Supporting Information

for

$\mathbf{R h}$-Catalyzed rearrangement of vinylcyclopropane to $\mathbf{1 , 3}$-diene units attached to N -heterocycles

Franca M. Cordero ${ }^{* 1}$, Carolina Vurchio ${ }^{1}$, Stefano Cicchi ${ }^{1}$, Armin de Meijere ${ }^{2}$ and Alberto Brandi* ${ }^{1}$

Address: ${ }^{1}$ Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy and ${ }^{2}$ Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany

Email: Franca M. Cordero* - franca.cordero@unifi.it; Carolina Vurchio - carla.vurchio@unifi.it;
Armin de Meijere - ameijer1@gwdg.de; Alberto Brandi* - alberto.brandi@unifi.it

* Corresponding author

Experimental part

Table of contents

General remarks S2
6,7-Dimethoxy-3,4-dihydroisoquinoline 2-oxide (6) S2
9',10'-Dimethoxy-3', $4^{\prime}, 7^{\prime}, 11 b^{\prime}$-tetrahydro-spiro[cyclopropane-1,1’(2’H,6’H)-pyrido[2,1-a]isoquinolin]-2'-one (8) and 1-[1-(6,7-dimethoxy-3,4-dihydro-1-isoquinolinyl)cyclopropyl]-1-propanone (9)S3
(1'S,2'S,8a'S)-1',2'-Di-tert-butoxy-7'-oxohexahydrospiro[cyclopropane-1- 8'(5'H)indolizine] (anti-12), (1'S,2'S,8a'R)-1',2'-di-tert-butoxy-7'-oxohexahydrospiro [cyclopropane-1-8’(5’H)indolizine] (syn-12), and 1-\{1-[(3S,4S)-3,4-di-tert-butoxy-3,4- dihydro-2H-pyrrol-5-yl]cyclopropyl\}-1-propanone (13) S4
9',10'-Dimethoxy-2'-methylene-3',4',7',11b’-tetrahydro-spiro[cyclopropane- 1,1'(2’H,6H')-pyrido[2,1-a]isoquinoline] (14) S5
(1'S,2'S,8a'S)-1',2'-Di-tert-butoxy-7'-methylenehexahydrospiro[cyclopropane-18'(5'H)indolizine] (15)
(3a’R,9a'S,9b’S)-2',2'-Dimethyl-8'-methylenehexahydrospiro\{cyclopropane-1$9^{\prime}\left(6^{\prime} H\right)\left[1^{\prime}, 3^{\prime}\right]$ dioxolo[4',5'-a]indolizine (17)
9,10-Dimethoxy-2-methyl-1-vinyl-3,6,7,11b-tetrahydro-4H-pyrido[2,1-a]isoquinoline
(18), (1E)-1-ethylidene-9,10-dimethoxy-2-methylene-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinoline [(E)-19] and (1Z)-1-ethylidene-9,10-dimethoxy-2-methylene-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinoline [(Z)-19]
(1S,2S,8aS)-1,2-Di-tert-butoxy-7-methyl-8-vinyl-1,2,3,5,6,8a-hexahydroindolizine (20) S8
(3aR,9aS,9bS)-2,2,8-Trimethyl-9-vinyl-3a,4,6,7,9a,9b-hexahydro[1,3]dioxolo[4,5a]indolizine (21)

General Remarks: All reactions requiring anhydrous conditions were carried out under a nitrogen, atmosphere and the solvents were dried appropriately before use. R_{f} values refer to TLC on 0.25 mm silica gel plates. Microwave-assisted reactions were carried out in a CEM Discover (TM) single mode microwave reactor with an IR temperature sensor. CDCl_{3} was used as solvent for NMR measurements. NMR data are reported in δ (ppm) from TMS at $25^{\circ} \mathrm{C}$ and peak assignments were made on the basis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC experiments. IR spectra were recorded in CDCl_{3} solution unless otherwise specified. Accurate mass spectra were recorded on a LTQ-Orbitrap highresolution mass spectrometer (Thermo, San Jose, CA, USA), equipped with a conventional ESI source. Bicyclopropylidene (BCP) was prepared according to the previously published procedure. ${ }^{1}$

6,7-Dimethoxy-3,4-dihydroisoquinoline 2-oxide (6)

