Supporting Information

 for
Synthetic studies towards bottromycin

Stefanie Ackermann ${ }^{1}$, Hans-Georg Lerchen ${ }^{2}$, Dieter Häbich ${ }^{2}$, Angelika Ullrich ${ }^{1}$ and Uli Kazmaier*1

Address: ${ }^{1}$ Institute of Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany and ²Bayer Pharma Aktiengesellschaft, Aprather Weg 18a, 42113 Wuppertal, Germany

Email: Uli Kazmaier - u.kazmaier@mx.uni-saarland.de
*Corresponding author

Detailed experimental procedures, NMR and analytical data of all compounds

Experimental section

General Information

All reactions were carried out in oven-dried glassware $\left(100^{\circ} \mathrm{C}\right)$ under nitrogen unless otherwise stated. Septa, disposable syringes and needles were used for the transfer of reagents and other liquid chemicals. For the drying of organic phases, water-free sodium sulfate was used.
${ }^{1} \mathrm{H}$ NMR-spectra were measured on a $400 \mathrm{MHz}(\mathrm{AVII}-400)$ or a 500 MHz (DRX-500) NMR spectrometer from Bruker. CDCl_{3} was used as solvent. The solvent peak was calibrated at 7.26 ppm . The analysis of the spectra was done with PC-software MestRe-C or Topspin 3.0. The abbreviations used for interpretation of NMR spectra are: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or $\mathrm{br}=$ broad. Chemical shifts were δ values and were measured in ppm.
${ }^{13} \mathrm{C}$ NMR-spectra were measured at a frequency of $100 \mathrm{MHz}(\mathrm{AVII}-400)$ or at 125 MHz (DRX-500) on NMR spectrometers from Bruker. CDCl_{3} was used as solvent. The solvent peak was calibrated at 77.0 ppm . The analysis of the spectra was done with PC-software MestRe-C or Topspin 3.0. Chemical shifts were δ values and were measured in ppm.

Preparative flash column chromatography was performed by using columns packed with silica gel grade $60(35-70 \mu \mathrm{~m})$ purchased from Macherey-Nagel.

Melting points were measured in open glass capillaries on apparatus MEL-TEMP II purchased from Laboratory Devices and are uncorrected.

Optical rotations were measured on a Perkin-Elmer polarimeter PE 341 at $20^{\circ} \mathrm{C}$ and $\lambda=589 \mathrm{~nm}$.

Thin-layer chromatography was done by using commercially available precoated Polygram® SIL-G/UV 254 plates purchased from Fluka. The detection of spots was done under UV-light, I_{2} vapours or KMnO_{4} solution.

Elemental analyses were performed at the Institute for Organic Chemistry, Saarland University, on the instrument Leco (model CHN900).

High-resolution mass spectrometry (HRMS) was performed at the Institute for Organic Chemistry, Saarland University, on a MAT 95Q (Finnigan). The fragmentation was carried out through chemical ionization (CI).

Solvents were dried by heating the corresponding solvent under reflux over a suitable drying agent. Tetrahydrofuran (THF) was dried over lithium aluminium hydride (LAH); dichloromethane (DCM) was dried over powdered CaH_{2}. Commercial grade solvents such as ethyl acetate, hexane, diethyl ether were distilled prior to use.

Ethyl [\{N-tert-butyloxycarbonyl-(S)-valyl-amino\}-(S/R)-3,3-dimethylbutanethioamido]acetate (1)

Pivaldehyde ($603 \mathrm{mg}, 7.00 \mathrm{mmol}$) was added to a 2 M solution of NH_{3} in $\mathrm{CH}_{3} \mathrm{OH}$ $(3.50 \mathrm{~mL}, 7.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 15 min before ethyl isocyanoacetate ($792 \mathrm{mg}, 7.00 \mathrm{mmol}$) and Boc-(S)-thiovaline ($1.52 \mathrm{~g}, 7.00 \mathrm{mmol}$) dissolved in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (7 mL each) were added. After being stirred overnight at rt , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and was washed twice with sat NaHCO_{3} and $1 \mathrm{~N} \mathrm{KHSO}_{4}$ solution (10 mL each). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent, the crude product was purified by flash chromatography (silica, hexanes/EtOAc $7: 3$) to give 1 as a yellow oil ($2.44 \mathrm{~g}, 5.70 \mathrm{mmol}, 80 \%$) and a $1: 1$ mixture of diastereomers. R_{f} (hexanes/EtOAc $=6: 4$): 0.17.

