Supporting Information

for

Branching out at C-2 of septanosides. Synthesis of 2-

deoxy-2-C-alkyl/aryl septanosides from a bromo-oxepine

Supriya Dey and Narayanaswamy Jayaraman*

Address: Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

Email: Narayanaswamy Jayaraman^{*} - jayaraman@orgchem.iisc.ernet.in

*Corresponding author

Experimental procedures and spectroscopic data

Contents

General methods	S2
Syntheses of 3 and 5	S4
Synthesis of 6	S5
Synthesis of 8	S6
Synthesis of 10	S6
Syntheses of 11	S7
Synthesis of 14	S8
Figures 1 and 2. ¹ H and ¹³ C NMR spectra of 3	S9
Figures 3 and 4. ¹ H and ¹³ C NMR spectra of 4	S10

Figures 5 and 6. ¹ H and ¹³ C NMR spectra of 5	S11
Figures 7 and 8. ¹ H and ¹³ C NMR spectra of 6	S12
Figures 9 and 10. ¹ H and ¹³ C NMR spectra of 7	S13
Figures 11 and 12. ¹ H and ¹³ C NMR spectra of 8	S14
Figures 13 and 14. ¹ H and ¹³ C NMR spectra of 9	S15
Figures 15 and 16. ¹ H and ¹³ C NMR spectra of 10	S16
Figures 17 and 18. ¹ H and ¹³ C NMR spectra of 11	S17
Figures 19 and 20. ¹ H and ¹³ C NMR spectra of 12	S18
Figures 21 and 22. ¹ H and ¹³ C NMR spectra of 13	S19
Figures 23 and 24. ¹ H and ¹³ C NMR spectra of 14	S20
Figures 25 and 26. HSQC and COSY spectra of 5	S21
Figures 27 and 28. COSY and HSQC spectra of 7	S22
Figures 29 and 30. COSY and HSQC spectra of 9	S23
Figures 31 and 32. COSY and HSQC spectra of 12	S24
Figures 33 and 34. COSY and HSQC spectra of 13	S25
Figures 35 and 36. COSY and HSQC spectra of 14	S26
References	S27

General methods

Chemicals were purchased from commercial sources and used without further purification. Solvents were dried and distilled by following literature procedures. Bromo-oxepine was synthesized according to the reported procedure [1]. Analytical TLC was performed on commercial Merck plates coated with silica gel GF_{254} (0.25 mm) with detection by fluorescence and/or charring following immersion in 5% H₂SO₄/EtOH. Silica gel (230– 400 mesh) was used for column chromatography. Optical rotations were recorded on a polarimeter at the sodium D line at 24 °C. High resolution mass spectra were obtained from a Micromass Q-TOF instrument by the electrospray ionization (ESI) technique. ¹H and ¹³C NMR spectral analyses were performed on 400 and 100 MHz NMR spectrometers, respectively, with the residual solvent signal acting as the internal standard. Standard abbreviations s, d, t, dd, br, app., m and band refer to singlet, doublet, triplet, doublet of doublet, broad, apparent, multiplet and set of resonances.

Experimental

Methyl 2-deoxy-2-C-(2-(methoxycarbonyl)ethyl)-3,4,5,7-tetra-O-benzyl-a-D-arabino-

hept-2-enoseptanoside (3). A solution of 2 (0.05 g, 0.07 mmol) in 1,4-dioxane (1 mL) was admixed with Pd(OAc)₂ (1 mg, 10 mol %) under a N₂ atmosphere, and was followed by addition of Cs₂CO₃ (0.03 g, 0.11 mmol) and methyl acrylate (8 μ L, 0.13 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted with EtOAc (20 mL), washed with water (2 × 30 mL) and brine (2 × 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The resulting residue was purified (hexane/EtOAc 8:2) to afford **3** (0.035 g, 70%), as an oil.

*R*_f 0.30 (hexane/EtOAc 8:2); $[\alpha]_D$ -21.6 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 16.0 Hz, 1 H, CH=CHCO₂Me), 7.37–7.24 (m, 18 H, aromatic), 7.10–7.08 (m, 2 H, aromatic), 5.97 (d, *J* = 16.0 Hz, 1 H, CH=CHCO₂Me), 5.36 (s, 1 H, H-1), 4.67 (d, *J* = 4.0 Hz, 1 H, PhCH₂), 4.65 (d, *J* = 12.0 Hz, 1 H, PhCH₂), 4.59 (d, *J* = 12.0 Hz, 2 H, PhCH₂), 4.47 (d, *J* = 12.4 Hz, 1 H, PhCH₂), 4.43 (d, *J* = 12.0 Hz, 1 H, PhCH₂), 4.29 (d, *J* = 11.6 Hz, 2 H, PhCH₂), 4.20–4.15 (band, 2 H, H-4 and H-6), 3.77–3.75 (dd, *J* = 8.4, 2.0 Hz, 1 H, H-5), 3.73 (s, 3 H, CO₂Me), 3.60 (dd, *J* = 10.8, 6.0 Hz, 1 H, H-7a), 3.52–3.49 (band, 4 H, H-7b, OMe); ¹³C NMR (100 MHz, CDCl₃) δ 167.8 (C=O), 159.5 (C-3), 138.5–137.2 (aromatic), 136.3 (CH=CHCO₂Me), 128.5–127.5 (aromatic), 124.2 (C-2), 119.5

