (m, 10H, H₅₋₉); 1.30 (t, J = 7.1 Hz, 3H, H₁₄); 1.83 (d, J = 1.3 Hz, 3H, H₁₁); 2.41–2.56 (m, 1H, H₄); 4.18 (q, J = 7.2 Hz, 2H, H₁₃); 6,53 (dq, ³J = 10.1 Hz, ⁴J = 1.4 Hz, 1H, H₃). ¹³**C NMR** (CDCl₃, 75 MHz): 12.6–14.2–14.4–20.1 (q, 4C, C_{10-12,14}); 22.8–27.6–29.5–31.9–37.0 (t, 5C, C₅₋₉); 33.4 (d, C₄); 60.5 (t, C₁₃); 126.4 (s, C₂); 148.3 (d, C₃); 168.6 (s, C₁). $[\alpha]^{22}{}_{D} = -18.7$ (c 0.5; CHCl₃). Literature: $[\alpha]^{22}{}_{D} = -25.9$ (c 0.75; CH₂Cl₂) [4].

(4R)-2,4-dimethyl-2-decen-1-ol: 22 [2].

To a solution of **21** (0.35 mmol; 80 mg) in dry THF (3 mL) cooled down to 0 °C, under an argon atmosphere, was added dropwise the DIBAL-H 1M in heptane (0.74 mmol; 0.74 mL; 2.1 equiv). The solution was stirred to rt for 2 h before being quenched by adding 1N HCl until pH = 1. The white

precipitate formed was removed by filtration and the filtrate was extracted with DCM ($3 \times 10 \text{ mL}$). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo to afford the known product **22** as a colorless oil in quantitative yield (0.35 mmol; 64 mg).

¹**H NMR** (CDCl₃, 300 MHz): 0.84–0.95 (m, 3H, H₁₀); 0.93 (d, J = 6.8 Hz, 3H, H₁₂); 1.16–1.36 (m, 10H, H₅₋₉); 1.66 (d, J = 1.3 Hz, 3H, H₁₁); 2.28–2.43 (m, 1H, H₄); 3.99 (d, J = 0.9 Hz, 2H, H₁); 5.17 (dq, ³J=9.5 Hz, ⁴J = 1.3 Hz, 1H, H₃).

(4R)-2,4-dimethyl-2-decenal: 23

To a solution of **22** (0.35 mmol; 65 mg) in dry DCM (4 mL) at 0 °C was added the Dess-Martin periodinane 15% weight in DCM (0.42 mmol; 0.87 mL; 1.2 equiv). The reaction was allowed to stir to rt for 2 h and was then quenched by adding a 1:1 mixture of saturated aqueous $NH_4Cl:Na_2S_2O_3$. The aqueous layer was extracted with

DCM (3 \times 10 mL) and the combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (95:5 petroleum ether:EtOAc) afforded product **23** as a colorless oil in 75% yield (0.26 mmol; 47.6 mg).

¹**H NMR** (CDCl₃, 300 MHz): 0.84–0.92 (m, 3H, H₁₀); 1.06 (d, J = 6.8 Hz, 3H, H₁₂); 1.18–1.35 (m, 10H, H₅₋₉); 1.75 (d, J = 1.3 Hz, 3H, H₁₂); 2.60–2.76 (m, 1H, H₄); 6.25 (dq, ³J = 9.8 Hz, ⁴J = 1.1 Hz, 1H, H₃); 9.39 (s, 1H, H₁).

Triethyl phosphonoacetate **13c** (0.34 mmol; 90 μ L; 1.2 equiv) was added dropwise to a suspension of NaH 60% weight in mineral oil (0.34 mmol; 13.5 mg; 1.2 equiv) in dry THF (2 mL) at 0 °C under a nitrogen atmosphere. After 1 h stirring, aldehyde **23** (0.28 mmol;

51 mg) was added dropwise. The reaction was stirred to rt overnight before being quenched with a saturated aqueous NH₄Cl solution. The solvent was removed by half in vacuo and the resulting mixture was extracted with DCM (3×5 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (98:2 petroleum ether:EtOAc) afforded the desired product **24** as a colorless oil in 77% yield (0.21 mmol; 55 mg).

