Supporting Information

for

Au(I)/Au(III)-catalyzed Sonogashira-type reactions of functionalized terminal alkynes with arylboronic acids under mild conditions

Deyun Qian¹ and Junliang Zhang *^{1,2}

Address: ¹Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062 (P. R. China) and ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Ling Ling Road 345 Shanghai 200032 (P. R. China)

E-mail: Deyun Qian - 51100606057@ecnu.cn; Junliang Zhang -

jlzhang@chem.ecnu.edu.cn

* Corresponding author

Experimental details and spectra of new compounds

Content	Page number
1. General information	S2
2. General procedure for conditions	S3
screening	
3. General procedure	S6
4. References	S12
5. ¹ H and ¹³ C NMR spectra	S13

1. General information

Unless otherwise noted, commercial materials were directly used without further purification. Anhydrous acetonitrile (MeCN) and triethylamine (NEt₃) were distilled from CaH₂ under a nitrogen atmosphere prior to use. Reactions were monitored by thin layer chromatography (TLC) using Whatman[®] pre-coated silica gel plates. Flash column chromatography was performed on SiliCycle[®] silica gel (230–400 mesh). ¹H NMR and ¹³C NMR spectra were recorded with a Bruker 400 MHz spectrometer and chemical shifts are reported in ppm, relative to CHCl₃ (7.26 ppm for ¹H, and 77.00 ppm for ¹³C) unless otherwise noted. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet).

2. General procedure for conditions screening

Propargyl tosylamide **1a** (83.7 mg, 0.4 mmol) was dissolved in MeCN (2 mL) and PhB(OH)₂ (97.5 mg, 0.8 mmol), the gold catalyst (5 mol % or 2.5 mol %) and base (1.05 equiv) added followed by Selectfluor[®] (283.4 mg, 0.8 mmol). The reaction mixture was stirred at room temperature for 10–24 h and the reaction was monitored by TLC. After completion, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the crude product purified by chromatography on silica gel (using hexanes/EtOAc as eluent).

Table S1:

	NHTs + 1a	PhB(OH) ₂ Selectfluor 2.0 equiv ba CH ₃ Cl	IL X ® (2.0 equiv) N, RT	∕∩NHTs 2a	
	Aut (mol %)	AgX		t (b)	Yield
entry	Auc (moi %)	(mol %)	base (equiv)	ι (n)	(%)
1	Ph₃PAuCl (5)	-	Et ₃ N (1.05)	22	trace
2	Ph₃PAuCl (5)	AgOTf (5)	Et ₃ N (1.05)	18	56
3	AuCl (5)	AgOTf (5)	Et ₃ N (1.05)	24	21
4	-	AgOTf (5)	Et ₃ N (1.05)	24	0
5 ^b	Ph₃PAuCl (5)	AgOTf (5)	Et ₃ N (1.05)	22	0
6 ^c	Ph₃PAuCl (5)	AgOTf (5)	Et ₃ N (1.05)	22	41
7	Ph₃PAuCl (5)	AgBF ₄ (5)	Et ₃ N (1.05)	10	65

