Supporting Information

for

Asymmetric Brønsted acid-catalyzed aza-Diels– Alder reaction of cyclic *C*-acylimines with cyclopentadiene

Magnus Rueping* and Sadiya Raja

Address: Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany

Email: Magnus Rueping* - magnus.rueping@rwth-aachen.de

* Corresponding author

Experimental details and characterization of the synthesized compounds

General: All commercially available compounds were purified before use by distillation or crystallization. Solvents for chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualised by irradiation with UV light. Column chromatography was performed by using silica gel Merck 60 (particle size 0.040-0.063 mm). ¹H NMR and ¹³C NMR were recorded on a Mercury 300 or Inova 400 spectrometer in CDCI₃. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (*J*) are in hertz (Hz). Mass spectra (MS-EI, 70 eV) were conducted on GC-MS Shimadzu QP2010 (column: Equity[®]-5, length × I.D. 30 m × 0.25 mm, df 0.25 µm, lot # 28089-U, Supelco) IR spectra were recorded on a Jasco FT/IR-420 spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Optical rotations were measured on a Perkin Elmer 241 polarimeter. The enantiomeric excesses were determined by HPLC analysis using a chiral stationary-phase column (column, Daicel Co. CHIRALCEL AD-H; eluent: *n*-hexane/2-propanol). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Chemical yields refer to pure isolated substances.

General procedure for the aza-Diels–Alder reaction: In a typical experiment the imine and cyclopentadiene were suspended in a mixture of hexane/toluene (3:1) in a screw-capped test tube and stirred at -78 °C for 10 min. The catalyst (5 mol %) was added to the solution and the mixture was stirred until consumption of the imine. The crude reaction mixture was directly charged on silica gel and purified by column chromatography (hexane/ethylacetate as eluent) to afford the desired products.

2-Phenylindol-3-one (1a)

The product was purified by column chromatography (eluent EtOAc/hexane 1:40). Red solid, mp: 102–104 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.40–8.37 (m, 2H), 7.57– S2 7.41 (m, 6H), 7.28–7.23 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.3, 160.8, 159.5, 136.8, 132.2, 129.8, 129.3, 128.8, 128.3, 124.7, 123.0, 121.9 ppm; IR (KBr) $\tilde{\nu}$: 3430, 3067, 3028, 2324, 2111, 1751, 1721, 1597, 1536, 1447, 1253, 1163, 1076, 871, 763, 865 cm⁻¹; EIMS *m/z* (%): 207.1 (41) [M]^{+•}, 179.1 (100), 76.2 (47).

2-p-Tolylindol-3-one (1b)

The product was purified by column chromatography (eluent EtOAc/hexane 1:40). Red solid, mp: 125–128 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.30–8.28 (m, 2H), 7.55– 7.51 (m, 2H), 7.41–7.39 (m, 1H), 7.31–7.29 (m, 2H), 7.24–7.22 (m, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.5, 160.7, 160.7, 159.7, 142.9, 136.6, 129.5, 129.2, 127.9, 124.5, 123.0, 121.6, 21.8 ppm; IR (KBr) \tilde{V} : 3423, 3032, 2921, 2323, 2080, 1996, 1925, 1758, 1720, 1601, 1537, 1506, 1450, 1315, 1255, 1165, 1042, 872, 831, 793, 761, 706, 658 cm⁻¹; EIMS *m/z* (%): 221.1 (56) [M]^{+•}, 193.1 (100), 165.1 (26), 116.1 (23).

2-(4-Ethylphenyl)indol-3-one (1c)

The product was purified by column chromatography (eluent EtOAc/hexane 1:40). Red solid, mp: 127–130 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.31–8.29 (m, 2H), 7.53– 7.51 (m, 2H), 7.39–7.37 (m, 1H), 7.32–7.30 (m, 2H), 7.24–7.20 (m, 1H), 2.74–2.68 (m, 2H), 1.87 (m, 1H) 1.29–1.25 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.6, 160.7, 159.7, 149.0, 136.6, 129.2, 128.3, 127.9, 127.3, 124.5, 123.0, 121.6, 29.1, 15.2 ppm; IR (KBr) \tilde{V} : 3418, 3052, 2962, 2323, 2093, 1923, 1755, 1723, 1602, 1571, 1537, 1506, 1452, 1315, 1256, 1167, 1054, 1015, 960, 874, 839, 800, 763, 714, 657 cm⁻¹; EIMS *m/z* (%): 235.1 (84) [M]^{+•}, 207.2 (100), 192 (30).