$\mathrm{NaHCO}_{3}(5.55 \mathrm{~g}, 66 \mathrm{mmol})$ was added to a stirred suspension of isoquinoline $5(2.55 \mathrm{~g}$, 13.2 mmol) in a $4: 1$ mixture of $\mathrm{MeCN} /$ THF (24 mL) and aqueous Na_{2} EDTA ($0.01 \mathrm{M}, 18.4 \mathrm{~mL}$). The mixture was then cooled in an ice bath and Oxone ${ }^{\circledR}(10 \mathrm{~g}, 16.25 \mathrm{mmol})$ added portionwise over 4.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min , then diluted with EtOAc (20 mL) and $\mathrm{H}_{2} \mathrm{O}(20$ mL). The two phases were separated and the aqueous solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the crude nitrone. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether and chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{MeOH}$, first 2:1, then $3: 2$) of the compound recovered from the recrystallization mother liquors gave analytically pure $6(1.83 \mathrm{~g}, 66 \%)$ as a yellow solid identical to that reported in the literature. ${ }^{2}$

6: $R_{f} 0.2$ (EtOAc/MeOH 2:1); m.p. $182-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=7.66(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 6.72$ (s, 1H) and $6.61(\mathrm{~s}, 1 \mathrm{H})(5-\mathrm{H}$ and $8-\mathrm{H}), 4.07$ (pseudo t, $2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, 3-\mathrm{H}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.88 (s, 3H, OCH_{3}), 3.11 (t, 2H, J=7.9 Hz, 4-H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=149.9$ (s) and 148.4 (s) (C-6 and C-7), 133.7 (d, C-1), 123.2 (s) and 121.0 (s) (C-4a and C-7a), 110.7 (d) and 108.5 (d) (C-5 and C-8), 57.7 (t, C-3), 56.2 (q, OCH_{3}), 56.1 (q, OCH_{3}), 27.6 (t, C-4) ppm. IR (KBr): $v=3032,2923,1598,1598,1517,1282,1227,1164,1119 \mathrm{~cm}^{-1}$. MS (70 eV, EI): m/z (\%) $=207$ (100) [$\left.\mathrm{M}^{+}\right], 192$ (35), 176 (9), 163 (8), 146 (13), 133 (35). $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$ (207.23): calcd. C 63.76, H 6.32, N 6.76; found C 63.41, H 6.51, N 6.69.

9',10'-Dimethoxy-3',4',7',11b'-tetrahydro-spiro[cyclopropane-1,1 '(2'H,6'H)-pyrido[2,1a] isoquinolin]-2'-one (8) and 1-[1-(6,7-dimethoxy-3,4-dihydro-1-isoquinolinyl)cyclopropyl]-1propanone (9)

A mixture of the nitrone $6(72 \mathrm{mg}, 0.35 \mathrm{mmol})$ and BCP $2(0.03 \mathrm{~mL}, 0.29 \mathrm{mmol})$ in xylenes $(2.2 \mathrm{~mL})$ was heated in a screw-cap sealed Sovirel tube at $125{ }^{\circ} \mathrm{C}$ for 64 h . The reaction mixture was filtered through a short pad of silica gel eluting first with petroleum ether to remove the solvent and then with MeOH . Chromatography on silica gel (eluent: EtOAc/MeOH 3:1) of the crude mixture afforded $\mathbf{8}^{3}$ ($60 \mathrm{mg}, 72 \%$) as a pale yellow oil [$R_{f} 0.35$ (EtOAc/MeOH 3:1)] and $\mathbf{9}$ as a beige solid ($19 \mathrm{mg}, 23 \%$). The same procedure repeated on a larger scale (6: $750 \mathrm{mg}, 3.62 \mathrm{mmol}$; 2: $0.2 \mathrm{~mL}, 2.18 \mathrm{mmol}$; xylenes: 16.4 mL) afforded $\mathbf{8}$ and $\mathbf{9}$ in lower yield (8: $322 \mathrm{mg}, 51 \%$; 9: 126 mg , 20\%).