8	Ph ₃ PAuCI (5)	AgSbF ₄ (5)	Et ₃ N (1.05)	10	62
9	Ph₃PAuCI (5)	AgNO ₃ (5)	Et ₃ N (1.05)	10	45 ^a
10	Ph₃PAuCI (5)	AgPF ₆ (5)	Et ₃ N (1.05)	10	40 ^a
11	Ph ₃ PAuCI (5)	AgOAc(5)	Et ₃ N (1.05)	10	0
12	Ph₃PAuCI (5)	AgBF ₄ (5)	Et ₃ N (1.2)	10	69 ^a
13	dppf(AuCl) ₂ (2.5)	AgOTf (5)	Et ₃ N (1.05)	14	39 ^a
14	dppp(AuCl) ₂ (2.5)	AgOTf (5)	Et ₃ N (1.05)	14	56 (65 ^a)
15	dppp(AuCl) ₂ (2.5)	AgBF ₄ (5)	Et ₃ N (1.05)	14	0
16	dppe(AuCl) ₂ (2.5)	AgOTf (5)	Et ₃ N (1.05)	14	48 ^a
17	dppb(AuCl) ₂ (2.5)	AgOTf (5)	Et ₃ N (1.05)	14	65 ^a
18	dppp(AuCl) ₂ (5)	AgOTf (5)	Et ₃ N (1.05)	16	59 ^a
19	dppp(AuCl) ₂ (5)	AgOTf (5)	K ₃ PO ₄ ·3H ₂ O (1.5)	22	59
20	$dppp(AuCl)_{c}(5)$	AgOTf (5)	K ₃ PO₄·3H ₂ O (1.5)+	22	47
20		Ago II (3)	Et ₃ N (0.5)	22	47
21	dppp(AuCl) ₂ (5)	AgOTf (5)	K ₂ CO ₃ (1.5)	22	34
22	Ph₃PAuCI (5)	AgOTf (5)	Et₃N (1.5)	22	53
23	Ph₃PAuCI (5)	AgOTf (5)	iPr₂NH (1.05)	12	trace
24	Ph₃PAuCI (5)	AgOTf (5)	Bu ₃ N (1.05)	12	trace
25	Ph₃PAuCl (5)	AgOTf (5)	TMEDA (1.05)	12	trace
26	Ph₃PAuCI (5)	AgOTf (5)	PhNMe ₂ (1.05)	12	ND

^aYield determined by ¹H NMR. ^bSelectfluor[®] (0 equiv). ^cPhB(OH)₂ (1.5 equiv).

Table S2:

$\begin{array}{c c} & AuL \\ AgX \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$						
optny	1a	Aul (mol %)	AgX	T (°C)	t (b)	product
entry	(mmol)	AUL (IIIOI %)	(mol %)	1(0)	t (II)	(yield %)
1	0.4	(XPhos)AuCl (5)	AgOTf (5)	RT	24	trace
2 ^a	0.4	(XPhos)AuCl (5)	AgOTf (5)	RT	24	trace
3	0.4	Ph₃PAuCI (5)	AgBF ₄ (5)	55	3.5	63
4 ^b	0.48	Ph₃PAuCl (5)	AgBF ₄ (5)	RT	24	trace
5 °	0.4	Ph₃PAuCl (5)	AgBF ₄ (5)	RT	24	trace
6 ^d	0.48	Ph₃PAuCl (5)	AgOTf (5)	RT	24	ND
7	0.4	Ph₃PAuCl (5)	AgOTf (5)	40	24	46

^abase: K₃PO₄·3H₂O (1.5 equiv). ^bS: PhB(OH)₂ = 1.2: 1. ^c**1a**: PhB(OH)₂ = 1.5: 1. ^d**1a**: PhB(OH)₂ = 1.5: 1.

Table S3^a:

	12	NHTs + PhB(OH) ₂ — So 2.0 equiv	AuL AgX electfluor [®] (2.0 equiv) Et ₃ N (1.05 equiv) CH ₃ CN	Ph 2a		
optry	1a	Aul (mol %)	AgX	T (°C)	t (b)	product
entry	(mmol)		(mol %)	1(0)	(1)	(yield %)
1	0.4	Ph₃PAuCl (5)	AgOTf (5)	50	12	72 (73 ^b)
2	0.4	Ph ₃ PAuCl (5)	AgOTf (5)	rt	12	59 ^b
3	0.2	Ph₃PAuCl (5)	AgBF ₄ (5)	rt	12	80 ^b

4	0.2	Ph₃PAuCl (5)	AgPF ₆ (5)	rt	16	40 ^b
5	0.2	Ph ₃ PAuCl (5)	AgOAc (5)	rt	16	0
6	0.4	Ph ₃ PAuCl (5)	AgBF ₄ (5)	rt	12	75(80 ^b)
7	0.4	Ph ₃ PAuCl (5)	AgOTf (5)	rt	16	70 ^b
8	0.2	dppm(AuCl) ₂ (5)	AgOTf (5)	rt	16	83 ^b
9	0.4	dppm(AuBr) ₂ (5)	-	rt	16	trace

^aThe reaction was carried out under an atmosphere of nitrogen (N_2). ^bYield determined by ¹H NMR.

