Supporting Information

for

Electrochemical generation of 2,3-oxazolidinone glycosyl triflates as an intermediate for stereoselective glycosylation

Toshiki Nokami¹, Akito Shibuya¹, Yoshihiro Saigusa¹, Shino Manabe^{*2}, Yukishige Ito^{2,3} and Jun-ichi Yoshida^{*1}

Address: ¹Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan; ²Advanced Science Institute, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan and ³ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan

Email: Jun-ichi Yoshida* - yoshida@sbchem.kyoto-u.ac.jp and Shino Manabe* -

smanabe@riken.jp

* Corresponding author

Experimental procedures, spectral data of glycosyl triflates and new compounds, and ¹H- and ¹³C NMR spectra

Contents

1.	General	S2
2.	Preparation of glycosyl donor	S2–S3
3.	Procedures for low-temperature NMR analysis of the glycosyl triflate	S3–S4
4.	Glycosylation of glycosyl triflate with alcohols	S4–S6
5.	Electrochemical glycosylation in the presence of glycosyl acceptor	S6–S8
6.	Triflic acid mediated isomerization of β -isomer to α -isomer	S 8
7.	References	S 8
8.	¹ H and ¹³ C NMR spectra of thioglycoside 1b	S9–S10
9.	1 H, 13 C NMR, 1 H/ 1 H COSY, and HMQC spectra of glycosyl triflate 2a	S11–S14
10.	1 H, 13 C NMR, 1 H/ 1 H COSY, and HMQC spectra of glycosyl triflate 2b	S15–S18
11.	1 H, 13 C NMR, 1 H/ 1 H COSY, and HMQC spectra of glycosyl triflate 2 c	S19–S22
12.	¹ H and ¹³ C NMR spectra of β -methyl glycoside 3 β	S23–S24
13.	¹ H and ¹³ C NMR spectra of β -ethyl glycoside 4 β	S25–S26
14.	¹ H and ¹³ C NMR spectra of α -benzyl glycoside 5 α	S27–S28
15.	¹ H and ¹³ C NMR spectra of α/β -trifluoroethyl glycoside 6$\alpha/6\beta$	S29–S32
16.	¹ H and ¹³ C NMR spectra of α -thioglycoside 9	S33–S34
17.	¹ H and ¹³ C NMR spectra of α -thioglycoside 10	S35–S36

1. General

¹H and ¹³C NMR spectra were recorded on Varian MERCURYplus-400 (¹H, 400 MHz, ¹³C, 100 MHz). Low-temperature ¹H, ¹³C NMR, and ¹³C/¹H HMQC spectra were recorded on JEOL ECA-600P (¹H, 600 MHz, ¹³C, 150 MHz). EI and CI mass spectra were recorded on JEOL JMS-SX102A mass spectrometers. FAB and ESI mass spectra were recorded on JEOL JMS-HX110A and Thermo EXACTIVE mass spectrometers, respectively. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Dichloromethane was washed with water, distilled from P₂O₅, redistilled from dried K₂CO₃ to remove a trace amount of acid, and stored over molecular sieves (4 Å). Bu₄NOTf was dried over P₂O₅ under vacuum and CD₂Cl₂ was dried over molecular sieves (4 Å) before use. Starting material **S1** [1], glycosyl donor **1a** [2], **1c** [1], and glycosyl acceptors **7** [3] were prepared according to the reported procedures.