9: $R_{f} 0.63$ (EtOAc/MeOH 3:1); m.p. $75-77{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=6.99(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.71$ (s, 1H, 5-H), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.73-3.67$ (m, 2H, 3-H), 2.68 (pseudo t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$), 2.35 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), 1.59-1.51 (m, 2H, cPr), 1.36-1.28 (m, 2H, ${ }_{c} \mathrm{Pr}$), $0.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=209.5(\mathrm{~s}, \mathrm{CO}), 164.6(\mathrm{~s}, \mathrm{C}-$ 1), 151.1 (s, C-7), 147.7 (s, C-6), 131.4 (s, C-8a), 121.9 (s, C-4a), 110.4 (d, C-5), 108.7 (d, C-8), $56.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.0\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 47.4(\mathrm{t}, \mathrm{C}-3), 37.7(\mathrm{~s}, \mathrm{cPr}), 34.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 25.3(\mathrm{t}, \mathrm{C}-4), 16.7(\mathrm{t}$, 2C, $c \mathrm{Pr}), 8.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ ppm. IR: $v=3005,2933,1689,1622,1517,1362,1274,1136 \mathrm{~cm}^{-1} . \mathrm{MS}$ (70 eV, EI): m/z (\%) = 287 (86) [M $\left.{ }^{+}\right], 286$ (62), 272 (96), 256 (30), 242 (19), 230 (58), 216 (65), 200 (100). $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ (287.35): calcd. C 71.06, H 7.37, N 4.87; found C 70.66, H 7.73, N 4.89.
(1'S,2'S,8a'S)-1 ',2'-Di-tert-butoxy-7'-oxohexahydrospiro[cyclopropane-1-8'(5'H)indolizine] (anti12), (1'S,2'S,8a'R)-1',2'-di-tert-butoxy-7'-oxohexahydrospiro[cyclopropane-1-8'(5'H)indolizine] (syn-12), and 1-\{1-[(3S,4S)-3,4-di-tert-butoxy-3,4-dihydro-2H-pyrrol-5-yl] cyclopropyl\}-1propanone (13)

A mixture of the nitrone $\mathbf{1 0}(507 \mathrm{mg}, 2.21 \mathrm{mmol})$ and BCP $2(0.23 \mathrm{~mL}, 2.43 \mathrm{mmol})$ in xylenes $(4 \mathrm{~mL})$ in a sealed vial was irradiated in a microwave reactor first at $120^{\circ} \mathrm{C}$ for 1 h and then at $125^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was filtered through a short pad of silica gel eluting first with petroleum ether to remove the solvent and then with MeOH . Chromatography on silica gel (eluent: EtOAc/MeOH from 20:1 to 5:1) of the concentrated methanolic solution afforded anti-12 ($308 \mathrm{mg}, 45 \%$) as a pale yellow oil, syn-12 ($69 \mathrm{mg}, 10 \%$) and 13 ($88 \mathrm{mg}, 13 \%$). Compound anti-12 had the same spectral characteristics as its enantiomer, ${ }^{3}$ but had the opposite sign of optical rotation.
anti-12: $R_{f} 0.50(\mathrm{EtOAc} / \mathrm{MeOH} 10: 1) ;[\alpha]_{\mathrm{D}}{ }^{22}=+17.6\left(c=0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=$ 3.91 (dt, $J=6.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 3.62 (dd, $J=6.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $3.21-3.15\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right.$), 3.07 (dd, $J=10.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}$), 2.82-2.65 (m, $\left.4 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}+5-\mathrm{H}_{\mathrm{b}}+6-\mathrm{H}_{\mathrm{a}}+8 \mathrm{a}-\mathrm{H}\right), 2.46-2.33(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}$), 1.43-1.35 (m, 1H, c-Pr), 1.34-1.28 (m, 1H, c-Pr), 1.21 (s, 9H, $t \mathrm{Bu}$), 1.20 ($\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}$), 0.99-0.86 (m, 2H, c-Pr) ppm. ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=208.4$ (s, CO), 81.9 (d, C-1), 78.0 (d, C-2), 74.6 (s, CMe ${ }_{3}$), 74.1 ($\mathrm{s}, C \mathrm{CMe}_{3}$), 68.8 (d, C-8a), 60.2 (t, C-3), 48.8 (t, C-5), 37.2 (t, C-6), 30.1 ($\mathrm{s}, \mathrm{C}-$ 8), 29.0 ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 28.9 ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 15.4 (t, $c \operatorname{Pr}$), 13.6 (t, cPr) ppm.
syn-12: $R_{f} 0.17$ (EtOAc/MeOH 10:1); $[\alpha]_{\mathrm{D}}{ }^{23}=-170.6\left(c=0.835, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}): \delta$ $=3.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.41\left(\mathrm{dt}, J=2.3 ; 13.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right)$, 3.13 (dd, $J=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}$), 3.07 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$), $2.94\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right.$), 2.89 (ddd, $J=14.1,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), 2.75 (ddd, $J=17.2,12.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}$), 2.10 (dt, $J=17.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}$), 1.66 (ddd, $J=9.5,6.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}-\mathrm{Pr}$), $1.19(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.12(\mathrm{~s}, 9 \mathrm{H}$, $t \mathrm{Bu}$), 1.01-0.94 (m, 1H, c-Pr), 0.87 (ddd, $J=9.5,6.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, c-\operatorname{Pr}$), 0.59 (ddd, $J=9.0,6.5,4.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{c}-\mathrm{Pr}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=209.9$ (s, CO), 77.3 (d, C-1), 75.6 (d, C-2), 74.4 (s, $C \mathrm{CMe}_{3}$), 73.7 ($\mathrm{s}, \mathrm{CMe}_{3}$), 68.4 (d, C-8a), 58.2 (t, C-3), 45.6 (t, C-5), 35.9 (t, C-6), 28.5 ($\mathrm{f}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 28.2 ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 26.4 ($\mathrm{s}, \mathrm{C}-8$), 21.4 (t, cPr), 9.2 (t, cPr) ppm. IR: $v=3068,2959,1697,1368$, 1187, $1078 \mathrm{~cm}^{-1}$. MS (70 eV, EI): m/z (\%) = 309 (3) [$\left.\mathrm{M}^{+}\right], 252$ (95), 236 (4), 196 (40), 137 (44), 57 (100).