3. General procedure

All reactions were carried out under an atmosphere of nitrogen (N_2) .

The alkyne (83.7 mg, 0.4 mmol) was dissolved in MeCN (2 mL), PhB(OH)₂ (97.5 mg, 0.8 mmol), Ph₃PAuCl (5 mol %), AgBF₄ (5 mol %) and Et₃N (1.05 equiv) were added followed by Selectfluor[®] (283.4 mg, 0.8 mmol). The reaction mixture was stirred at the noted temperature for 12–45 h and the reaction monitored by TLC. After completion, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the crude product was purified by chromatography on silica gel (using hexanes/EtOAc as eluents).

(1) N-(3-Phenylprop-2-ynyl)-p-toluenesulfonamide (2a)

The reaction of propargyl tosylamide **1a** and phenylboronic acid was carried out at room temperature for 12 h to afford compound **2a** (hexanes/EtOAc = 3/1) in 75% yield as a pale orange solid. Its spectroscopic data were in accord with those reported in the literature [1]. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.30–7.22 (m, 5H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.88 (t, *J* = 5.6 Hz, 1H), 4.06 (d, *J* = 6.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 136.8, 131.5, 129.7, 128.4, 128.1, 127.5, 122.0, 84.7, 83.2, 33.7, 21.4.

(2) 4-Methyl-*N*-(3-*p*-tolylprop-2-ynyl)benzenesulfonamide (2b)

The reaction of propargyl tosylamide **1b** and phenylboronic acid was carried out at room temperature for 18 h to afford compound **2b** (hexanes/EtOAc = 5/1) in 70% yield as a white solid. Its spectroscopic data were in accord with those reported in the literature [2]. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 2H), δ 7.26 (d, *J* = 8.0 Hz, 2H), 7.05–7.00 (m, 4H), 4.88 (t, *J* = 6.0 Hz, 1H), 4.06 (d, *J* = 6.0 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 138.6, 136.8, 131.4, 129.6, 128.9, 127.4, 118.9, 84.8, 82.5, 33.8, 21.42, 21.40. EI-MS (*m*/*z*, relative intensity): 299 (M⁺, 2.99), 91 (100). HRMS (EI) calcd. for [C₁₇H₁₇NO₂S]⁺: 299.0980, found 299.0984.

(3) *N*-[3-(4-Chlorophenyl)-prop-2-ynyl]-*p*-toluenesulfonamide (2c)

The reaction of propargyl tosylamide **1c** and 4-chlorophenylboronic acid was carried out at 50 °C for 12 h to afford **2c** (hexanes/EtOAc = 5/1) in 89% yield as a white solid. Its spectroscopic data were in accord with those reported in the literature [3]. ¹H NMR (400 MHz, CDCl3) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.85 (t, *J* = 6.0 Hz, 1H), 4.06 (d, *J* = 6.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 136.8, 134.6, 132.7, 129.7, 128.5, 127.5, 120.5, 84.2, 83.6, 33.7, 21.5. EI-MS (*m*/*z*, relative intensity): 319 (M⁺, 1.89), 164 (100). HRMS (EI) calcd. for [C₁₆H₁₄NO₂SCI]⁺: 319.0434, found 319.0441.

(4) *N*-[3-(4-Fluorophenyl)-prop-2-ynyl]-*p*-toluenesulfonamide (2d)

The reaction of propargyl tosylamide **1d** and phenylboronic acid was carried out at 50 °C for 12 h to afford **2d** (hexanes/EtOAc = 5/1) in 58% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.13–7.10 (m, 2H), 7.00–6.92 (m, 2H), 4.82 (s, 1H), 4.07 (d, *J* = 6.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, ¹*J*_{*C*, *F*} = 248 Hz), 143.7, 136.8, 133.5, 133.4, 129.6, 127.5, 118.1, 115.4 (d, ²*J*_{*C*, *F*} = 22 Hz), 83.6, 83.0, 33.6, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ 110.33. EI-MS (*m*/*z*, relative intensity): 303 (M⁺, 0.78), 148 (100). HRMS (EI) calcd. for $[C_{16}H_{14}NO_2SF]^+$: 303.0729, found 303.0732.