2-(4-Methoxyphenyl)indol-3-one (1d)

The product was purified by column chromatography (eluent EtOAc/hexane 1:40). Red solid, mp:114–117 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.37–8.35 (m, 2H), 7.50– 7.45 (m, 2H), 7.33–7.30 (m, 1H), 7.20–7.15(m, 1H), 6.97–6.94 (m, 2H), 3.8 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 194.1, 162.9, 160.2, 160.1, 136.6, 131.2, 127.5, 124.4, 123.1, 122.6, 121.4, 114.3, 55.3 ppm; IR (KBr) \tilde{V} : 3421, 3002, 2918, 2568, 2097, 1757, 1717, 1596, 1534, 1498, 1452, 1421, 1308, 1253, 1160, 1048, 1020, 948, 871, 842, 795, 755, 711, 658 cm⁻¹; EIMS *m/z* (%): 237.2(1) [M]^{+•}, 133.1 (25), 104.1 (26), 76.2 (100).

2-(4-Fluorophenyl)indol-3-one (1e)

The product was purified by column chromatography (eluent EtOAc/hexane 1:40). Red solid, mp: 127–129 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.42–8.38 (m, 2H), 7.54– 7.50 (m, 2H), 7.39–7.37 (m, 1H), 7.25–7.22 (m, 1H), 7.18–7.14 (m, 2H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.1, 166.4, 163.9, 159.7, 159.4, 136.7, 131.5, 131.4, 128.2, 126.1, 124.6, 122.9, 121.8, 116.1, 115.9 ppm; IR (KBr) $\tilde{\nu}$: 3412, 3062, 2924, 2323, 2111, 1920, 1753, 1714, 1595, 1540, 1501, 1451, 1415, 1358, 1299, 1258, 1227, 1157, 1101, 1078, 1044, 1013, 947, 872, 843, 799, 757, 707, 659 cm⁻¹; EIMS *m/z* (%): 225.0 (46) [M]^{+•}, 197.0 (100), 170.1 (12), 76.2 (38).

2-(4-Bromophenyl)indol-3-one (1f)

The product was purified by column chromatography (eluent EtOAc/hexane 1:60). Red solid, mp: 138–140 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.24–8.22 (m, 2H), 7.60– 7.58 (m, 2H), 7.53–7.49 (m, 2H), 7.38–7.37 (m, 1H), 7.24–7.22 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 192.9, 160.1, 159.4, 136.8, 132.0, 130.5, 128.8, 128.5, 127.3, 124.7, 122.9, 122.0 ppm; IR (KBr) \tilde{V} : 3435, 3070, 2851, 2323, 2110, 1937, 1749, 1723, 1603, 1580, 1535, 1478, 1453, 1397, 1283, 1258, 1162, 1067, 1004, 871, 844, 795, 700, 655 cm⁻¹; EIMS *m/z* (%): 285.0 (60) [M]^{+•}, 259.0 (77), 178.1 (100), 151.1, (50), 102.1 (41), 76.2 (88).

2-(3-Bromophenyl)indol-3-one (1g)

The product was purified by column chromatography (eluent EtOAc/hexane 1:5). Red solid, mp: 124–127 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.34–7.12 (m, 5H), 5.68 (bs, 1H), 3.80 (d, *J* =6.5, 1H) ppm; ¹³C NMR (CDCl₃, 62.5 MHz) δ 202.2, 149.5, 145.9, 141.7, 128.9, 127.3, 127.1, 44.9, 42.3, 12.6 ppm; IR (KBr) \tilde{V} : 3332, 2918, 2853, 1693, 1511, 1403, 1351, 1122, 928, 814 cm⁻¹; EIMS *m/z* (%): 188.2 (100) [M]^{+•}.