2. Preparation of glycosyl donor

To a solution of alcohol S1 (300 mg, 0.611 mol) in pyridine (97 µL, 1.22 mmol) and CH₂Cl₂ (1 mL), chloroacetic anhydride (92 mg, 0.733 mmol) was added at 4 °C. After 3 h, 0.5 M HCl aq. was added. The aqueous layer was extracted with EtOAc. The combined layers were washed with brine. After the extract was dried over Na₂SO₄, the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (hexane:EtOAc 4:1 give the chloroacetate 1b (340 mg, 98%) a colorless oil. *p*-Tolyl to 7:3) to as N-benzyl-2-amino-6-O-benzyl-2,3-N,O-carbonyl-4-O-chloroacetyl-2-deoxy-1-thio-8-D-glucopyranoside (1b). ¹H NMR (CDCl₃, 400 MHz) δ 7.38–7.22 (m, 12H), 7.01 (d, *J* = 7.6 Hz, 2H), 5.33 (dd, *J* = 10.4, 8.4 Hz, 1H), 4.72 (s, 2H), 4.71 (d, J = 8.4 Hz, 1H), 4.52 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 12.0 Hz, 1H), 4.15 (pseudo t, J = 10.8 Hz, 1H), 4.71 (d, J = 10.8 Hz, 1H), 4 1H), 3.97 (d, J = 14.8 Hz, 1H), 3.89 (d, J = 15.2 Hz, 1H), 3.68 (dd, J = 8.4, 3.2 Hz, 1H), 3.63 (dd, J = 10.8, 3.2 Hz, 1H), 3.64 (dd, J = 10.8, 3.2 Hz, 1H), 3.65 (dd 1H), 3.58 (dd, J = 10.8, 4.8 Hz, 1H), 3.52 (dd, J = 11.2, 9.2 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 165.8, 158.5, 150.3, 138.9, 137.4, 135.9, 133.1, 129.9, 128.7, 128.4, 128.2, 128.1, 127.94, 127.85, 127.7, 87.0, 79.5, 78.2, 73.6, 69.6, 68.5, 60.1, 47.5, 40.4, 21.1. HRMS (ESI) *m/z* calcd for C₃₀H₃₁ClNO₆S [M+H]⁺, 568.1555; found, 568.1560.

3. Low-temperature NMR analysis of glycosyl triflates

The anodic oxidation was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode (Nippon Carbon JF-20-P7, ca. 160 mg, dried at 250 °C/1 mmHg before use) and a platinum plate cathode (10 mm x 10 mm). In the anodic chamber were placed thioglycoside 1a (45.0 mg, 0.10 mmol) and 0.1 M Bu₄NOTf in CD₂Cl₂ (5.0 mL). In the cathodic chamber were placed trifluoromethanesulfonic acid (22 µL, 0.25 mmol) and 0.1 M Bu₄NOTf in CD₂Cl₂ (5.0 mL). The constant current electrolysis (4.0 mA) was carried out at -78 °C with magnetic stirring. After 1.5 F/mol of electricity was consumed, the reaction mixture of the anodic chamber was transferred to a 5 mm NMR tube with a septum cap under an argon atmosphere at -78 °C. The NMR measurement was carried out at -80 °C. Chemical shifts were reported using signals of CH₂Cl₂ at 5.32 ppm (^{13}C) $(^{1}H NMR)$ NMR) and CD_2Cl_2 at 53.8 ppm as standards. Triflyl 2-N-acetyl-4,6-di-O-acetyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranoside (2a). Selected data for 2a (7.0–2.0 ppm for ¹H NMR and 100–20 ppm for ¹³C NMR). ¹H NMR (CD₂Cl₂, 600 MHz) δ 6.89 (d, J = 2.1 Hz, 1H, H-1), 5.39 (dd, J = 10.3, 9.6 Hz, 1H, H-4), 4.63 (dd, J = 12.4, 10.3 Hz, 1H, H-3), 4.21–4.16 (m, 3H), 4.14–4.11 (m, 1H, H-5), 2.45 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H). ¹³C NMR (CD₂Cl₂, 150 MHz) δ 99.9 (C-1), 72.9 (C-5), 72.7 (C-3), 65.7 (C-4), 60.1 (C-6), 57.6 (C-2), 23.6 (CH₃ of NAc), 20.60 (CH₃ of OAc), 20.52 (CH₃ of OAc).