(5) Methyl 4-[3-(4-methylphenylsulfonamido)prop-1-ynyl]benzoate (2e)

The reaction of propargyl tosylamide **1e** and 4-(methoxycarbonyl)-phenylboronic acid was carried out at 50 °C for 12 h to afford **2e** (hexanes/EtOAc = 5/1) in 66% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 2H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 4.87 (t, *J* = 5.6 Hz, 1H), 4.10 (d, *J* = 5.6 Hz, 2H), 3.92 (s, 3 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 143.7, 136.8, 131.4, 129.6, 129.2, 127.5, 126.7, 86.3, 83.8, 52.3, 33.6, 21.4. EI-MS (*m*/*z*, relative intensity): 343 (M⁺, 1), 188 (100). HRMS (EI) calcd. for [C₁₈H₁₇NO₄S]⁺: 343.0878, found 343.0879.

(6) *N*-[3-(4-Methoxyphenyl)-prop-2-ynyl]-*p*-toluenesulfonamide (2f)

The product could not be separated from the unreacted starting material. Based on the ¹H NMR of the mixture, **2f** was produced in 31% yield.

(7) *tert*-Butyl 4-phenylbut-3-ynyl(tosyl)carbamate (3)

The reaction was carried out at 50 °C for 12 h to give **3** (hexanes/EtOAc = 5/1) in 48% yield as a viscous oil. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz,

2H), 7.37 (s, 2H), 7.27 (s, 5H), 4.09 (t, J = 7.2 Hz, 1H), 2.88 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.34 (s, 9 H); ¹³C NMR (100 MHz, CDCI₃) δ 150.8, 144.2, 137.2, 131.6, 129.2, 128.1, 127.9, 127.8, 123.4, 86.0, 84.5, 82.5, 45.3, 27.8, 21.5, 20.8. EI-MS (*m*/*z*, relative intensity): 399 (M⁺, 0.46), 128 (100). HRMS (EI) calcd. for [C₂₂H₂₅NO₄S]⁺: 399.1504, found 399.1471.

(8) *tert*-Butyl 5-phenylpent-4-ynyl(tosyl)carbamate (4)

The reaction was run at 50 °C for 12 h to give **4** (hexanes/EtOAc = 5/1) in 68% yield as a viscous oil. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.41–7.40 (m, 2H), 7.31–7.27 (m, 5H), 3.98 (t, *J* = 7.2 Hz, 1H), 2.50 (t, *J* = 6.8 Hz, 2H), 2.43 (s, 3H), 2.07 (t, *J* = 6.8 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 144.1, 137.3, 131.6, 129.2, 128.1, 127.8, 127.6, 123.7, 88.7, 84.2, 81.2, 46.4, 29.2, 27.8, 21.6, 17.0. EI-MS (*m*/*z*, relative intensity): 313 (M⁺–100, 0.19), 57 (100). HRMS (EI) calcd. for [C₁₈H₁₉NO₂S]⁺: 313.1137, found 313.1139.

(9) 4-Phenylbut-3-yn-1-yltosylate (5)

The reaction was run at room temperature for 12 h to give **6** (hexanes/EtOAc = 5/1) in 71% yield as a pale yellow oil. Its spectroscopic data were in accord s10

with those reported in the literature [4]. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.32–7.26 (m, 7H), 4.19 (t, *J* = 6.8 Hz, 1H), 2.79 (t, *J* = 6.8 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 132.9, 131.7, 130.0, 128.3, 128.2, 128.0, 123.0, 83.9, 82.7, 67.8, 21.7, 20.4.

(10) 4-Methyl-*N*,*N*-bis(3-phenylprop-2-ynyl)benzenesulfonamide (6)

The reaction was run at room temperature for 12 h to give **6** (hexanes/EtOAc = 5/1) in 71% yield as a pale yellow oil. Its spectroscopic data were in accord with those reported in the literature [5]. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.31–7.20 (m, 12H), 7.27 (s, 5H), 4.45 (s, 4H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 135.3, 131.7, 129.6, 128.5, 128.1, 128.0, 122.2, 85.8, 81.6, 37.5, 21.4.