(CH=CHCO₂Me), 100.1 (C-1), 80.0 (C-5), 77.2 (C-4), 73.1 (PhCH₂), 72.9 (PhCH₂), 72.1 (PhCH₂), 71.2 (PhCH₂), 71.1 (C-6), 70.9 (C-7), 55.4 (OMe), 51.4 (CO₂Me); HRMS–ESI (*m*/*z*): [M + Na]⁺ calcd for 673.2777; found, 673.2776.

Methyl 2-deoxy-2-C-((3-((5-(acryloyloxy)pentyl)oxy)-3-oxoprop-1-en-1-yl)-3,4,5,7-

tetra-O-benzyl-*a*-D-*arabino*-hept-2-enoseptanoside (5). A solution of **2** (0.05 g, 0.07 mmol) in 1,4-dioxane (1 mL) was admixed with $Pd(OAc)_2$ (1 mg, 10 mol %) under a N₂ atmosphere, and was followed by addition of Cs_2CO_3 (0.03 g, 0.11 mmol) and H₂C=CH-COO(CH₂)₅OCOCH=CH₂ (0.01 g, 0.04 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted with EtOAc (20 mL), washed with water (2 × 30 mL) and brine (2 × 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The resulting residue was purified (hexane/EtOAc 5.7:1) to afford **5** (0.034 g, 60%, based on **2**), as an oil.

 $R_{\rm f}$ 0.20 (hexane/EtOAc 9:1); $[\alpha]_{\rm D}$ -124.3 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 16.4 Hz, 1 H, -CH=CHCOO(CH₂)₅-), 7.33–7.18 (m, 18 H, aromatic), 7.10– 7.08 (m, 2 H, aromatic), 6.39 (dd, J = 17.2, 1.2 Hz, 1 H, -CH=CH₂), 6.10 (dd, J = 17.2, 10.4 Hz, 1 H, -CH=CH₂), 5.93 (d, J = 16.4 Hz, 1 H, -CH=CHCOO(CH₂)₅-), 5.80 (dd, J = 10.4, 1.2 Hz, 1 H,-CH=CH₂), 5.36 (s, 1 H, H-1), 4.67 (d, J = 12.4 Hz, 2 H, PhCH₂), 4.57 (d, J = 11.6 Hz, 2 H, PhCH₂), 4.45 (m, 3 H, PhCH₂), 4.33 (d, J = 11.6 Hz, 1 H, PhCH₂), 4.20-4.10 (band, 6 H, H-4, H-6, $-OCH_2(CH_2)_3CH_2O_2$), 3.76 (dd, J = 8.4, 2.0 Hz, 1 H, H-5), 3.58 (dd, J = 10.6, 6.2, 1 H, H-7a), 3.53-3.50 (band, 4 H, H-7b, OMe), 1.73-1.66 (m, 4 H, -COOCH₂(CH₂)₃CH₂OCO-), 1.48–1.41 (m, 2 H, -COOCH₂-(CH₂)₃CH₂OCO-); ¹³C NMR (100 MHz, CDCl₃) δ 167.3 (C=O), 166.2 (C=O), 159.3 (C-3), 138.3 (-*C*H=CHCOO(CH₂)₅-), 138.1–136.3 (aromatic), 130.4 (-COO(CH₂)₅OCO-CH=CH₂), 128.5 (-OCOCH=CH₂), 128.4–127.5 (aromatic), 124.2 (C-2), 119.8

 $(-CH=CHCOO(CH_2)_{5}-), 100.0 (C-1), 80.0 (C-5), 76.6 (C-4), 73.0 (CH_2Ph), 72.9 (CH_2Ph), 72.1 (CH_2Ph), 71.2 (CH_2Ph), 71.1 (C-6), 70.9 (C-7), 64.3 (-COOCH_2(CH_2)_3CH_2OCO-), 63.9 (-COOCH_2(CH_2)_3CH_2OCO-), 55.4 (OMe), 28.3 (-COOCH_2(CH_2)_3CH_2OCO-), 28.2 (-COOCH_2(CH_2)_3CH_2OCO-), 22.4 (-COOCH_2(CH_2)_3CH_2OCO-); HRMS-ESI (m/z): [M + Na]⁺ calcd for 799.92; found, 800.17.$

Methyl 2-deoxy-2-C-(2-phenylethenyl)-3,4,5,7-tetra-O-benzyl-a-D-arabino-hept-2-

enoseptanoside (6). A solution of 2 (0.05 g, 0.07 mmol) in 1,4-dioxane (1 mL) was admixed with $Pd(OAc)_2$ (1 mg, 10 mol %) under a N₂ atmosphere, and was followed by addition of Cs_2CO_3 (0.03 g, 0.11 mmol) and styrene (0.01 mL, 0.09 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted with EtOAc (20 mL), washed with water (2 × 30 mL) and brine (2 × 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The resulting residue was purified (hexane/EtOAc 9:1) to afford **6** (0.043 g, 74%), as an oil.