The triflyl anodic oxidation of thioglycoside 1b (54.5)mg, 0.0984 mmol) afforded **2-***N*-**benzyl-6***O*-**benzyl-2**,**3**-*N*,*O*-**carbonyl-4**-*O*-**chloroacetyl-2**-**deoxy-α**-**D**-**glucopyranoside** (**2b**). Selected data for **2b** (6.0–3.5 ppm for ¹H NMR and 100–40 ppm for ¹³C NMR). ¹H NMR (CD₂Cl₂, 600 MHz) δ 5.97 (s, 1H, H-1), 5.51 (dd, J = 10.3, 9.6 Hz, 1H, H-4), 4.62 (d, J = 15.1 Hz, 1H, CH_2Ph), 4.52 (d, J = 11.7 Hz, 1H, $C(O)CH_2CI$, 4.51 (d, J = 11.7 Hz, 1H, H-3), 4.23 (d, J = 12.4 Hz, 1H, $C(O)CH_2CI$), 4.19 (d, J = 14.4 Hz, 1H, CH₂Ph), 4.06 (d, J = 16.5 Hz, 1H, CH₂Ph), 3.91 (d, J = 8.9 Hz, 1H, H-5), 3.79 (d, J = 16.5 Hz, 1H, CH₂Ph), 3.58 (d, J = 12.4 Hz, 1H, H-2), 3.51 (d, J = 11.7 Hz, 1H, H-6), 3.40 (d, J = 11.0 Hz, 1H, H-6'). ¹³C NMR (CD₂Cl₂, 150 MHz) & 99.9 (C-1), 74.3 (C-5), 72.2 (C-3, C(O)CH2Cl), 67.3 (C-4), 64.0 (C-6), 58.4 (C-2), 47.8 (CH2Ph), 40.9 (*C*H₂Ph)

The anodic oxidation of thioglycoside **1c** (57.9 mg, 0.0995 mmol) afforded **triflyl 2-N-benzyl-4,6-di**-*O*-**benzyl-2,3**-*N*,*O*-**carbonyl-2-deoxy-\alpha-D-glucopyranoside** (**2c**). Selected data for **1c** (6.0–3.4 ppm for ¹H NMR and 110–40 ppm for ¹³C NMR). ¹H NMR (CD₂Cl₂, 600 MHz) δ 5.95 (s, 1H, H-1), 4.78 (d, *J* = 11.0 Hz, 1H, CH₂Ph), 4.59–4.55 (m, 2H, H-3, CH₂Ph), 4.42 (d, *J* = 11.0 Hz, 1H, CH₂Ph), 4.40 (d, *J* = 11.0 Hz, 1H, CH₂Ph), 4.27 (d, *J* = 14.4 Hz, 1H, CH₂Ph), 4.22 (d, *J* = 11.7 Hz, 1H, CH₂Ph), 4.22 (d, *J* = 11.7 Hz, 1H, CH₂Ph), 4.22 (d, *J* = 10.3 Hz, 1H, H-4), 3.79 (d, *J* = 8.9 Hz, 1H, H-5), 3.69 (d, *J* = 10.3 Hz, 1H, H-6), 3.51 (d, *J* = 10.3 Hz, 1H, H-6'), 3.48 (d, *J* = 12.4 Hz, 1H, H-2). ¹³C NMR (CD₂Cl₂, 150 MHz) δ 100.7 (C-1), 76.0 (C-5), 75.3 (C-3), 72.7 (CH₂Ph), 72.4 (CH₂Ph), 72.0 (C-4), 65.1 (C-6), 58.6 (C-2), 47.9 (CH₂Ph).

4. Glycosylation of glycosyl triflate with alcohols

The anodic oxidation was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode (Nippon Carbon JF-20-P7, ca. 160 mg, dried at 250 °C/1 mmHg before use) and a platinum plate cathode (10 mm x 10 mm). In the anodic chamber were placed a thioglycoside 1a (48.4 mg, 0.11 mmol) and 0.1 M Bu_4NOTf in CH_2Cl_2 (5.0 mL). In the cathodic chamber were placed trifluoromethanesulfonic acid (22 μ L, 0.25 mmol) and 0.1 M Bu₄NOTf in CH₂Cl₂ (5.0 mL). The constant current electrolysis (4.0 mA) was carried out at -78 °C with magnetic stirring. After 1.6 F/mol of electricity was consumed, methanol (20 µL, 0.5 mmol) was added to the anodic chamber and the reaction mixture was stirred for an additional 1 h at -78 °C. Et₃N (0.1 mL) was added and the mixture was filtered through a short column (2 x 3 cm) of silica gel to remove Bu₄NOTf. The removal of solvent under reduced pressure afforded β -isomer of the corresponding methyl glycoside **3** β in 76% >99% vield (29)0.084 mmol, β -selectivity). Methyl mg, 2-*N*-acetyl-4,6-di-*O*-acetyl-2,3-*N*,*O*-carbonyl-2-deoxy-β-D-glucopyranoside (3β). ¹H NMR (CDCl₃, 400 MHz) δ 5.10 (dd, J = 9.6, 3.6 Hz, 1H), 4.97 (d, J = 6.4 Hz, 1H), 4.50 (dd, J = 12.0, 4.8 Hz, 1H), 4.29 (dd, J = 12.8, 9.6 Hz, 1H), 4.24 (dd, J = 12.0, 7.2 Hz, 1H), 4.07 (ddd, J = 8.4, 6.4, 3.6 Hz, 1H), 3.91 (dd, J = 12.8, 6.4 Hz, 1H), 3.51