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.87(\mathrm{~m}, 6 \mathrm{H}, 6-\mathrm{H}), 0.97(\mathrm{~m}, 9 \mathrm{H}, 10-\mathrm{H}), 1.26(\mathrm{~m}, 3 \mathrm{H}, 15-\mathrm{H})$, 1.41 (s, $9 \mathrm{H}, 1-\mathrm{H}), 2.10(\mathrm{~m}, 0.5 \mathrm{H}, 5-\mathrm{H}), 2.19(\mathrm{~m}, 0.5 \mathrm{H}, 5-\mathrm{H}), 4.04(\mathrm{~m}, 0.5 \mathrm{H}, 4-\mathrm{H})$, $4.09(\mathrm{~m}, 0.5 \mathrm{H}, 4-\mathrm{H}), 4.12\left(\mathrm{dd},{ }^{2} J_{12,12}=18.5 \mathrm{~Hz},{ }^{3} J_{12, \mathrm{NHc}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}\right), 4.20$ $(\mathrm{m}, 2 \mathrm{H}, 14-\mathrm{H}), 4.55\left(\mathrm{dd},{ }^{2} J_{12,12}=18.5 \mathrm{~Hz},{ }^{3} J_{12, \mathrm{NHc}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}\right), 4.84(\mathrm{~d}$, $\left.{ }^{3} J_{8, \mathrm{NHb}}=9.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 8-\mathrm{H}\right), 4.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{8, \mathrm{NHb}}=9.5 \mathrm{~Hz}, 0.5 \mathrm{H}, 8-\mathrm{H}\right), 5.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NHa}, 4}=\right.$ $\left.5.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}\right), 5.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{NHa}, 4}=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}\right), 7.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{NH}, 8}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}$), 8.84 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}$), $8.98\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right) .$.
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=14.1$ and 14.1 (q, C-15), 17.3 and 17.9 (q, C-6), 19.5 and 19.5 (q, C-6), 26.8 ($q, C-10$), 28.3 and 28.3 ($q, C-1$), 30.6 (s, C-9), 35.9 and 36.0 (d, C-5), 46.9 and 47.0 (t, C-12), 60.1 and 60.4 (d, C-4), 61.7 and 61.7 (t, C-14), 64.7 and 64.8 (d, C-8), 79.8 (s, C-2), 155.8 (s, C-3), 168.3 and 168.3 (s, C-7), 171.1 and 171.3 (s, C-13), 202.5 and 202.6 (s, C-11).

HRMS (CI) $\left(\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right)\left[\mathrm{M}^{+}\right]$: calcd 431.2454; found 431.2438.

Ethyl [\{N-tert-butyloxycarbonyl-(S)-prolyl-(S)-valyl-amino\}-(S/R)-3,3-

 dimethyl-butanethioamido]acetate (2)A solution of $1(868 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ before trifluoroacetic acid (2 mL) was added. The cooling bath was removed and the mixture was allowed to warm up to rt. The reaction was monitored by TLC. The solvent was evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under argon, and TBTU ($706 \mathrm{mg}, 2.20 \mathrm{mmol}$) and Boc-((S)-Pro-OH ($473 \mathrm{mg}, 2.20 \mathrm{mmol}$) were added.

After being cooled to $0^{\circ} \mathrm{C}, \mathrm{NEt}_{3}(1.40 \mathrm{~mL}, 10 \mathrm{mmol})$ was added, and the reaction mixture was allowed to warm up to rt overnight. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, sat NaHCO_{3} and $1 \mathrm{~N} \mathrm{KHSO}_{4}$ (10 mL each) and was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo the crude product was purified by flash chromatography (silica, hexanes/EtOAc 1:1) to give 2 as a colorless oil (954 mg , $1.80 \mathrm{mmol}, 90 \%) . R_{\mathrm{f}}($ hexanes $/ \mathrm{EtOAc}=1: 1): 0.11$.

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=0.85(\mathrm{~m}, 6 \mathrm{H}, 11-\mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}, 15-\mathrm{H}), 1.23(\mathrm{~m}, 3 \mathrm{H}, 20-\mathrm{H})$, $1.83(\mathrm{~s}, 9 \mathrm{H}, 1-\mathrm{H}), 1.83-2.31(\mathrm{~m}, 5 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}, 10-\mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 4.14-4.26$ (m, $4 \mathrm{H}, 17-\mathrm{H}, 19-\mathrm{H}), 4.30-4.43(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}, 9-\mathrm{H}), 4.67\left(\mathrm{~d},{ }^{3} J_{13, \mathrm{NHb}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 13-\right.$ H), 7.14 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}$), 7.25 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}$), 7.46 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}$), 7.60 (bs, 0.5 $\mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}$), 8.51 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}$), 8.61 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=14.1$ (q, C-11), 19.5 ($\mathrm{q}, \mathrm{C}-11$), 26.8 ($\mathrm{q}, \mathrm{C}-15$), 28.4 ($\mathrm{q}, \mathrm{C}-1$), 30.5 (m, C-5, C-6), 35.7 ($\mathrm{s}, \mathrm{C}-14$), 38.6 ($\mathrm{d}, \mathrm{C}-10$), 46.7 (t, C-4), 46.9 (t, C-17), 58.9 (m, C-7, C-9), 61.7 (t, C-19), 65.5 (d, C-13), 80.4 (s, C-2), 155.3 (s, C-3), 168.3 (m, C-8, C-12), 172.3 (s, C-18), 202.5 (s, C-16).

HRMS (CI): $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: calcd 528.2982; found 528.2999.