2-(Naphthalen-2-yl)indol-3-one (1h)

The product was purified by column chromatography (eluent EtOAc/hexane 1:60). Red solid, mp: 126–130; ¹H NMR (CDCl₃, 300 MHz) δ 9.01 (s, 1H), 8.38–8.35 (m, 1H), 7.99–7.96 (m, 1H), 7.92–7.90 (m, 1H), 7.85–7.84 (m, 1H), 7.59–7.51 (m, 4H), 7.44–7.42 (m, 1H), 7.27–7.24 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.4, 160.6, 159.6, 136.7, 136.5, 134.9, 132.9, 131.3, 129.6, 128.6, 128.2, 128.2, 127.7, 126.6, 124.6, 121.9 ppm; IR (KBr) \tilde{V} : 3421, 3053, 2296, 2114, 1758, 1716, 1529, 1453, 1349, 1269, 1163, 1128, 1010, 948, 904, 863, 821, 799, 746, 713, 656 cm⁻¹; EIMS *m/z* (%): 257.1 (81) [M]^{+•}, 229.1 (100), 153.1 (43), 127.1 (21).

2-(Biphenyl-4-yl)indol-3-one (1i)

The product was purified by column chromatography (eluent EtOAc/hexane 1:60). Red solid, mp: 100–103 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.40–8.38 (m, 2H), 7.65– 7.63 (m, 2H), 7.58–7.57 (m, 2H), 7.48–7.44 (m, 2H), 7.41–7.29 (m, 4H), 7.19–7.15 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 193.4, 160.4, 159.6, 144.6, 139.8, 136.7, 129.7, 128.8, 128.6, 128.1, 128.0, 127.3, 127.0, 124.6, 123.0, 121.8 ppm; IR (KBr) $\tilde{\nu}$: 3341, 3073, 2089, 1723, 1677, 1599, 1484, 1402, 1358, 1261, 1176, 1119, 1003, 957, 875, 836, 762, 720, 687 cm⁻¹; EIMS *m/z* (%): 283.2 (10) [M]^{+•}, 255.2 (14), 196.2 (85), 181.2 (100), 152.2 (66).

10-Phenyl-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9-one (3a)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 92%; yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.99–7.96 (m, 2H), 7.59–7.50 (m, 4H), 7.45–7.42 (m, 1H), 7.24–6.21 (m, 1H), 7.02–6.96 (m, 1H), 6.30–6.26 (m, 1H), 5.86–5.83 (m, 1H), 4.73 (bs, 1H), 3.61 (bs, 1H), 2.01–1.97 (m, 1H), 1.80–1.76 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.4, 164.8, 139.6, 136.5, 134.6, 134.2, 129.3, 128.3 (2x), 127.5, 126.8 (2x), 124.7, 122.5, 117. 3, 78.6, 65.5, 53.1, 49.7 ppm; IR (KBr) $\tilde{\nu}$: 3434, 3016, 1919, 1701, 1607, 1468, 1303, 1215, 756, 697 cm⁻¹; EIMS *m/z* (%): 273.1 (78) [M]⁺, 244.1 (33), 208.1 (40), 179.1 (100); $[\alpha]_{\rm D}^{\rm RT} = -245$ (*c* 6.5, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_{\rm R} = 12.36$ min; minor enantiomer: $t_{\rm R} = 21.32$ min. 10-(4-Methylphenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9one (3b)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 86%; yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.73–7.68 (m, 2H), 7.53–7.47 (m, 1H), 7.44–7.40 (m, 1H), 7.21–7.18 (m, 1H), 7.15–7.12 (m, 2H), 6.98–6.93 (m, 1H), 6.28–6.25 (m, 1H), 5.83–5.80 (m, 1H), 4.70 (bs, 1H), 3.60 br (s, 1H), 2.31 (s, 3H), 2.07–2.04 (m, 1H), 1.78–1.74 (m, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.5, 164.8, 137.2, 136.6, 136.4, 134.5, 134.2, 129.3, 129.1 (2x), 126.7 (2x), 124.7, 122.4, 117.2, 78.4, 65.5, 52.9, 49.7, 21.0 ppm; IR (KBr) \tilde{V} : 3376, 3005, 2871, 1762, 1702, 1607, 1465, 1319, 1107, 695, 796, 670 cm⁻¹; EIMS *m/z* (%): 287.1 (93) [M]⁺, 258.1 (24), 221.1 (51), 193.1 (100); $[\alpha]_D^{RT} = -209$ (*c* 8.8, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: t_R = 12.10 min; minor enantiomer: t_R = 28.57 min.