¹**H NMR** (CDCl₃, 300 MHz): 0.80–0.96 (m, 3H, H₁₂); 0.97 (d, J = 6.6 Hz, 3H, H₁₄); 1.15–1.50 (m, 13H, H_{7-11,16}); 1.77 (d, J = 1.14 Hz, 3H, H₁₃); 2.38–2.56 (m, 1H, H₆); 4.14 (q, J = 7.1 Hz, 2H, H₁₅); 5.67 (d, J = 9.8 Hz, 1H, H₅); 5.78 (d, J = 15.8 Hz, 1H, H₂); 7.31 (d, J = 15.8 Hz, 1H, H₃). Data in accordance with [5]

(6R)-4,6-Dimethyl-2,4-dodecadienoic acid: 25 [5]

To a solution of **24** (0.21 mmol; 55 mg) in a 1:1:1 mixture of THF:MeOH:H₂O (2 mL) was added LiOH.H₂O (2.1 mmol; 88 mg; 10 equiv). The reaction was stirred at rt overnight before being concentrated by half in vacuo, diluted with ether and washed with a saturated aqueous

 Na_2CO_3 solution (4 × 5 mL). The combined aqueous layers were acidified with 1N HCl until pH = 1 and was then extracted with EtOAc (5 × 5 mL). The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo, affording the desired product **25** as a pale yellow oil in 70% yield (0.15 mmol; 34 mg).

¹**H NMR** (CDCl₃, 300 MHz): 0.80–0.94 (m, 3H, H₁₂); 0.99 (d, J = 6.6 Hz, 3H, H₁₄); 1.15–1.43 (m, 10H, H₇₋₁₁); 1.79 (d, J=1.2 Hz, 3H, H₁₃); 2.47–2.59 (m, 1H, H₆); 5.76 (d, J = 9.9 Hz, 1H, H₅); 5.82 (d, J = 15.6 Hz, 1H, H₂); 7.42 (d, J = 15.6 Hz, 1H, H₃). Data in accordance with reference [5].

O-t-Butyldimethylsilyl L-tyrosine methylester: 26 [6]

To a solution of L-tyrosine methylester (0.51 mmol; 100 mg) in dry DCM (5 mL) were added imidazole (0.61 mmol; 93 mg; 1.2 equiv) and TBSCI (0.61 mmol; 42 mg; 1.2 equiv). The reaction was stirred at rt overnight before being quenched with a saturated aqueous NH₄CI solution. Phases were separated and the aqueous layer was extracted with DCM (3 × 5 mL). The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (EtOAc) afforded the desired product **26** as a colorless oil in 87% yield (0.21 mmol; 137 mg) whose data were in

accordance with the literature [6].

Methyl 2-[(2*E*,4*E*)-4,6-dimethyldodeca-2,4-dienamido]-3-(4-*t*-butyldimethylsilyloxyphenyl)-propanoate : 27

Тο а solution of acid 25 (0.15 mmol; 34 mg), TBSprotected L-tyrosine methylester **26** (0.17 mmol; 53 mg; 1.1 equiv) and HOBt (0.17 mmol; 23 mg; 1.1 equiv) in DCM (2 mL) was added DCC (0.17 mmol; 35 mg; 1.1 equiv). The reaction was stirred at rt for 5.5 h. The solvent was removed in vacuo and flash chromatography of the residue

(85:15 petroleum ether:EtOAc) afforded the desired product **27** as a colorless oil in 57% yield (85 μ mol; 44 mg).

¹**H NMR** (CDCl₃, 500 MHz): 0.17 (s, 6H, H_{26,27}); 0.87 (t, J = 6.7 Hz, 3H, H₂₂); 0.96 (d, J = 6.6 Hz, 3H, H₂₄); 0.97 (s, 9H, H₂₈₋₃₀); 1.12–1.42 (m, 10H, H₁₇₋₂₁); 1.74 (d, J = 0.9 Hz, 3H, H₂₃); 2.43–2.55 (m, 1H, H₁₆); 3.09 (dd, $J_1 = 5.6$ Hz, $J_2 = 2.0$ Hz, 2H, H₃); 3.70 (s, 3H, H₂₅); 4.94 (dt, $J_1 = 7.7$ Hz, $J_2 = 5.7$ Hz, 1H, H₂); 5.62 (d, J = 9.8 Hz, 1H, H₁₅); 5.73 (d, J = 15.3 Hz, 1H, H₁₂); 5.97 (d, J = 7.8 Hz, 1H, H₁₀); 6.75 (d, J = 8.4 Hz, 2H, H_{6.8}); 6.95 (d, J = 8.4 Hz, 2H, H_{4.9}); 7.21 (d, J = 15.3 Hz, 1H, H₁₃). ¹³**C** NMR (CDCl₃, 75 MHz): 4.3; 12.6; 14.2. 18.3; 20.7; 22.8; 25.8; 27.6; 29.5; 32.0; 37.3; 37.4; 52.4; 53.4; 117.4; 120.2; 128.7; 130.4; 131.0; 147.1; 148.0; 154.8; 166.2; 172;4.