13: $R_{f} 0.85(\mathrm{EtOAc} / \mathrm{MeOH} 10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-4.55\left(c=0.84, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=$ 4.50-4.46 (m, 1H, 4-H), 4.14-4.03 (m, 2H, 3-H + 2-Ha), 3.49 (ddd, $J=14.9,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$), 2.74 (dq, $J=18.0$; $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Me}$), 2.53 (dq, $J=18.0 ; 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Me}$), 1.58 (ddd, $J=9.4,7.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, c-\operatorname{Pr}), 1.38$ (ddd, $J=9.3,7.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}-\mathrm{Pr}), 1.18$ (s, 9H, $t \mathrm{Bu}$), 1.16 (s,
$9 \mathrm{H}, \mathrm{tBu}$), 1.10 (ddd, $J=9.4,7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}, c-\mathrm{Pr}$), 1.00 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.87 (ddd, $J=9.3,7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{c}-\mathrm{Pr}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=207.4$ (s, CO), 176.4 (s, C=N), 84.0 (d, $\mathrm{C}-4), 79.5$ (d, C-3), 75.2 ($\mathrm{s}, \mathrm{CMe}_{3}$), 73.8 ($\mathrm{s}, \mathrm{CMe}_{3}$), 65.3 (t, C-2), 34.4 (t, $\mathrm{CH}_{2} \mathrm{Me}$), 33.7 (s, cPr), 28.7 (q, 9C, $t-\mathrm{Bu}), 18.0(\mathrm{t}, c \operatorname{Pr}), 13.5(\mathrm{t}, c \operatorname{Pr}), 8.1\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ ppm. IR: $v=2968,1697,1634$, 1368, 1187, $1069 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): \mathrm{m} / \mathrm{z}(\%)=309$ (1) [M $\left.{ }^{+}\right], 253$ (3), 197 (13), 168 (10), 124 (5), 57 (100). $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{3}$ (309.44): calcd. C 69.86, H 10.10, N 4.53; found C 69.53, H 10.21, N 4.63.

9',10'-Dimethoxy-2'-methylene-3',4',7',11b'-tetrahydro-spiro[cyclopropane-1,1 '(2'H,6H')-pyrido[2,1-a] isoquinoline] (14)

A suspension of methyl(triphenyl)phosphonium bromide ($1.29 \mathrm{~g}, 3.6 \mathrm{mmol}$) in THF (18.4 mL) was treated with t-BuOK ($387 \mathrm{mg}, 3.45 \mathrm{mmol}$). A solution of the ketone $8(416 \mathrm{mg}, 1.44 \mathrm{mmol})$ in THF (16.6 mL) was then added dropwise over 20 min to the yellow suspension. The reaction mixture was stirred for 18 h at r.t., diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the THF evaporated under reduced pressure. After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by chromatography on silica gel (eluent: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 4: 1$) to afford the VCP 14 ($395 \mathrm{mg}, 96 \%$) as a pale yellow solid.