10-(4-Ethylphenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9one (3c)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 83%; yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.75–7.71 (m, 2H), 7.53–7.47 (m, 1H), 7.43–7.40 (m, 1H), 7.22–7.14 (m, 3H), 6.98–6.93 (m, 1H), 6.28–6.25 (m, 1H), 5.83–5.80 (dd, J = 5.5, 2.0 Hz, 1H), 4.71–4.69 (m, 1H), 3.62–3.59 (m, 1H), 2.65–2.57 (m, 2H), 2.07 (d, J = 8.8 Hz, 1H), 1.75 (d, J = 8.7 Hz, 1H), 1.21 (t, J = 15.2, 7.6 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.6, 164.8, 143.5, 136.8, 136.4, 134.5, 134.2, 129.4, 127.9, 126.7, 124.7, 122.4, 117. 3, 78.5, 65.5, 52.9, 49.7, 28.4, 15.5 ppm; IR (KBr) \tilde{V} : 3392, 2963, 1704, 1606, 1465, 1303, 1107, 967, 758, 691 cm⁻¹; EIMS m/z (%): 301.1 (64) [M]⁺, 272.1 (54), 235.1 (25), 207.1 (100); $[\alpha]_D^{RT} = -208$ (*c* 16.4, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_R = 12.15$ min; minor enantiomer: $t_R = 24.65$ min.

10-(4-Methoxyphenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9-one (3d)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 79%; red oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.53–7.41 (m, 4H), 7.27–7.18 (m, 2H), 6.98–6.93 (t, *J* = 7.2 Hz, 1H), 6.82–6.78 (m, 1H), 6.28–6.25 (m, 1H), 5.84–5.81 (m, 1H), 4.69 (bs, 1H), 3.81 (s, 3H), 3.61 (bs, 1H), 2.07 (d, *J* = 8.8 Hz, 1H), 1.76 (d, *J* = 8.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.3, 164.8, 159.8, 141.2, 136.5, 134.7, 134.2, 129.3 (2x), 124.7 (2x), 122.5, 119.2, 117.3, 117.3, 112.8, 112.7, 78.6, 65.5, 55.2, 53.1, 49.7 ppm; IR (KBr) \tilde{V} : 3394, 3009, 2920, 2850, 1702, 1605, 1507, 1464, 1302, 1251, 1173, 1033, 756, 528 cm⁻¹; EIMS *m/z* (%): 303.0 (58) [M]⁺, 237.0 (82), 209.0 (100); $[\alpha]_D^{RT} = -151$ (*c* 6.3, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_R = 17.02$ min; minor enantiomer: $t_R = 41.32$ min. 10-(4-Fluorophenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9one (3e)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 73%; yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.82–7.79 (m, 2H), 7.53–7.50 (m, 1H), 7.44–7.42 (m, 1H), 7.21–7.19 (m, 1H), 7.02–6.96 (m, 3H), 6.27–6.25 (m, 1H), 5.82–5.81 (dd, *J* = 5.4, 1.9 Hz, 1H), 4.70 (d, *J* = 1.2 Hz, 1H), 3.56 (bs, 1H), 2.02 (d, *J* = 8.7 Hz, 1H), 1.77 (d, *J* = 8.7 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.2, 164.7, 163.2, 161.6, 136.7, 134.7, 134.1, 129.7, 128.5, 128.5, 124.8, 122.6, 117.3, 115.2, 115.1, 78.0, 65.6, 53.2, 49.7 ppm; IR (KBr) \tilde{V} : 3394, 3068, 2997, 2860, 1704, 1605, 1503, 1316, 1223, 1156, 1105, 965, 912, 764, 733, 519 cm⁻¹; EIMS *m/z* (%): 291.1 (56) [M]⁺, 262.1 (35), 225.1 (83), 197.1 (100) ; $[\alpha]_D^{RT} = -229$ (*c* 6.7, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_R = 11.64$ min; minor enantiomer: $t_R = 21.06$ min.