Ethyl 2-(2-(N-benzoyl- N-benzylamino)-(S/R)-3,3-

dimethylbutanethioamido)acetate (3)

According to the preparation of 1, $\mathbf{3}$ was obtained from thiobenzoic acid (276 mg , 2.0 mmol), benzylamine ($215 \mathrm{mg}, 2.0 \mathrm{mmol}$), pivaldehyde ($172 \mathrm{mg}, 2.0 \mathrm{mmol}$) and ethyl isocyanoacetate ($226 \mathrm{mg}, 2.0 \mathrm{mmol}$) after purification by column chromatography (hexanes/EtOAc 8:2) and recrystallization (PE/EtOAc 3:7) as white needles ($760 \mathrm{mg}, 1.78 \mathrm{mmol}, 89 \%$), mp $144-145^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (hexanes/EtOAc $=8: 2$): 0.16 .

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=1.26(\mathrm{~s}, 9 \mathrm{H}, 9-\mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 18-\mathrm{H}), 4.22-4.36$ (m, $3 \mathrm{H}, 15-\mathrm{H}, 17-\mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{H}), 4.44-4.60(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 4.84$ (bs, $1 \mathrm{H}, 11-\mathrm{H}), 7.13$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.23 (m, 3 H, ArH), $7.37-7.52$ (5 H, ArH), 11.30 (bs, $1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=14.2$ ($\mathrm{q}, \mathrm{C}-18$), 29.8 ($\mathrm{q}, \mathrm{C}-13$), 36.9 (s, C-12), 47.7 (C-15), 50.7 (t, C-6), 61.5 (t, C-17), 73.1 (d, C-11), 126.8 (C-Ar), 127.9 (C-Ar), 128.5 (C-Ar), 128.8 (C-Ar), 130.1 (C-Ar), 136.7 (C-Ar), 168.3 (s, C-5), 175.4 (s, C-16), 201.4 (s, C14).

HRMS (CI): $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$: calcd 426.1977; found 426.1971.

Elemental analysis: $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(426.58)$ calcd C 67.58 ; H 7.09 ; N 6.57 ; found: C 67.45; H 6.89; N 6.87.

Ethyl 2-(2-(N-benzoyl-N-benzylamino)-(S/R)-3,3-dimethyl-1(methylthio)butylideneamino)acetate (4)

Thiopeptide 3 ($427 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$ before methyltriflate ($125 \mu \mathrm{l}, 1.10 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm up to rt overnight. $\mathrm{NaH}(40 \mathrm{mg}, 1.00 \mathrm{mmol}, 60 \%$ in paraffin) was added, and after gas evolution was complete, the solvent was evaporated in vacuo. The crude product was purified by flash chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, activity grade I, hexanes/EtOAc $8: 2$) giving rise to 4 as a colorless solid ($440 \mathrm{mg}, 1.00 \mathrm{mmol}, 100 \%$), mp $84-85^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (hexanes/EtOAc $=8: 2$): 0.45.

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=1.13\left(\mathrm{t},{ }^{3} \mathrm{~J}_{11,10}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}\right), 1.18(\mathrm{~s}, 9 \mathrm{H}, 5-\mathrm{H}), 2.70$ (s, $3 \mathrm{H}, 7-\mathrm{H}), 3.54\left(\mathrm{~d},{ }^{2} J_{8,8}=18.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 3.96\left(\mathrm{~d},{ }^{2} J_{8,8}=18.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right)$, $4.04\left(\mathrm{q},{ }^{3} J_{10.11}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}\right), 4.53\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{2,2}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{2,2}=\right.$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.66$ (m, 2 H, Ar-H), 6.97 (m, 2 H, Ar-H), 7.097.19 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=14.1$ ($\mathrm{q}, \mathrm{C}-11$), 15.7 ($\mathrm{q}, \mathrm{C}-7$), 27.8 ($\mathrm{q}, \mathrm{C}-5$), 39.1 (s, C-4), 50.5 (t, C-2), 54.3 (t, C-8), 59.2 (d, C-3), 60.5 (t, C-10), 126.0 (d, C-Ar), 126.1 (d, CAr), 126.3 (d, C-Ar), 127.8 (d, C-Ar), 128.0 (d, C-Ar), 128.9 (d, C-Ar), 137.6 (s, C-16), 139.8 (s, C-12), 165.0 (s, C-6), 169.9 (s, C-1), 174.2 (s, C-9).

Methyl 2-\{[2-(benzoyl- N -benzylamino)- N -ethoxycarbonylmethyl-(S/R)-3,3-dimethyl-butyrimidoyl]-amino\}-(2S)-3-methylbutyrate (5)

Thioimidoester 4 (110 mg, 0.25 mmol$)$ was dissolved in THF (0.5 mL) before (S)-ValOMe (66 mg, 0.5 mmol) was added. Subsequently $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}(128 \mathrm{mg}$, 0.30 mmol) was added and the mixture was stirred overnight at rt . $\mathrm{NaH}(12 \mathrm{mg}$, $0.3 \mathrm{mmol}, 60 \%$ in paraffin) was added, and after gas evolution was finished the solvent was removed in vacuo. The crude product was purified by flash chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, activity grade I, hexanes/EtOAc 9:1), which allowed separation of the diastereomers. Amidine 5 ($96 \mathrm{mg}, 0.18 \mathrm{mmol}, 72 \%$) was obtained as a colorless solid, mp $105-108^{\circ} \mathrm{C}$ (diastereomeric mixture). R_{f} (hexanes/EtOAc $=$ 9:1): 1. Diastereomer: 0.22; 2. Diastereomer: 0.11.