(s, 3H), 2.52 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.2, 170.1, 169.4, 152.8, 101.2, 77.5, 74.9, 70.1, 64.0, 60.5, 56.4, 24.6, 20.9, 20.8. HRMS (EI) *m*/*z* calcd for C₁₄H₁₉NO₉ [M]⁺, 345.1060; found, 345.1057.

Glycosylation of **2a** (43.5 mg, 0.099 mmol) with ethanol (29 μL, 0.50 mmol) afforded **ethyl 2-N-acetyl-4,6-di-***O***-acetyl-2,3-***N***,***O***-carbonyl-2-deoxy-β-D-glucopyranoside (4**β) in 71% yield (25 mg, 0.070 mmol, >99% β-selectivity). ¹H NMR (CDCl₃, 400 MHz) δ 5.10 (dd, J = 9.6, 3.6 Hz, 1H), 5.08 (d, J = 6.4 Hz, 1H), 4.51 (dd, J =12.0, 4.8 Hz, 1H), 4.29 (dd, J = 12.4, 9.6 Hz, 1H), 4.26 (dd, J = 12.0, 7.2 Hz, 1H), 4.07 (ddd, J = 8.4, 4.8, 3.6 Hz, 1H), 3.95–3.86 (m, 2H), 3.62 (ddd, J = 16.0, 9.2, 7.2 Hz, 1H), 2.52 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.14, 170.10, 169.4, 152.8, 99.9, 77.5, 74.9, 70.3, 64.9, 64.2, 60.8, 24.6, 20.9, 20.8, 14.9. HRMS (EI) *m/z* calcd for C₁₅H₂₁NO₉ [M+H]⁺, 360.1289; found, 360.1292.

Glycosylation of **2a** (44.5 mg, 0.102 mmol) with benzyl alcohol (52 μL, 0.50 mmol) afforded a mixture of **5α** and **5β** [2] in 89% yield (38 mg, 0.090 mmol, $\alpha/\beta = 9/91$). **Benzyl-N-acetyl-4,6-di-***O***-acetyl-2,3-***N***,***O***-carbonyl-2-deoxy-α-D-glucopyranoside (5α**). ¹H NMR (CDCl₃, 600 MHz) δ 7.39–7.29 (m, 5H), 5.85 (d, J = 3.4 Hz, 1H), 5.29 (t, J = 10.3 Hz, 1H), 4.73 (d, J = 11.7 Hz, 1H), 4.69 (dd, J = 11.7, 10.3 Hz, 1H), 4.63 (d, J = 11.7 Hz, 1H), 4.22 (dd, J = 12.4, 4.8, 1H), 4.06 (dd, J = 12.4, 2.0 Hz, 1H), 3.90 (dd, J = 11.7, 2.8, 1H), 3.87–3.85 (ddd, J = 9.6, 4.8, 2.8 Hz, 1H), 2.49 (s, 3H), 2.11 (d, J = 6.2 Hz, 6H). ¹³C NMR (CDCl₃, 150 MHz) δ 171.0, 170.6, 169.1, 152.6, 136.4, 128.6, 128.4, 128.1, 95.9, 74.3, 71.5, 70.1, 68.0, 61.5, 60.0, 23.6, 20.7, 20.6. HRMS (FAB) *m/z* calcd for C₂₀H₂₃NO₉ [M+H]⁺, 422.1446; found, 422.1438.