10-(4-Bromophenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9one (3f)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 94%; yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.74–7.70 (m, 2H), 7.54–7.40 (m,

1H), 7.46–7.42 (m, 3H), 7.20 (d, J = 7.5 Hz, 1H), 6.99–6.96 (m, 1H), 6.27–6.24 (m, 1H), 5.83–5.81 (dd, J = 5.5, 2.0 Hz, 1H) 4.70 (bs, 1H), 3.55 (bs, 1H), 2.00 (d, J = 8.8 Hz, 1H), 1.77 (d, J = 8.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 203.8, 164.7, 138.8, 136.728, 134.7, 134.1, 131.4 (2x), 129.1, 128.7 (2x), 124.8, 122.7, 121.7, 117.3, 78.6, 65.6, 53.2, 49.7 ppm; IR (KBr) \tilde{V} : 3395, 3004, 1701, 1600, 1473, 1305, 1260, 1194, 1106, 1063, 1007, 912, 796, 692 cm⁻¹; EIMS *m/z* (%): 352.7 (38) [M]⁺, 284.7 (86), 258.7 (100), 177.9 (69), 150.8 (52); $[\alpha]_{\rm D}^{\rm RT} = -154$ (*c* 5.8, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_{\rm R} = 12.99$ min; minor enantiomer: $t_{\rm R} = 31.05$ min.

10-(3-Bromophenyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9one (3g)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 83%; orange oil; ¹H NMR (CDCl₃, 400 MHz) δ 8.00–7.98 (m, 1H), 7.79 (m, 1H), 7.54–7.51 (m, 1H), 7.44–7.42 (m, 1H), 7.39–7.37 (m, 1H), 7.22–7.19 (m, 2H), 6.99–6.97 (m, 1H), 6.26–6.25 (m, 1H), 5.83–5.82 (dd, J = 5.4, 1.8 Hz, 1H) 4.70 (bs, 1H), 3.56 (bs, 1H), 2.02 (d, J = 8.8 Hz, 1H), 1.77 (d, J = 8.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 203.6, 164.7, 142.0, 136.8, 134.8, 134.0, 130.6, 130.0, 129.9, 129.1, 125.5, 124.8, 122.7, 122.4, 117.4, 78.1, 65.6, 53.3, 49.7 ppm; IR (KBr) \tilde{V} : 3391, 2996, 2854, 1705, 1605, 1467, 1302, 1197, 1104, 967, 912, 778, 695 cm⁻¹; EIMS *m/z* (%): 353.0 (73) [M]⁺, 322.1 (27), 286.0 (98), 257.0 (100), 178.2 (93); $[\alpha]_{\rm p}^{\rm RT} = -268$ (*c* 2.5, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_{\rm R}$ = 11.53 min; minor enantiomer: $t_{\rm R}$ = 13.35 min.

10-(2-Naphthyl)-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9-one (3h)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 79%; orange oil; ¹H NMR (CDCl₃, 400 MHz) δ 8.30–8.29 (m, 1H), 7.97–7.95 (m, 1H), 7.83–7.77 (m, 3H), 7.53–7.49 (m, 1H), 7.53–7.49 (m, 1H), 7.44–7.39 (m, 3H) 7.26–7.24 (m, 1H), 6.98–6.94 (m, 1H), 6.32–6.92 (m, 1H), 5.85–5.83 (dd, *J* = 5.5, 2.0 Hz, 1H), 4.75–4.74 (m, 1H), 3.72 (bs, 1H), 2.08 (d, *J* = 8.8 Hz, 1H), 1.76 (d, *J* = 8.8 Hz, 1H) ppm; ¹³C NMR (CDCl3, 75 MHz) δ 204.3, 164.8, 136.9, 136.5, 134.7, 134.2, 133.2, 132.9, 129.3, 128.1 (2x), 127.5, 125.9, 125.8, 125.8, 124.8, 124.8, 122.5, 117.3, 78.7, 65.6, 52.9, 49.7 ppm; IR (KBr) \tilde{V} : 3389, 3062, 2997, 2856, 1942, 1705, 1602, 1464, 1308, 1266, 1198, 1106, 1059, 967, 746, 684, 476 cm⁻¹; EIMS *m/z* (%): 322.9 (56) [M]⁺, 256.9 (70), 229.0 (100), 152.9 (38); $[\alpha]_D^{RT} = -79$ (*c* 4.8, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: t_R = 28.69 min; minor enantiomer: t_R = 45.30 min. 10-[1,1'-Biphenyl-4-yl]-2-azatetracyclo[9.2.1.0^{2,10}.0^{3,8}]tetradeca-3(8),4,6,12-tetraen-9-one (3i)