1. Diastereomer:

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.62$ (bs, $3 \mathrm{H}, 9-\mathrm{H}$), $0.80(\mathrm{bs}, 3 \mathrm{H}, 9-\mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}, 5-\mathrm{H})$, $1.24\left(\mathrm{t},{ }^{3} J_{15,14}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 15-\mathrm{H}\right), 1.65(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 3.36(\mathrm{~m}, 1$ $\mathrm{H}, 7-\mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}), 4.17\left(\mathrm{q},{ }^{3} \mathrm{~J}_{14,15}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{H}\right)$, $4.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.49(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 6.71-7.09(\mathrm{~m}, 10 \mathrm{H}$, Ar-H).
${ }^{13} \mathbf{C}$ NMR (125 MHz): $\delta=13.2$ (q, C-15), 16.8 (q, C-9), 18.7 (q, C-9), 27.3 (q, C-5), 31.4 (d, C-8), 39.8 (t, C-12), 50.6 ($\mathrm{q}, \mathrm{C}-11$), 59.9 (m, C-14, C-3), 66.7 (d, C-7), 125.0 (d, C-Ar), 125.9 (d, C-Ar), 126.7 (d, C-Ar), 126.9 (d, C-Ar), 127.5 (d, C-Ar), 132.6 (d,

C-Ar), 138.9 (m, C-16, C-20), 163.9 (s, C-6), 169.0 (s, C-1), 170.7 (s, Ester), 173.7 (s, Ester).

2. Diastereomer:

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{9,8}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}\right), 0.86\left(\mathrm{bs},{ }^{3} \mathrm{~J}_{9,8}=6.7 \mathrm{~Hz}\right.$, $3 \mathrm{H}, 9-\mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}, 5-\mathrm{H}), 1.22\left(\mathrm{t},{ }^{3} \mathrm{~J}_{15,14}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 15-\mathrm{H}\right), 1.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$, 2.02 (m, $1 \mathrm{H}, 8-\mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}), 4.14$ $\left(\mathrm{q},{ }^{3} \mathrm{~J}_{14,15}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{H}\right), 4.18(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.48(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 6.82-7.08(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=13.2$ ($\mathrm{q}, \mathrm{C}-15$), 16.8 ($\mathrm{q}, \mathrm{C}-9$), 18.6 ($\mathrm{q}, \mathrm{C}-9$), 27.4 (q, C-5), 31.4 (d, C-8), 39.9 (t, C-12), 50.2 (q, C-11), 59.9 (t, C-14), 60.1 (d, C-3), 67.3 (d, C7), 125.0 (d, C-Ar), 125.8 (d, C-Ar), 126.7 (d, C-Ar), 126.9 (d, C-Ar), 127.5 (d, C-Ar), 132.6 (d, C-Ar), 138.9 (m, C-16, C-20), 163.9 (s, C-6), 169.0 (s, C-1), 170.8 (s, Ester), 173.7 (s, Ester).

HRMS (CI): $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+}$: calcd 523.3046; found 523.3017.

Methyl (S)-N-formyl-tert-leucinate (6)

A solution of methyl (S)-tert-leucinate hydrochloride (14.5 g, 80 mmol) and NEt_{3} $(12.0 \mathrm{~mL}, 88 \mathrm{mmol})$ in ethyl formate (120 mL) was heated under reflux overnight. The solution was filtered through a plug of silica, and after evaporation of the solvent 6 was obtained as a colorless solid (11.9 g, $68.7 \mathrm{mmol}, 86 \%$), mp $74-75^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (EtOAc): 0.3 .

${ }^{1} \mathrm{H}$ NMR (500 MHz) (mixture of rotamers) Major rotamer: $\delta=0.92(\mathrm{~s}, 9 \mathrm{H}, 4-\mathrm{H}), 3.68$ (s, 3 H, 6-H), $4.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2, \mathrm{NH}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.15(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}, 1-$ H). Minor rotamer (selected signals): $\delta=3.69(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{H}), 7.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1, \mathrm{NH}}=8.9 \mathrm{~Hz}, 1\right.$ H, 1-H).
${ }^{13} \mathrm{C}$ NMR (125 MHz) (mixture of rotamers) Major rotamer: $\delta=26.5$ (q, C-4), 34.8 (s, C-3), 51.9 (d, C-2), 58.4 (q, C-6), 160.6 (s, C-1), 170.5 (s, C-5). Minor rotamer: $\delta=$ 26.2 (q, C-4), 34.6 (s, C-3), 52.1 (d, C-2), 63.6 ($\mathrm{q}, \mathrm{C}-6$), 163.6 (s, C-1), 170.5 (s, C-5). $[\alpha]^{20}{ }_{\mathrm{D}}=+14.2\left(c 1.0, \mathrm{CHCl}_{3} ;(S),>99 \% \mathrm{ee}\right)$

Elem. Anal. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$ (173.21): calcd C 55.47; H 8.73; N 8.09; found: C 55.48 ; H 8.54; N 8.07.