Benzyl 2-*N*-acetyl-4,6-di-*O*-acetyl-2,3-*N*,*O*-carbonyl-2-deoxy-α-D-glucopyranoside (5β). ¹H NMR (CDCl₃, 400 MHz) δ 7.40–7.27 (m, 5H), 5.17 (d, J = 6.8 Hz, 1H), 5.11 (dd, J = 9.6, 3.6 Hz, 1H), 4.88 (d, J = 11.2 Hz, 1H), 4.65 (d, J = 11.2 Hz, 1H), 4.53 (dd, J = 12.0, 4.8 Hz, 1H), 4.29 (dd, J = 12.8, 9.6 Hz, 1H), 4.25 (dd, J =11.6, 6.8 Hz, 1H), 4.09 (ddd, J = 7.2, 3.6, 1.2 Hz, 1H), 4.01 (dd, J = 12.8, 6.8 Hz, 1H), 2.52 (s, 3H), 2.13 (s, 3H), 2.00 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.1, 170.0, 169.3, 152.8, 136.3, 128.3, 128.0, 127.9, 99.5, 77.6, 74.9, 71.0, 70.2, 64.1, 60.5, 24.6, 20.83, 20.79.

Glycosylation of **2a** (43.7 mg, 0.10 mmol) with 2,2,2-trifluoroethanol (36 µL, 0.49 mmol) afforded a mixture of **6a** and **6β** in 82% yield (33.8 mg, 0.082 mmol, $\alpha/\beta = 15/85$). **2',2',2'-Trifluoroethyl 2-N-acetyl-4,6-di**-*O*-acetyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-glucopyranoside (6 α). ¹H NMR (CDCl₃, 600 MHz) δ 5.79 (d, *J* = 2.8 Hz, 1H), 5.33 (t, *J* = 10.3 Hz, 1H), 4.64 (dd, *J* = 11.7, 10.3 Hz, 1H), 4.25 (dd, *J* = 12.4, 4.8 Hz, 1H), 4.18 (dd, *J* = 12.4, 2.0 Hz, 1H), 4.07–4.00 (m, 2H), 3.96–3.93 (ddd, *J* = 8.9, 4.1, 2.1 Hz, 1H), 3.90 (dd, *J* = 11.7, 2.8 Hz, 1H), 2.51 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H) ¹³C NMR (CDCl₃, 150 MHz) δ 171.1, 170.5, 169.1, 152.3, 124.0 (q, *J* = 275.7 Hz), 96.5, 73.7, 70.9, 67.7, 66.3 (q, *J* = 34.5 Hz), 61.3, 59.5, 23.5, 20.6, 20.6. HRMS (EI) *m*/z calcd for C₁₅H₁₈F₃NO₉ [M+NH₄]⁺, 431.1272; found, 431.1269.

2',2',2'-Trifluoroethyl 2-*N***-acetyl-4,6-di***-O***-acetyl-2,3-***N*,*O***-carbonyl-2-deoxyβ-D-glucopyranoside** (**6β**); ¹H NMR (CDCl₃, 400 MHz) δ 5.22 (d, J = 6.4 Hz, 1H), 5.10 (dd, J = 9.6, 2.8 Hz, 1H), 4.55 (dd, J = 11.6, 4.4 Hz, 1H), 4.31 (dd, J =12.8, 9.6 Hz, 1H), 4.23 (dd, J = 11.6, 7.6 Hz, 1H), 4.18–4.11 (m, 2H), 4.09–4.04 (m, 1H), 4.00 (dd, J = 12.8, 6.4 Hz, 1H), 2.53 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.3, 170.2, 169.7, 152.6, 123.3 (q, J = 276.1Hz), 100.1, 78.5, 74.2, 70.1, 66.0 (q, J = 34.9 Hz), 64.2, 60.0, 24.3, 20.6. HRMS (EI) m/z calcd for C₁₅H₁₈F₃NO₉ [M]⁺, 413.0934; found, 414.1006.

5. Electrochemical glycosylation in the presence of glycosyl acceptor

The anodic oxidation was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode (Nippon Carbon JF-20-P7, ca. 160 mg, dried at 250 °C/1 mmHg before use) and a platinum plate cathode (10 mm x 10 mm). In the anodic chamber were placed a thioglycoside **1a** (52.4 mg, 0.12 mmol), glycosyl acceptor **3** (46.2 mg, 0.099 mmol), and 0.1 M Bu₄NOTf in CH₂Cl₂ (5.0 mL). In the cathodic chamber were placed trifluoromethanesulfonic acid (18 μ L, 0.20 mmol) and 0.1 M Bu₄NOTf in CH₂Cl₂ (5.0 mL). In the constant current electrolysis (4.0 mA) was carried out at -78 °C with magnetic stirring. After 1.0 F/mol of electricity was consumed, Et₃N (0.5 mL) was added and the reaction mixture was filtered through a short column (2 x 3 cm) of silica gel to remove Bu₄NOTf. The removal of solvent under reduced pressure afforded the β-isomer of the corresponding disaccharide **8α** [4]/**8β** [4] in 36% NMR yield (**8α/8β** 46:54) (Table 3, entry 1).