The product was purified by column chromatography (eluent EtOAc/hexane 1:10). Yield: 83%; yellowish oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.92–7.89 (m, 1H), 7.58–7.40 (m, 8H), 7.35–7.30 (m, 1H), 7.00–6.96 (m, 1H), 6.31–6.28 (m, 1H), 5.86–5.84 (dd, *J* = 5.5, 2.0 Hz, 1H), 4.75–4.73 (m, 1H), 3.67–3.66 (m, 1H), 2.11 (d, *J* = 8.8 Hz, 1H), 1.80 (d, *J* = 8.8 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 75 MHz) δ 204.3, 164.8, 140.8, 140.32, 138.6, 136.5, 134.6, 134.2, 129.3, 128.9, 128.9, 128.7, 128.2, 127.7, 127.2 (2x), 127.1, 127.0, 124.7, 122.5, 117.3, 78.5, 65.6, 53.1, 49.8 ppm; IR (KBr) \tilde{V} : 3434, 2919, 2850, 1704, 1606, 1468, 1383, 1302, 1106, 965, 759, 694 cm⁻¹; EIMS *m/z* (%): 348.9 (93) [M]⁺, 283.0 (63), 255.0 (100); $[\alpha]_D^{RT} = -135$ (*c* 6.6, MeOH); HPLC conditions: AD-H column, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL·min⁻¹, major enantiomer: $t_R = 19.41$ min; minor enantiomer: $t_R = 38.86$ min.

Chromatogram : SR_586rac_ADH_9010_flow06_acq605

Data file: SR_586rac_ADH_9010_flow06_acq605.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 11.11.2011 15:20:29

SR_586rac_ADH_9010_flow06_acq605.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,892	12,350	13,081	48,762
3	13,288	13,525	13,909	1,224
4	15,098	15,333	15,822	1,157
2	20,578	21,217	22,233	48,857
Total				100,000

Chromatogram : SR_586_c_ADH_9010_flow06_acq302

Data file: SR_586_c_ADH_9010_flow06_acq302.DATA Method: HPLC2_ADH_9010_flow06_acq30 Date: 15.11.2011 14:33:00

SR_586_c_ADH_9010_flow06_acq302.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,963	12,358	13,017	94,668
2	20,981	21,325	21,818	5,332
Total				100,000

Chromatogram : SR_579rac_ADH_9010_flow06_acq4015

Data file: SR_579rac_ADH_9010_flow06_acq4015.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 16.11.2011 22:38:00

SR_579rac_ADH_9010_flow06_acq4015.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,860	12,250	13,099	50,000
2	28,636	29,458	30,909	50,000
Total				100,000

Chromatogram : SR_579.4.9_ADH_9010_flow06_acq402

Data file: SR_579.4.9_ADH_9010_flow06_acq402.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 11.11.2011 12:21:36

SR_579.4.9_ADH_9010_flow06_acq402.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,736	12,100	12,769	97,190
2	28,170	28,575	29,187	2,810
Total				100,000

Chromatogram : SR_587rac_ADH_9010_flow06_acq6016

Data file: SR_587rac_ADH_9010_flow06_acq6016.DATA Method: HPLC2_ADH_9010_flow06_acq50 Date: 16.11.2011 23:20:36

SR_587rac_ADH_9010_flow06_acq6016.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,777	12,283	13,017	49,937
2	24,380	25,142	26,395	50,063
Total				100,000

Chromatogram : SR_587.4_c_ADH_9010_flow06_acq402

Data file: SR_587.4_c_ADH_9010_flow06_acq402.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 22.11.2011 11:48:23

SR_587.4_c_ADH_9010_flow06_acq402.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,736	12,150	12,851	92,837
2	24,241	24,650	25,215	7,163
Total				100,000

Chromatogram : SR_588_rac_ADH_9010_flow06_acq6010

Data file: SR_588_rac_ADH_9010_flow06_acq6010.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 17.11.2011 17:44:05

SR_588_rac_ADH_9010_flow06_acq6010.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	17,045	17,558	18,471	49,233
2	42,087	43,075	44,938	50,767
Total				100,000

Chromatogram : SR_588_c_ADH_9010_flow06_acq604

Data file: SR_588_c_ADH_9010_flow06_acq604.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 19.11.2011 12:26:40