HRMS (CI): $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}]^{+}$: calcd 173.1052; found 173.1070.

Methyl (S)-2-isocyano-3,3-dimethylbutyrate (7)

Formamide 6 ($10.4 \mathrm{~g}, 60.0 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(25 \mathrm{~mL}, 180 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{CH}_{2}(100 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{POCl}_{3}(5.51 \mathrm{~mL}$, 60.0 mmol) was added slowly. During 2 h the mixture was warmed to rt and was cooled again to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{Na}_{2} \mathrm{CO}_{3}(12.7 \mathrm{~g}, 120 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ was added. After being stirred for 1 h at rt , the layers were separated, and the organic layer was washed twice with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL}$ each $)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude product was distilled under reduced pressure (bp_{1} : $28^{\circ} \mathrm{C}$) to give $7(7.54 \mathrm{~g}$, $48.6 \mathrm{mmol}, 81 \%$) as a colorless oil.

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=1.03(\mathrm{~s}, 9 \mathrm{H}, 4-\mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=26.2$ (q, C-4), 35.2 (s, C-3), 52.8 (q, C-6), $66.4\left(\mathrm{dt},{ }^{1} \mathrm{~J}_{2, \mathrm{~N}}=\right.$ $6.9 \mathrm{~Hz}, \mathrm{C}-2), 160.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{1, \mathrm{~N}}=1.6 \mathrm{~Hz}, \mathrm{C}-1\right)$.
$[\alpha]^{20}{ }_{\mathrm{D}}:+39.7\left(c 1.0, \mathrm{CHCl}_{3} ;(S),>99 \%\right.$ ee $)$

HRMS (CI): $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: calcd 155.0946; found 155.0996.

Methyl [(N-tert-butyloxycarbonyl-(S)-valinyl-amino)-(S/R)-3,3-dimethylbutanethioamido]-(S)-3,3-dimethylbutyrate (8)

According to the preparation of 1, thiopeptide 8 was obtained from pivaldehyde ($689 \mathrm{mg}, 8.00 \mathrm{mmol}$), Boc-(S)-thiovaline ($1.87 \mathrm{~g}, 8.00 \mathrm{mmol}$) in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(8 \mathrm{~mL})$, isocyanide $7(1.24 \mathrm{~g}, 8.00 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{NH}_{3}(4.00 \mathrm{~mL}, 8.00 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}$. After workup as described and flash chromatography (hexanes/EtOAc 8:2), 8 (3.05 g , $6.46 \mathrm{mmol}, 81 \%$) was obtained as a mixture of diastereomers as a colorless solid, $\mathrm{mp} .80-82^{\circ} \mathrm{C} . R_{\mathrm{f}}($ hexanes $/ \mathrm{EtOAc}=8: 2): 0.16$.

${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.83-0.96(\mathrm{~m}, 6 \mathrm{H}, 6-\mathrm{H}), 0.97-1.10(\mathrm{sh}, 18 \mathrm{H}, 10-\mathrm{H}, 14-\mathrm{H})$, $1.43(\mathrm{~s}, 4.5 \mathrm{H}, 1-\mathrm{H}), 1.44(\mathrm{~s}, 4.5 \mathrm{H}, 1-\mathrm{H}), 2.09(\mathrm{~m}, 0.5 \mathrm{H}, 5-\mathrm{H}), 2.31(\mathrm{~m}, 0.5 \mathrm{H}, 5-\mathrm{H})$, $3.65(\mathrm{~s}, 1.5 \mathrm{H}, 16-\mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H}, 16-\mathrm{H}), 3.98(\mathrm{~m}, 0.5 \mathrm{H}, 4-\mathrm{H}), 4.07(\mathrm{~m}, 0.5 \mathrm{H}, 4-\mathrm{H})$, 4.85-4-99 (m, 1.5 H, 8-H, 12-H), 5.11-5.21 (m, 1.5 H, 8-H, N-H ${ }^{\mathrm{a}}$), $7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $\left.0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right), 7.30\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right), 8.42\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right), 8.77(\mathrm{bs}, 0.5 \mathrm{H}$, $\mathrm{N}-\mathrm{H}^{\mathrm{c}}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=17.0$ and 17.9 (q, C-6), 19.3 and 19.5 (q, C-6), 26.7 and 26.8 (q, C-10/14), 27.0 and 27.1 (q, C-10/14), 28.3 and 28.4 (q, C-1), 30.6 and 31.3 (d, C-5), 34.4 and 35.3 (s, C-9/13), 36.4 (s, C-9/13), 51.8 ($\mathrm{q}, \mathrm{C}-16$), 59.9 and 60.4 (d, $\mathrm{C}-4$), 64.9 and 65.1 ($\mathrm{d}, \mathrm{C}-8$), 65.7 and 67.1 (d, C-12), 79.7 and 79.9 (s, C-2), 155.5 (s, C-3), 169.7 (s, C-7), 171.4 (s, C-15), 203.8 and 203.8 (s, C-11).

Elem. Anal. $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ (473.67): calcd C 58.32; H 9.15; N 8.87; found: C 58.47 ; H 8.96; N 8.76.