14: $R_{f} 0.26\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 3: 1\right)$; m.p. $91-93{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=6.95(\mathrm{~s}, 1 \mathrm{H})$ and 6.54 (s, $1 \mathrm{H})\left(8{ }^{\prime}-\mathrm{H}\right.$ and $\left.11^{\prime}-\mathrm{H}\right), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CHH}), 4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{CHH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.49 (s, 1H, 11b’-H), 3.40 (ddd, $J=13.1,6.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}$), 3.13 (ddd, $J=13.1$, 9.4, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{b}}$), 2.96-2.83 (m, 3H, 4’-H + 7’- H_{a}), 2.58 (ddd, $J=16.8,6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-$ H_{b}), 2.48-2.38 (m, 1H, 3'- H_{a}), 2.33 (dt, $J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3$ ' $-\mathrm{H}_{\mathrm{b}}$), 1.14-1.04 (m, 1H, cPr), 0.750.66 (m, 2H, cPr), $0.57-0.47$ (m, 1H, cPr) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=147.6$ (s), 147.4 (s) and 146.5 (s) (C-2', C-9', and C-10'), 126.8 (s) and 126.7 (s) (C-7a' and C-11a'), 111.4 (d) and 111.1 (d, C-8‘ and C-11'), $106.9\left(\mathrm{t},=\mathrm{CH}_{2}\right)$ 2, $65.1(\mathrm{~d}, \mathrm{C}-11 \mathrm{~b} ’), 55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 48.9(\mathrm{t}$, 2C, C-4’ + C-6’), 33.0 (t, C-3’), 26.0 ($s, C-1$), 24.3 (t, C-7’), 10.8 (t, 2C, C-2 + C-3) ppm. IR: $v=$ 3081, 3000, 2936, 2846, 1605, 1514, 1460, $1261 \mathrm{~cm}^{-1}$. MS (70 eV, EI): m/z (\%) = 285 (78) [M $\left.{ }^{+}\right]$, 284 (100), 270 (38), 256 (12), 242 (12), 218 (27), 203 (46), 190 (86). $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ (285.38): calcd. C 75.76, H 8.12, N 4.91; found C 75.67, H 8.01, N 4.89
(1'S,2'S,8a'S)-1',2'-Di-tert-butoxy-7'-methylenehexahydrospiro[cyclopropane-18'(5’H)indolizine] (15)

The VCP 15 was prepared starting from the ketone anti-12 ($280 \mathrm{mg}, 0.9 \mathrm{mmol}$) following the same procedure used to prepare $\mathbf{1 4}(3 \mathrm{~h}$ instead of 18 h$)$. Chromatography on silica gel (eluent: EtOAc/MeOH, first 14:1, then 10:1) afforded 15 (215 mg , 78\%) as a yellow oil.

15: $R_{f} 0.26(\mathrm{EtOAc} / \mathrm{MeOH} 15: 1) ;[\alpha]_{\mathrm{D}}{ }^{27}=+28.7\left(c=0.985, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}): \delta=$ $4.68-4.65(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHH}), 4.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}), 3.89(\mathrm{dt}, J=6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$, 3.64 (dd, $J=7.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.11-2.98\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.99\left(\mathrm{dd}, J=10.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right)$, 2.75 (dd, $\left.J=10.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 2.59-2.41\left(\mathrm{~m}, 2 \mathrm{H}, 5 \mathrm{H}_{\mathrm{b}}+6 \mathrm{H}_{\mathrm{a}}\right), 2.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H})$, 2.31-2.20 (m, 1H, 6-Hb), $1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06-0.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}), 0.82-0.61$ (m, 2H, cPr), 0.52-0.42 (m, 1H, cPr) ppm. ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=148.0(\mathrm{~s}, \mathrm{C}-7), 106.4\left(\mathrm{t},=\mathrm{CH}_{2}\right)$, 80.4 (d, C-1), 79.2 (d, C-2), 74.4 (s, CMe 3), 73.8 ($\mathrm{s}, \mathrm{CMe}_{3}$), 70.4 (d, C-8), 60.1 (t, C-3), 52.2 (t, C5), 32.8 (t, C-6), 29.2 ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 29.1 ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CH}_{3}$), 23.5 ($\mathrm{s}, \mathrm{C}-8$), 9.7 (t, $c \mathrm{Pr}$), 9.4 (t, $c \mathrm{Pr}$) ppm. IR: $v=3077,2968,1648,1368,1191,1074 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%) = $306(2)[\mathrm{M}-1]^{+}, 250$ (100), 234 (7), 194 (31), 135 (33), 57 (67). HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.25841$, found 308.25819 .
(3a 'R,9a'S,9b'S)-2',2'-Dimethyl-8'-methylenehexahydrospiro\{cyclopropane-1$9^{\prime}\left(6^{\prime} H\right)\left[1^{\prime}, 3^{\prime}\right]$ dioxolo[4',5'-a] indolizine\} (17)

The VCP 17 was prepared starting from the ketone 16 ($222 \mathrm{mg}, 0.936 \mathrm{mmol}$) following the same procedure used to prepare 14. Chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1$) afforded 17 (118 mg, 53\%) as a yellow oil.