SR_588_c_ADH_9010_flow06_acq604.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	16,531	17,025	17,938	94,921
2	40,693	41,325	42,135	5,079
Total				100,000

Chromatogram : SR_591rac_ADH_9010_flow06_acq607

Data file: SR_591rac_ADH_9010_flow06_acq607.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 11.11.2011 17:15:35

SR_591rac_ADH_9010_flow06_acq607.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,219	11,575	12,335	49,991
2	20,269	20,825	22,066	50,009
Total				100,000

Chromatogram : SR_591c_ADH_9010_flow06_acq403

Data file: SR_591c_ADH_9010_flow06_acq403.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 17.11.2011 11:55:23

SR_591c_ADH_9010_flow06_acq403.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,240	11,642	12,355	95,665
2	20,747	21,058	21,507	4,335
Total				100,000

Chromatogram : SR_589rac_ADH_9010_flow06_acq404

Data file: SR_589rac_ADH_9010_flow06_acq404.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 17.11.2011 12:37:59

SR_589rac_ADH_9010_flow06_acq404.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	12,851	13,375	14,215	50,142
2	31,653	32,542	34,091	49,858
Total				100,000

Chromatogram : SR_589.2_c_ADH_9010_flow06_acq403

Data file: SR_589.2_c_ADH_9010_flow06_acq403.DATA Method: HPLC2_ADH_9010_flow06_acq40 Date: 19.11.2011 11:44:40

SR_589.2_c_ADH_9010_flow06_acq403.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	12,595	12,992	13,781	90,838
2	30,523	31,050	31,801	9,162
Total				100,000

Chromatogram : SR_592rac_ADH_9010_flow06_acq608

Data file: SR_592rac_ADH_9010_flow06_acq608.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 11.11.2011 18:18:14

SR_592rac_ADH_9010_flow06_acq608.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,095	11,567	12,645	49,838
2	12,645	13,383	14,256	50,162
Total				100,000

Chromatogram : SR_592.2 c_ADH_9010_flow06_acq302

Data file: SR_592.2 c_ADH_9010_flow06_acq302.DATA Method: HPLC2_ADH_9010_flow06_acq30 Date: 30.11.2011 10:29:52

SR_592.2 c_ADH_9010_flow06_acq302.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	11,214	11,533	12,111	92,399
2	13,107	13,350	13,686	7,601
Total				100,000

nnm(f1)

Chromatogram : SR_593_rac_ADH_9010_flow06_acq609

Data file: SR_593_rac_ADH_9010_flow06_acq609.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 17.11.2011 16:41:28

SR_593_rac_ADH_9010_flow06_acq609.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	27,335	28,283	29,814	50,195
2	43,326	44,667	46,798	49,805
Total				100,000

Chromatogram : SR_593.3_c_ADH_9010_flow06_acq6013

Data file: SR_593.3_c_ADH_9010_flow06_acq6013.DATA Method: HPLC2_ADH_9010_flow06_acq60 Date: 30.11.2011 20:28:05

SR_593.3_c_ADH_9010_flow06_acq6013.DATA [Jasco Analog Channel 4]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	27,960	28,692	29,948	95,611
2	44,586	45,300	46,199	4,389
Total				100,000

Chromatogram : SR_594_rac_ADH_9010_flow06_acq603

Data file: SR_594_rac_ADH_9010_flow06_acq603.DATA Method: HPLC2_ADH_9010_flow06_acq50 Date: 30.11.2011 10:50:22

SR_594_rac_ADH_9010_flow06_acq603.DATA [Jasco Analog Channel 2]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	18,956	19,500	20,470	49,798
2	38,009	39,067	40,941	50,202
Total				100,000

Chromatogram : SR_594_c_ADH_9010_flow06_acq604

Data file: SR_594_c_ADH_9010_flow06_acq604.DATA Method: HPLC2_ADH_9010_flow06_acq50 Date: 30.11.2011 11:40:07

SR_594_c_ADH_9010_flow06_acq604.DATA [Jasco Analog Channel 2]

Index	Start	Time	End	Area %
	[Min]	[Min]	[Min]	[%]
1	18,855	19,417	20,373	93,112
2	38,207	38,858	39,695	6,888
Total				100,000