HRMS (CI): $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}]^{+}$: calcdcalcd 473.2923; found 473.2939.

Methyl [(N-tert-butyloxycarbonyl-(S)-prolyl-(S)-valinyl-amino)-(S/R)-3,3-dimethylbutanethioamido]-(S)-3,3-dimethylbutyrate (9)

Tetrapeptide 9 was obtained as described for the preparation of 2 from $8(1.89 \mathrm{~g}$, 4.00 mmol) and Boc-(S)-Pro-OH ($947 \mathrm{mg}, 4.40 \mathrm{mmol}$). Flash chromatography (silica, hexanes/EtOAc $1: 1$) provided $9(1.87 \mathrm{~g}, 3.27 \mathrm{mmol}, 82 \%)$ as a pale yellow solid, mp $81-83^{\circ} \mathrm{C}$ (mixture of diastereomers). R_{f} (hexanes/EtOAc $=1: 1$): 0.23 .

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta=0.84(\mathrm{~m}, 6 \mathrm{H}, 11-\mathrm{H}), 0.93-0.99(\mathrm{~m}, 18 \mathrm{H}, 15-\mathrm{H}, 19-\mathrm{H}), 1.39$ (s, $9 \mathrm{H}, 1-\mathrm{H}), 1.81-2.31(\mathrm{~m}, 5 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}, 10-\mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.60(\mathrm{~s}, 1.5 \mathrm{H}$, 21-H), 3.67 (s, 1.5 H, 21-H), 4.25-4.34 (m, 2 H, 13-H, 17-H), 4.82-5.03 (m, $2 \mathrm{H}, 7-\mathrm{H}$, $9-H), 6.88\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}\right.$), 7.12 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}$), 7.25 (bs, $\left.0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right), 7.52$ (bs, $\left.0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right), 8.40\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right), 8.80\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=17.4$ (q, C-11), 19.5 ($\mathrm{q}, \mathrm{C}-11$), 24.7 ($\mathrm{d}, \mathrm{C}-10$), 26.7 and 26.8 (q, C-15/19), 27.0 and 27.1 (q, C-15/19), 28.3 and 28.4 (q, C-1), 30.1 (t, C-5/6), 34.5 and 35.1 (s, C-14/18), 36.1 (s, C-14/18), 47.0 (t, C-4), 51.8 ($\mathrm{q}, \mathrm{C}-21$), 58.8 (d, C-13), 59.6 (d, C-17), 65.3 and 65.6 (d, C-7), 66.7 ($d, C-9$), 80.5 (s, C-2), 156.9 (s, C-3), 167.6 (s, C-8/C-12), 167.8 (s, C-8/C-12), 170.4 (s, C-20), 203.1 (s, C-16).

Elem. Anal. $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ (570.79): calcd C 58.92; H 8.83; N 9.82; found: C 58.54; H 8.50; N 9.67.

HRMS (CI): $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}]^{+}$: calcd 570.3451 ; found 570.3420 .

Methyl [(N-tert-butyloxycarbonyl-glycyl-(S)-prolyl-(S)-valyl-amino)-(S/R)-3,3-dimethylbutanethioamido]-(S)-3,3-dimethylbutyrate (10)

According to the preparation of 2, tetrapeptide $9(1.72 \mathrm{~g}, 3.00 \mathrm{mmol})$ was deprotected with $\mathrm{CF}_{3} \mathrm{COOH}(3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After workup the crude salt was deprotonated with sat $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the free amine was coupled with Boc-Gly-OH ($578 \mathrm{mg}, 3.30 \mathrm{~mol}$) and TBTU ($1.06 \mathrm{~g}, 3.30 \mathrm{mmol}$), $\mathrm{NEt}_{3}(460 \mu \mathrm{l}, 3.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Flash chromatography (silica, hexanes/EtOAc 3:7) gave rise to $\mathbf{1 0}$ $(1.53 \mathrm{~g}, 2.43 \mathrm{mmol}, 81 \%)$ as a colorless solid, $\mathrm{mp} 94-96^{\circ} \mathrm{C} . R_{\mathrm{f}}($ hexanes $/ \mathrm{EtOAc}=$ 3:7): 0.15 .