(8) (3-Benzyloxyprop-1-ynyl)benzene (7)

The reaction was run at 50 °C for 12 h to give **7** (hexanes/EtOAc = 5/1) in 71% yield as a yellow oil. Its spectroscopic data were in accord with those reported in the literature [6]. ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.46 (m, 2H), 7.41–7.30 (m, 8H), 4.69 (s, 2H), 4.41 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 131.8, 128.4, 128.3, 128.1, 127.9, 122.6, 86.5, 85.0, 71.6, 57.9.

(11) *N*-Allyl-4-methyl-*N*-(3-phenylprop-2-ynyl)benzenesulfonamide (8)

The reaction was run at room temperature for 12 h to give **8** (hexanes/EtOAc = 5/1) in 82% yield as a white solid. Its spectroscopic data were in accord with those reported in the literature [7]. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.30–7.22 (m, 5H), 7.05 (d, *J* = 7.2 Hz, 2H), 5.87–5.73 (m, 1H), 5.35–5.27 (m, 2H), 4.31 (s, 2H), 3.88 (d, *J* = 6.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 135.8, 132.0, 131.4, 129.5, 128.4, 128.1, 127.8, 122.1, 120.0, 85.7, 81.6, 49.2, 36.7, 21.4.

4. References

- Nieto-Oberhuber, C.; Pérez-Galán, P.; Herrero-Gómez, E.; Lauterbach, T.; Rodríguez, C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D. J.; Echavarren, A. M. *J. Am. Chem. Soc.* 2008, 130, 269. doi:10.1021/ja075794x
- Lee, S. I.; Park, S. Y.; Park, J. H.; Jung, I. G.; Choi, S. Y.; Chung, Y. K. J. Org. Chem. 2006, 71, 91. doi:10.1021/jo051685u
- Shintani, R.; Nakatsu, H.; Takatsu, K.; Hayashi, T. Chem.–Eur. J. 2009, 15, 8692. doi:10.1002/chem.200901463
- Collins, C. J.; Hanack, M.; Stutz, H.; Auchter, G.; Schoberth, W. J. Org. Chem. 1983, 48, 5260. doi:10.1021/jo00174a021
- Lian, J.-J.; Chen, P.-C.; Lin, Y.-P.; Ting, H.-C.; Liu, R. J. Am. Chem. Soc.
 2006, 128, 11372. doi:10.1021/ja0643826
- Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 7294. doi:10.1021/ja1020469

- Chen, M.; Weng, Y.; Guo, M.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2008, 47, 2279. doi:10.1002/anie.200704452
- 5. ¹H and ¹³C NMR spectra

TsHN

	'	'	'	'	'		·	·	'	·	
200	180	160	140	120	100	80	60	40	20	0	ppm

						0
ннм <i>р</i> ечно	00 4 ⁻ Cl	2 10	വവ	74	\sim	00
00000000	004	40	ы т	мσ	Ъ	0
∞ ∞ N N 0 0 0 0 N N ∞ ∞	$\infty \infty \infty$	$\circ \circ$	n n	P 9	\sim	•
	• • •	• •	• •	• •	•	0
	オオオ	4 4	$\sim \sim$	\leftarrow	\leftarrow	1
		\bigvee	\backslash	\backslash		

7.821 7.821 7.283 7.264 7.058 7.038	$ \begin{array}{c} 4.873 \\ 4.851 \\ 4.837 \\ 4.071 \\ 4.056 \\ 4.056 \\ \end{array} $		
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0	5.5 5.0 4.5 4.0 3.5	3.0 2.5 2.0 1.5 1.0	0.5 ppm

0 0 0 0 0 0 0 0 0 0	N 00 (1	1477025	\sim	
000000000000000000000000000000000000	0 M 0	21000000	4	
8 て 4 4 3 2 2 2	ののの	Ω Ω 4 4 0 0 0	\sim	
			•	
ファファマト	\mathcal{O}	\square	\leftarrow	

-0.001