17: $R_{f} 0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{27}=+26.6\left(c=0.662, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(200 \mathrm{MHz}): \delta=$ 4.74-4.61 (m, 3H), 3.90 (pseudo t, $J=7.0 \mathrm{~Hz}$), 3.43 (dd, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15-3.06 (m, 1H), 2.48 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45-2.21 (m, 4H), 1.48 (s, 3H), 1.28 (s, 3H), 1.07-0.81 (m, 1H), 0.74$0.62(\mathrm{~m}, 1 \mathrm{H}), 0.31-0.18(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=148.0(\mathrm{~s}, \mathrm{C}-8), 114.0(\mathrm{~s}, \mathrm{C}-2), 106.2$ $\left(\mathrm{t},=\mathrm{CH}_{2}\right), 79.3(\mathrm{~d}, \mathrm{C}-9 \mathrm{~b}), 77.6(\mathrm{~d}, \mathrm{C}-3 \mathrm{a}), 72.0(\mathrm{~d}, \mathrm{C}-9 \mathrm{a}), 60.1(\mathrm{t}, \mathrm{C}-4), 53.3(\mathrm{t}, \mathrm{C}-6), 33.8(\mathrm{t}, \mathrm{C}-7)$, $27.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.2\left(\mathrm{q}, \mathrm{CH}_{3}\right), 24.8(\mathrm{~s}, \mathrm{C}-9), 9.9(\mathrm{t}, \mathrm{cPr}), 6.2(\mathrm{t}, \mathrm{cPr}) \mathrm{ppm} . \operatorname{IR}: v=3081,2933,1650$, 1383, 1375, 1158, $1120 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%) = 235 (21) [$\left.\mathrm{M}^{+}\right], 234$ (100), 220 (8), 207 (4), 176 (77), 135 (74), 120 (84), 107 (44), 93 (57), 79 (65). HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 236.16451, found 236.16437.

9,10-Dimethoxy-2-methyl-1-vinyl-3,6,7,11b-tetrahydro-4H-pyrido[2,1-a]isoquinoline (18), (1E)-1-ethylidene-9,10-dimethoxy-2-methylene-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinoline [(E)-19] and (1Z)-1-ethylidene-9,10-dimethoxy-2-methylene-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a] isoquinoline [(Z)-19]
(Table 1, entry 8): A mixture of VCP $14(33 \mathrm{mg}, 0.116 \mathrm{mmol}), \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}(10.7 \mathrm{mg}, 0.012$ mmol) and TFE (0.1 mL ; degassed with N_{2} prior to use) in toluene (1.9 mL ; distilled from Na /benzophenone and degassed with N_{2} prior to use) in a sealed vial was irradiated in a microwave reactor at $130^{\circ} \mathrm{C}$ for 5 h and 30 min . Chromatography on silica gel (eluent: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 6: 1$) of the concentrated crude mixture afforded 18 ($8.0 \mathrm{mg}, 24 \%$) and a mixture of (E)-19 and (Z)-19 (7.2 mg , 22\%).