${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.81(\mathrm{~m}, 6 \mathrm{H}, 13-\mathrm{H}), 0.87-0.99(\mathrm{~m}, 18 \mathrm{H}, 17-\mathrm{H}, 21-\mathrm{H}), 1.37$ (s, $9 \mathrm{H}, 1-\mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 2.09-2.18(\mathrm{~m}, 3 \mathrm{H}, 8-\mathrm{H}, 12-\mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$,
$3.50(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.61(\mathrm{~s}, 1.5 \mathrm{H}, 23-\mathrm{H}), 3.68(\mathrm{~s}, 1.5 \mathrm{H}, 23-\mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H})$, $4.30(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{H}), 4.63(\mathrm{~m}, 0.5 \mathrm{H}, 9-\mathrm{H}), 4.84-4.91(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}, 11-\mathrm{H}, 19-\mathrm{H}), 5.21$ (m, $0.5 \mathrm{H}, 11-\mathrm{H}$), 5.46 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}$), $5.64\left(\mathrm{bs}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}\right), 7.15\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right.$), 7.32 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}$), 7.81 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}$), 8.12 (bs, $0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{d}}$), 9.32 (bs, 0.5 H , $\mathrm{N}-\mathrm{H}^{\mathrm{d}}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=17.3$ and 17.7 (q, C-13), 19.4 and $19.5(\mathrm{q}, \mathrm{C}-13), 24.7$ and 24.9 ($q, C-17 / 21$), 26.7 and 26.8 (q, C-17/21), 27.1 (,$~ C-17 / 21$), 28.1 and 28.2 ($q, C-$ 1), 30.9 and 31.2 (t, C-7/8), 34.6 and 35.5 ($s, C-16 / 20$), 35.9 and 36.2 (s, C-16/20), 43.0 (t, C-4), 46.4 and 46.4 (t, C-6), 51.8 and 51.9 (q, C-23), 58.7 and 58.8 (d, C-11), 59.7 and 60.0 (d, C-9), 64.8 and 65.4 (d, C-15), 65.3 and 66.7 (d, C-19), 79.6 (s, C2), 155.7 (s, C-3), 168.4 (s, C-amide), 170.1 (s, C-amide), 170.9 (s, C-amide), 171.6 (s, C-22), 203.6 (s, C-18).

HRMS (CI): $\mathrm{C}_{30} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}]^{+}$: calcd 627.3666; found 627.3622 .

Methyl 2-[\{(N-tert-butyloxycarbonyl-glycyl-(S)-prolyl-(S)-valyl-amino)-(S/R)-3,3-dimethyl-1-(methylthio)butylidene\}amino]-(S)-3,3dimethylbutyrate (11)

According to the preparation of 4, pentapeptide 10 ($882 \mathrm{mg}, 1.40 \mathrm{mmol}$) was S methylated with methyltriflate ($175 \mu \mathrm{l}, 1.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{NaH}(56 \mathrm{mg}$, $1.40 \mathrm{mmol}, 60 \%$ in paraffin) to give 11 ($513 \mathrm{mg}, 0.80 \mathrm{mmol}, 57 \%$) as a colorless solid, $\mathrm{mp} 86-88^{\circ} \mathrm{C} . R_{\mathrm{f}}$ (hexanes/EtOAc $=3: 7$): 0.24 .

${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.87(\mathrm{~m}, 6 \mathrm{H}, 13-\mathrm{H}), 0.98-1.07(\mathrm{~m}, 18 \mathrm{H}, 17-\mathrm{H}, 21-\mathrm{H}), 1.44$ (s, 9 H, 1-H), 1.86-2.35 (sh, 5 H, 7-H, 8-H, 12-H), 2.50 (s, $1.5 \mathrm{H}, 24-\mathrm{H}$), 2.57 (s, 1.5 $\mathrm{H}, 24-\mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.63(\mathrm{~s}, 1.5 \mathrm{H}, 23-\mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H}$, $23-\mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}, 19-\mathrm{H}), 4.23\left(\mathrm{dd},{ }^{3} J_{11, \mathrm{NHb}}=8.0 \mathrm{~Hz},{ }^{3} J_{11,12}=5.2\right.$ $\mathrm{Hz}, 0.5 \mathrm{H}, 11-\mathrm{H}), 4.26\left(\mathrm{dd},{ }^{3} J_{11, \mathrm{NHb}}=8.4 \mathrm{~Hz},{ }^{3} J_{11,12}=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, 11-\mathrm{H}\right), 4.55(\mathrm{~m}$, $0.5 \mathrm{H}, 9-\mathrm{H}), 4.63(\mathrm{~m}, 0.5 \mathrm{H}, 9-\mathrm{H}), 4.88\left(\mathrm{~d},{ }^{3} J_{15, \mathrm{NH}}=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}, 15-\mathrm{H}\right), 4.93(\mathrm{~d}$, $\left.{ }^{3} J_{15, \mathrm{NH}}=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}, 15-\mathrm{H}\right), 5.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{a}}\right), 6.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{NH}, 15}=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}\right.$, $\left.\mathrm{N}-\mathrm{H}^{\mathrm{c}}\right), 6.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{NH}, 15}=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right), 7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta=15.8$ and 15.9 (q, C-24), 17.6 and 17.7 (q, C-13), 19.3 (q, C13), 24.9 and 24.9 (t, C-7/8), 26.2 and 26.6 ($\mathrm{q}, \mathrm{C}-17 / 21$), 26.9 and 27.0 ($\mathrm{q}, \mathrm{C}-17 / 21$), 27.4 and 27.5 (q, C-17/21), 28.3 (q, C-1), 30.4 and 31.0 (t, C-7/8), 35.3 and 35.6 (s, C-20), 36.3 and 36.5 ($s, C-16$), 43.0 (t, C-4), 46.3 (t, C-6), 51.2 and 51.3 (q, C-23), 56.2 and 56.3 (d, C-15), 58.8 and 59.1 (d, C-11), 60.0 and 60.1 (d, C-9), 73.0 and 73.7 (d, C-19), 79.8 (s, C-2), 155.7 (s, C-3), 167.4 and 167.8 (s, C-ester/amide), 169.7 (s, C-ester/amide), 170.4 (s, C-ester/amide), 170.8 and 170.8 (s, Cester/amide), 170.9 and 171.0 (s, C-ester/amide).