Gymnastatin H: 10c [7]

To a solution of **27** (77.5 μ mol; 40 mg) in dry THF (1 mL) was added TBAF 1M in THF (85.3 μ mol; 85 μ L; 1.1 equiv). The solution was stirred at rt for 3 h before being quenched with a saturated aqueous NH₄Cl solution. The resulting mixture was extracted with DCM (3 × 5 mL). The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash

chromatography (50:50 petroleum ether:EtOAc) afforded gymnastatin H **10c** as a colorless oil in 96% yield (75 µmol; 30 mg).

¹**H NMR** (CDCl₃, 500 MHz): 0.87 (t, J = 6.7 Hz, 3H, H₂₂); 0.95 (d, J = 6.6 Hz, 3H, H₂₄); 1.18–1.33 (m, 10H, H₁₇₋₂₁); 1.73 (d, J = 0.7Hz, 3H, H₂₃); 2.41–2.55 (m, 1H, H₁₆); 3.10 (dd, $J_1 = 14.1$ Hz, $J_2 = 5.8$ Hz, 1H, H_{3a}); 3.03 (dd, $J_1 = 14.1$ Hz, $J_2 = 5.8$ Hz, 1H, H_{3b}); 3.72 (s, 3H, H₂₅); 4.96 (dt, $J_1 = 7.9$ Hz, $J_2 = 5.7$ Hz, 1H, H₂); 5.62 (d, J = 9.8 Hz, 1H, H₁₅); 5.74 (d, J = 15.3 Hz, 1H, H₁₂); 6.11 (d, J = 8.0 Hz, 1H, H₁₀); 6.74 (d, J = 8.5 Hz, 2H, H_{6,8}); 6.94 (d, J = 8.5 Hz, 2H, H_{5,9}); 7.23 (d, J = 15.3 Hz, 1H, H₁₃). ¹³**C** NMR (CDCl₃, 75 MHz): 12.6; 14.2; 20.6; 22.8; 27.6; 29.5; 31.9; 33.3; 37.4; 52.5; 53.6; 115.7; 117.0; 127.2; 130.4; 131.0; 147.6; 148.5; 155.6; 166.7; 172.6. [α]²²_D = +104 (c 0.3; CHCl₃) – Lit.: [α]²²_D = +42.3 (c 0.14; CHCl₃). HRMS (ESI): Calculated : M + Na⁺: 424.2458; Found: M + Na⁺: 424.2451. Spectroscopic data in accordance with [7].

References

- 1. Nagumo, S.; Miura, T.; Mizukami, M.; Miyoshi, I.; Imai, M.; Kawahara, N.; Akita, H. *Tetrahedron* **2009**, *65*, 9884–9896. doi:<u>10.1016/j.tet.2009.0307</u>
- Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195–7203. doi:10.1021/jo00077a050

- 3. Goldstein, S. W.; Overman, L. E.; Rabinowitz, M. H. *J. Org. Chem.* **1992**, *57*, 1179–1190. doi:<u>10.1021/jo00030a026</u>
- McKillop, A.; McLaren, L.; Watson, R. J.; Taylor, R. J. K.; Lewis, N. *Tetrahedron Lett.* 1993, 34, 5519–5522. doi:<u>10.1016/S0040-4039(00)73870-6</u>
- 5. Alcaraz, L.; Macdonald, G.; Ragot, J.; Lewis, N. J.; Taylor, R. J. K. *Tetrahedron* **1999**, *55,* 3707–3716. doi:<u>10.1016/S0040-4020(98)00879-5</u>
- Jacobsen, E. J.; Mitchell, M. A.; Hendges, S. K.; Belonga, K. L.; Skaletzky, L. L.; Stelzer, L. S.; Lindberg, T. J.; Fritzen, E. L.; Schostarez, H. J.; O'Sullivan, T. J.; Maggiora, L. L.; Stuchly, C. W.; Laborde, A. L.; Kubicek, M. F.; Poorman, R. A.; Beck, J. M.; Miller, H. R.; Petzold, G. L.; Scott, P. S.; Truesdell, S. E.; Wallace, T. L.; Wilks, J. W.; Fisher, C.; Goodman, L. V.; Kaytes, P. S.; Ledbetter, S. R.; Powers, E. A.; Vogeli, G.; Mott, J. E.; Trepod, C. M.; Staples, D. J.; Baldwin, E. T.; Finzel, B. C. J. Med. Chem. 1999, 42, 1525–1536. doi:10.1021/jm9803222
- 7. Amagata, T.; Minoura, K.; Numata, A. *J. Nat. Prod.* **2006**, *69*, 1384–1388. doi:<u>10.1021/np0600189</u>