18: $R_{f} 0.28\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 3: 1\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=7.00(\mathrm{dd}, J=17.5,11.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 6.88 (s, 1H, 11-H), 6.56 (s, 1H, 8-H), 5.17 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), $5.15(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CHH}$), 4.76 (br s, 1H, 11b-H), 3.84 (s, 3H, OCH_{3}), 3.75(s, 3H, OCH ${ }_{3}$), 3.55 (ddd, $J=13.6,11.3$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}$), 3.17 (ddd, $J=13.6,7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}$), 2.96 (dddm, $J=16.8,11.3,7.0 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}$), 2.81 (dt, $J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$), $2.66\left(\mathrm{dd}, J=11.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.62-2.45$ (m, 2H, $7-\mathrm{H}_{\mathrm{b}}+3-\mathrm{H}_{\mathrm{a}}$), 2.04 (br dd, $J=18.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$), 1.87 (br s, $3 \mathrm{H}, 2-\mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=147.2$ (s) and 146.7(s) (C-9 and C-10), 135.0 (d, =CH), 133.8 (s), 130.7 (s), 129.0 (s), and 125.8 (s) (C-1, C-2, C-7a, and C-11a), 112.5 (t, $=\mathrm{CH}_{2}$), 112.4 (d, C-11), 111.2 (d, C-8), 55.8 (q, 2C, $\mathrm{OCH}_{3} \times 2$), 55.7 (d, C-11b), 50.9 (t, C-6), 42.6 (t, C-4), 33.2 (t, C-3), 23.3 (t, C7), $18.9\left(\mathrm{q}, 2-\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR: $v=3089,3008,2936,2854,1605,1514,1465,1258,1216 \mathrm{~cm}^{-1} . \mathrm{MS}$ (70 eV, EI): m/z (\%) = 285 (67) [M $\left.{ }^{+}\right], 284$ (100), 270 (35), 256 (22), 254 (21) 242 (17), 218 (22), 203 (61), 190 (36). MS (ESI): $286.2[\mathrm{M}+\mathrm{H}]^{+}$.
(E)-19: $R_{f} 0.39$ ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 3: 1$); m.p. $109-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=6.58(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$, 6.56 (s, 1H, 11-H), 5.29 (q, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 5.06$ (dt, $J=2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), 4.75 (br d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), 4.41 (br s, 1H, 11b-H), 3.84 (s, 3H, OCH $)_{3}$, 3.81 (s, 3H, OCH $)_{3}$, 3.20 (dt, $\left.J=12.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.05-2.83\left(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}+4-\mathrm{H}+7-\mathrm{H}_{\mathrm{a}}\right), 2.69(\mathrm{dt}, J=16.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.7-\mathrm{H}_{\mathrm{b}}\right), 2.46-2.37\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.36-2.27\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 1.76\left(\mathrm{dd}, J=6.8,07 \mathrm{~Hz}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=147.7$ (s) and 146.8 (s) (C-9 and C-10), 143.1 (s, C-1), 138.9 (s, C2), 126.4 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}-7 \mathrm{a}+\mathrm{C} 11 \mathrm{a}$), $123.3(\mathrm{~d},=\mathrm{CH}), 112.2\left(\mathrm{t},=\mathrm{CH}_{2}\right), 111.4(\mathrm{~d}, 2 \mathrm{C}, \mathrm{C}-8+\mathrm{C}-11), 66.2(\mathrm{~d}$, C-11b), 55.9 (q, OCH_{3}), 55.8 (q, OCH_{3}), 51.3 (t, C-4), 47.6 (t, C-6), 34.4 (t, C-3), 26.0 (t, C-7), 14.2 $\left(\mathrm{q},=\mathrm{CCH}_{3}\right) \mathrm{ppm} . \mathrm{IR}: v=3079,3007,2938,2837,1607,1513,1465,1256,1227 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}$, EI): m/z (\%) = 285 (72) [$\left.\mathrm{M}^{+}\right], 284$ (100), 270 (44), 256 (11), 254 (9) 242 (7), 218 (10), 203 (64), 190 (45).
(Z)-19: ${ }^{1} \mathrm{H}$ NMR (400 MHz) detectable signals in the spectrum of the E / Z mixture: $\delta=5.96(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 11 \mathrm{~b}-\mathrm{H}), 4.89(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}), 4.65(\mathrm{t}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CHH}) \mathrm{ppm}$.

Mixture of isomers: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{3}$ (285.38): calcd. C 75.76, H 8.12, N 4.91; found C 75.37, H 8.42, N 4.70.
(1S,2S,8aS)-1,2-Di-tert-butoxy-7-methyl-8-vinyl-1,2,3,5,6,8a-hexahydroindolizine (20)
A mixture of VCP 15 ($29.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}(10 \mathrm{mg}, 0.01 \mathrm{mmol})$ and TFE (0.09 mL ; degassed with N_{2} prior to use) in toluene (1.71 mL ; distilled from Na /benzophenone and degassed with N_{2} prior to use) in a sealed vial was irradiated in a microwave reactor at $130{ }^{\circ} \mathrm{C}$ for 3 h . Chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{4} \mathrm{OH} 1 \%\right) 50: 1$) of the concentrated methanolic solution afforded 20 ($15.7 \mathrm{mg}, 53 \%$).