Methyl 2-N-acetyl-4,6-di-O-acetyl-2,3-N,O-carbonyl-2-deoxy-α-Dglucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-glucopyranoside **(8α)**. ¹H NMR (CDCl₃, 400 MHz) δ 7.36–7.22 (m, 15H), 5.76 (d, J = 2.4 Hz, 1H), 5.25 (dd, J = 10.0, 9.6 Hz, 1H), 5.00 (d, J = 11.2 Hz, 1H), 4.86 (d, J = 11.6 Hz, 1H), 4.79 (d, J = 10.4 Hz, 1H), 4.76 (d, J = 11.6 Hz, 1H), 4.67 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 3.2 Hz, 1H), 4.56 (d, J = 10.8 Hz, 1H), 4.49 (dd, J = 12.0, 10.4 Hz, 1H), 4.14 (dd, J = 12.4, 4.0 Hz, 1H), 4.09 (dd, J = 12.4, 2.4 Hz, 1H), 3.98 (dd, J = 9.6, 8.8 Hz, 1H), 3.85 (ddd, J = 9.6, 4.0, 2.4 Hz, 1H), 3.80 (dd, J = 12.4, 2.4 Hz, 1H), 3.78 (d, J = 3.6 Hz, 1H), 3.71 (*pseudo* dt, *J* = 10.0, 3.6 Hz, 1H), 3.51 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.35 (s, 3H), 3.30 (dd, J = 10.0, 8.8 Hz, 1H), 2.40 (s, 3H), 2.11 (s, 3H), 2.02 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.7, 170.3, 168.9, 152.5, 138.5, 137.8, 137.7, 128.3, 128.28, 128.25, 127.9, 127.8, 127.78, 127.75, 127.70, 127.5, 97.7, 95.4, 81.9, 79.7, 77.0, 75.6, 74.6, 73.9, 73.2, 69.9 (2C), 68.0, 66.9, 61.5, 59.9, 55.2, 23.7, 20.79, 20.75.

Methyl 2-N-acetyl-4,6-di-O-acetyl-2,3-N,O-carbonyl-2-deoxy-β-Dglucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-glucopyranoside (8β). ¹H NMR (CDCl₃, 400 MHz) δ 7.34–7.24 (m, 15H), 5.15 (dd, J = 9.6, 4.4 Hz, 1H), 4.99 (d, J = 11.2 Hz, 1H), 4.96 (d, J = 6.8 Hz, 1H), 4.89 (d, J = 11.2 Hz, 1H), 4.81 (d, J = 10.8 Hz, 1H), 4.78 (d, J = 12.4 Hz, 1H), 4.72 (d, J = 11.2 Hz, 1H), 4.67 (d, J = 12.4 Hz, 1H), 4.64 (d, J = 3.6 Hz, 1H), 4.39 (dd, J = 12.0, 4.8 Hz, 1H), 4.26 (dd, J = 12.0, 6.0 Hz, 1H), 4.21 (dd, J = 12.4, 9.6 Hz, 1H), 4.02–3.95 (m, 4H), 3.79 (dd, J = 10.8, 4.4 Hz, 1H), 3.74 (ddd, J = 9.6, 4.0, 2.0 Hz, 1H), 3.58 (dd, J = 9.6, 8.4 Hz, 1H), 3.54 (dd, J = 9.6, 3.6 Hz, 1H), 3.37 (s, 3H), 2.46 (s, 3H), 2.12 (s, 3H), 2.01 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.3, 170.0, 169.4, 153.1, 138.8, 138.7, 138.2, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 127.5, 100.3, 97.9, 82.1, 79.9, 77.3, 77.1, 75.6, 75.2, 74.6, 73.2, 69.8, 69.6, 64.1, 60.4, 55.2, 24.5, 20.8, 20.7.