HRMS (CI): $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}]^{+}$: calcd 641.3822; found 641.3775.

Methyl 2-[cyclo-\{ N-(glycyl-(S)-prolyl-(S)-valyl)-2-amino-(S/R)-3,3-dimethyl-butylidene\}-amino]-(S)-3,3-dimethyl-butyrate (12)

Peptide 11 (128 mg, 0.20 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$ before $4 \mathrm{M} \mathrm{HCl}(0.50 \mathrm{~mL}, 2.00 \mathrm{mmol})$ in dioxane was added. The reaction was monitored by TLC, and after complete conversion the solvent was evaporated in vacuo. The oily residue was stirred in $\mathrm{Et}_{2} \mathrm{O}$ resulting in the precipitation of the pentapeptide hydrochloride as colorless salt. The ether was decanted and the salt was dried in vacuo. $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}(109 \mathrm{mg}, 0.25 \mathrm{mmol})$ was dissolved in MeCN $(50 \mathrm{~mL})$ and the solution was heated to $50^{\circ} \mathrm{C}$. The pentapeptide salt (123 mg , $0.20 \mathrm{mmol})$ was also dissolved in $\mathrm{MeCN}(2 \mathrm{~mL})$ and the solution was added slowly ($0.2 \mathrm{~mL} / \mathrm{h}$) via syringe pump to the warm Hg -salt solution. After complete addition stirring was continued for 2 h . The solution was cooled to rt , the precipitate was filtered off and the solvent was evaporated in vacuo. Flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, activity grade $\mathrm{I}, \mathrm{EtOAc} / \mathrm{MeOH} 98: 2$) gave rise to 12 ($51 \mathrm{mg}, 0.10 \mathrm{mmol}, 51 \%$) as a yellow oil. $R_{\mathrm{f}}\left(\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}=95: 5\right): 0.14$.

${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.85-1.02(\mathrm{~m}, 24 \mathrm{H}, 5-\mathrm{H}, 9-\mathrm{H}, 13-\mathrm{H}), 1.81\left(\mathrm{~m}, 0.5 \mathrm{H}, 17-\mathrm{H}^{\mathrm{a}}\right)$, $1.84-1.94\left(\mathrm{~m}, 1.5 \mathrm{H}, 17-\mathrm{H}^{\mathrm{a}}, 17-\mathrm{H}^{\mathrm{b}}\right), 2.04-2.14\left(\mathrm{~m}, 1.5 \mathrm{H}, 12-\mathrm{H}, 16-\mathrm{H}^{\mathrm{a}}\right), 2.18(\mathrm{~m}, 0.5$ $\mathrm{H}, 12-\mathrm{H}), 2.31\left(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{H}^{\mathrm{b}}\right), 3.55(\mathrm{~m}, 2 \mathrm{H}, 18-\mathrm{H}), 3.68(\mathrm{~s}, 1.5 \mathrm{H}, 1-\mathrm{H}), 3.71(\mathrm{~s}, 1.5$ $H, 1-H), 3.92\left(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}^{\mathrm{a}}\right), 3.96-4.17\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, 15-\mathrm{H}, 20-\mathrm{H}^{\mathrm{b}}\right), 4.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{11, \mathrm{NHb}}\right.$
$=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-11), 4.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{11, \mathrm{NHb}}=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-11\right), 4.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{7, \mathrm{NHc}}=6.7\right.$ $\mathrm{Hz}, 0.5 \mathrm{H}, \mathrm{H}-7), 4.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{7, \mathrm{NHc}}=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{H}-7\right), 4.66\left(\mathrm{~d},{ }^{3} J_{\mathrm{NHa}, 20 \mathrm{~b}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{N}-\mathrm{H}^{\mathrm{a}}\right), 6.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{NH}, 7}=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right), 6.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{NH}, 7}=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{c}}\right)$, $6.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{NHb}, 11}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}^{\mathrm{b}}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta=18.3$ and 18.8 ($\mathrm{q}, \mathrm{C}-13$), 19.4 and 19.5 ($\mathrm{q}, \mathrm{C}-13$), 22.4 (t, C17), 26.4 and 26.5 (q, C-5/9), 26.7 and 26.8 (q, C-5/9), 29.2 (t, C-16), 29.9 (d, C-12), 34.5 and 34.6 (s, C-4/8), 34.8 and 34.8 (s, C-4/8), 44.0 and 44.1 (t, C-20), 51.8 (t, C18), 52.6 (d, C-7), 56.8 (q, C-1), 59.9 (d, C-15), 60.3 and 60.4 (d, C-11), 60.9 and 61.1 (d, C-3), 156.8 ($\mathrm{s}, \mathrm{C}-6$), 167.5 ($\mathrm{s}, \mathrm{C}-19$), 169.0 ($\mathrm{s}, \mathrm{C}-10 / 14$), 170.1 (s, C-10/14), 171.7 and 171.9 (s, C-2).

HRMS (CI): $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right.$: calcd 492.3186; found 492.3156.