20: $R_{f} 0.31\left[\mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{4} \mathrm{OH} 1 \%\right) 15: 1\right] ;[\alpha]_{\mathrm{D}}{ }^{27}=+33.6\left(c=1.147, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (200 MHz): $\delta=6.58$ (dd, $J=17.9,11.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 5.25 (dd, $J=17.9,1.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), 5.10 (dd, $J=11.4,1.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), 4.03-3.87 (m, 2H, 1-H + 2-H), 3.71 (br s, 1H, 8a-H), 3.25 (dd, $\left.J=10.7 ; 5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 3.07-3.71\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}+5-\mathrm{H}\right), 2.38-2.19\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 1.97-1.82$ $\left(\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 1.20(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.15(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=137.3,132.3(\mathrm{~s}, \mathrm{C} 7, \mathrm{C}-8), 133.4(\mathrm{~d},=\mathrm{CH}), 114.5\left(\mathrm{t},=\mathrm{CH}_{2}\right), 83.3(\mathrm{~d}, \mathrm{C}-1), 79.0(\mathrm{~d}, \mathrm{C}-2), 74.1(\mathrm{~s}$, $C \mathrm{CMe}_{3}$), 73.1 ($\mathrm{s}, \mathrm{CMe}_{3}$), 64.5 (d, C-8a), 58.2 (t, C-3), 45.8 (t, C-5), 29.0 (q, 3C, CH_{3}), 28.8 (q, 3C, CH_{3}), 27.9 (t, C-6), $19.8\left(\mathrm{q}, 7-\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR: $v=3028,2971,1604,1462,1391,1363,1183 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%) = 307 (3) [M $\left.{ }^{+}\right], 250$ (46), 234 (2), 194 (20), 135 (100), 57 (37). HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.25841$, found 308.25808.
(3aR,9aS,9bS)-2,2,8-Trimethyl-9-vinyl-3a,4,6,7,9a,9b-hexahydro[1,3]dioxolo[4,5-a]indolizine (21)

A mixture of VCP 17 ($10.5 \mathrm{mg}, 0.045 \mathrm{mmol}), \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}(4 \mathrm{mg}, 0.05 \mathrm{mmol})$ and TFE (0.1 mL ; degassed with N_{2} prior to use) in toluene (1.9 mL ; distilled from Na /benzophenone and degassed with N_{2} prior to use) in a sealed vial was irradiated in a microwave reactor at $110{ }^{\circ} \mathrm{C}$ for 3 h and 30 min. Chromatography on silica gel [eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{4} \mathrm{OH} 1 \%\right)$ from $30: 1$ to $10: 1$] of the concentrated crude mixture afforded 21 ($3.6 \mathrm{mg}, 34 \%$).

21: $R_{f} 0.28\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{4} \mathrm{OH} 1 \%\right) 15: 1\right] ;[\alpha]_{\mathrm{D}}{ }^{27}=+81.1\left(c=0.504, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (200 MHz): $\delta=6.71$ (dd, $J=18.0,11.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.27$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}), 5.12(\mathrm{~d}$,
$J=11.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHH}$), 4.68-4.60 (m, 1H, 3a-H), $4.55(\mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}), 3.89$ (br s, $1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}$), 3.08-2.80 (m, 4H, 4-H + 6-H), 2.50-2.26 (m, 1H, 7-Ha), 1.89-1.65 (m, 1H, 7-Hb), 1.79 (br s, $3 \mathrm{H}, 8-\mathrm{CH}_{3}$), $1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (50 MHz): $\delta=133.0(\mathrm{~s})$ and 129.9 (s) (C-8 and C-9), $132.3(\mathrm{~d},=\mathrm{CH}), 114.2(\mathrm{~s}, 2-\mathrm{C}), 113.7\left(\mathrm{t},=\mathrm{CH}_{2}\right), 84.7(\mathrm{~d}, \mathrm{C}-9 \mathrm{~b}), 79.0$ (d, C-3a), 65.7 (d, C-9a), 54.7 (t, C-4), 44.3 (t, C-6), $26.8\left(\mathrm{q}, 8-\mathrm{CH}_{3}\right), 26.3(\mathrm{t}, \mathrm{C}-7), 24.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, $19.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right) \mathrm{ppm}$. IR: $v=3042,2936,1636,1381,1208,1051 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%) = 235 (20) [$\left.\mathrm{M}^{+}\right], 234$ (14), 220 (7), 176 (12), 135 (100), 120 (21), 106 (21), 91 (12), 79 (13). HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$236.16451, found 236.16446.

References

1. de Meijere, A.; Kozhushkov, S. I.; Späth, T. Org. Synth. 2002,78, 142-151.
2. a) Brandi, A.; Garro, S.; Guarna, A.; Goti, A.; Cordero, F. M.; De Sarlo, F. J. Org. Chem. 1988, 63, 2430-2434; b) Yamazaki, S. Bull. Chem. Soc. Jpn. 1997, 70, 877-883; c) Zhao, B.X.; Yu, Y.; Eguchi, S. Org. Prep. Proced. Int. 1997, 29, 185-194.
3. Zorn, C.; Anichini, B.; Goti, A.; Brandi, A.; Kozhushkov, S. I.; de Meijere, A.; Citti, L. J. Org. Chem. 1999, 64, 7846-7855.