Electrochemical glycosylation of **1a** (52.6 mg, 0.120 mmol) with glycosyl acceptor **7** (46.4 mg, 0.100 mmol) at 0 °C afforded disaccharide **8a** in 59% NMR yield together with *p*-methylphenyl 2-*N*-acetyl-4,6-di-*O*-acetyl-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio- α -D-

glucopyranoside (9) in 21% yield (11.3 mg, 0.025 mmol) after purification by silica gel chromatography (Table 3, entry 4). ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.12 (d, *J* = 4.0, 1H), 5.30 (dd, *J* = 10.0, 9.2 Hz, 1H), 4.47 (dd, *J* = 12.0, 10.0 Hz, 1H), 4.38–4.43 (m, 1H), 4.33 (dd, J = 12.0, 4.8 Hz, 1H), 4.16 (m, 2H) 2.55 (s, 3H), 2.34 (s, 3H), 2.15 (s, 3H), 2.08 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.0, 170.5, 169.2, 152.5, 138.7, 133.2, 130.1, 128.0, 86.5, 75.9, 70.2, 67.9, 61.7, 59.9, 23.8, 21.2, 20.7, 20.6. HRMS (FAB) *m*/*z* calcd for C₂₀H₂₃NO₈S [M+H]⁺, 438.1217; found, 438.1212.

Electrochemical glycosylation of **1a** (52.5 mg, 0.12 mmol) with glycosyl acceptor **7** (46.2 mg, 0.10 mmol) at -78 °C in the presence of DTBMP afforded glucal **10** in 24% NMR yield as a major byproduct derived from **1a** (Table 3, entry 2). **2-N-acetyl-4,6-di-O-acetyl-2,3-***N*,*O*-**carbonyl -D-glucal** (**10**). ¹H NMR (CDCl₃, 400 MHz) δ 7.31 (d, *J* = 2.4 Hz, 1H), 5.42 (dd, *J* = 10.4, 8.4 Hz, 1H), 5.08 (dd, *J* = 8.0, 2.4 Hz, 1H), 4.33 (dd, *J* = 12.4, 4.0 Hz, 1H), 4.23 (dd, *J* = 12.4, 2.0 Hz, 1H), 4.15 (ddd, *J* = 10.0, 4.0, 2.0 Hz, 1H), 2.56 (s, 3H), 2.15 (s, 3H), 2.09 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.2, 168.6, 168.3, 151.8, 132.5, 111.6. 74.5, 72.9, 66.0, 61.3, 24.1, 20.8. HRMS (EI) *m*/*z* calcd for C₁₃H₁₅NO₈, 313.0798; found, 313.0800.

6. Triflic acid mediated isomerization of β -isomer to α -isomer

The crude mixture of electrochemical glycosylation $8\alpha/8\beta$ (0.094 mmol, $8\alpha/8\beta$ 3:97) was treated with TfOH (0.094 mmol, 8 µL) and 0.1 M Bu₄NOTf in CH₂Cl₂ (5.0 mL) at 0 °C for 1 h. Then Et₃N (0.5 mL) was added and the removal of solvent under reduced pressure afforded the α -isomer of the corresponding disaccharide 8α as a single product in 83% NMR yield.

7. References

- 1. Lin, S.-C.; Chao, C.-S.; Chang, C.-C.; Mong, K.-K. T. Tetrahedron Lett. 2010, 51, 1910.
- 2. Wei, P.; Kerns, R. J. J. Org. Chem. 2005, 70, 4195.
- 3. Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 64, 1990.
- 4. Geng, Y.; Zhang, L.-H.; Ye, X.-S. Chem. Commun. 2008, 597.

C:\WINNMR98\COMMON\ DEFAULT.ALS

_

<pre></pre>	PilonemeAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-7-25-4-5.jdfAthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2007 11:56-149AthborAB-2004 11:56-149Athbor<	Bno ClAco D Bno O Tf	2b
			407830 407800 407830 407800 407800 407800 407800 407800 407800 407800 407800 407800 407800 407800 40780
			9610°C 9610°C 90070 90070 10070 10070 90070 90070 10070
			0 − 0076°S 1015°S 1015°S 5975°S 0 0 0 0 0 0 0 0 0 0 0 0 0
A.2-1-25 4-5.jut single_puts 0.36 0.38 0.4 0.42	1 015 014 016 018 05 055 054 056 058 03 034 034	abundance	0501/2 0501/2 7811/2 2811/2 201/2 2011/2 2011/2 2011/2 2011/2 2011/2 2011/2 2011/2 2011/2 200

S25

.--

S26

and the second second second

S31

S33