*R*_f 0.29 (hexane/EtOAc 9:1); $[\alpha]_D$ -54.6 (*c* 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.23 (m, 23 H, aromatic), 7.19 (d, *J* = 16.8 Hz, 1 H, -CH=CHPh), 7.12–7.09 (m, 2 H, aromatic), 6.66 (d, *J* = 16.8 Hz, 1 H, -CH=CHPh), 5.48 (s, 1 H, H-1), 4.72 (d, *J* = 12.8 Hz, 1 H, PhCH₂), 4.67–4.57 (m, 3 H, PhCH₂), 4.50 (d, *J* = 12.8 Hz, 2 H, PhCH₂), 4.38 (d, *J* = 12.0 Hz, 1 H, PhCH₂), 4.29–4.22 (band, 3 H, H-4, H-6 and PhCH₂), 3.76 (dd, *J* = 8.4, 2.4 Hz, 1 H, H-5), 3.65 (dd, *J* = 10.4, 6.4 Hz, 1 H, H-7a), 3.58 (s, 3 H, OMe), 3.54 (dd, *J* = 10.4, 2.8 Hz, 1 H, H-7b); ¹³C NMR (100 MHz, CDCl₃) δ 154.2 (C-3), 138.3–137.1 (aromatic), 130.6 (-*C*H=CHPh), 128.4–127.3 (aromatic), 126.4 (C-2), 122.9 (-CH=*C*HPh), 100.6 (C-1), 80.3 (C-5), 77.8 (C-4), 72.9 (PhCH₂), 72.8 (2 × PhCH₂), 71.9 (PhCH₂), 71.1 (C-6), 71.0 (C-7), 55.4 (OMe); HRMS–ESI (*m*/*z*): [M + Na]⁺ calcd for 691.3036; found, 691.3047.

Methyl 2-deoxy-2-C-phenyl-3,4,5,7-tetra-O-benzyl-a-D-arabino-hept-2-enoseptanoside

(8). A solution of 2 (0.05 g, 0.07 mmol) in 1,4-dioxane (1 mL) was admixed with $Pd(OAc)_2$ (1 mg, 10 mol %) under a N₂ atmosphere, and was followed by addition of Cs_2CO_3 (0.03 g, 0.11 mmol) and phenylboronic acid (0.02 g, 0.15 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted with EtOAc (20 mL), washed with water (2 × 30 mL) and brine (2 × 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The crude reaction mixture was purified (hexane/EtOAc 9:1) to afford **8** (0.038 g, 79 %), as a gum.

*R*_f 0.45 (hexane/EtOAc 9:1); $[\alpha]_D$ -14.2 (*c* 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.12 (m, 23 H, aromatic), 6.83 (d, *J* = 6.0 Hz, 2 H, aromatic), 5.41 (s, 1 H, H-1), 4.82 (d, *J* = 12.0 Hz, 1 H, PhC*H*₂), 4.63 (d, *J* = 12.0 Hz, 1 H, PhC*H*₂), 4.57 (d, *J* = 12.4 Hz, 2 H, PhC*H*₂), 4.50 (d, *J* = 12.0 Hz, 1 H, PhC*H*₂), 4.39 (d, *J* = 11.2 Hz, 2 H, PhC*H*₂), 4.34–4.31 (m, 1 H, H-6), 4.28 (app. d, *J* = 12.0 Hz, 1 H, H-4), 4.24 (d, *J* = 11.6 Hz, 1 H, PhC*H*₂), 3.80 (dd, *J* = 8.4, 1.6 Hz, 1 H, H-5), 3.66 (dd, *J* = 10.4, 6.0 Hz, 1 H, H-7a), 3.58 (dd, *J* = 10.4, 2.4 Hz, 1 H, H-7b), 3.31 (s, 3 H, OMe); ¹³C NMR (100 MHz, CDCl₃) δ 152.3 (C-3), 138.4– 136.8 (aromatic), 129.6 (aromatic), 129.0 (C-2), 128.3–126.7 (aromatic), 102.0 (C-1), 80.6 (C-5), 77.9 (C-4), 73.0 (PhCH₂), 72.6 (PhCH₂), 72.0 (PhCH₂), 71.2 (PhCH₂), 71.1 (C-6), 71.0 (C-7), 55.9 (OMe); HRMS–ESI (*m*/*z*): [M + Na]⁺ calcd for 665.2879; found, 665.2878.

Methyl 2-deoxy-2-C-(m-tolyl)-3,4,5,7-tetra-O-benzyl-a-D-arabino-hept-2-enoseptano-

side (10). A solution of 2 (0.05 g, 0.07 mmol) in 1,4-dioxane (1 mL) was admixed with $Pd(OAc)_2$ (1 mg, 10 mol %) under a N₂ atmosphere, and was followed by addition of Cs_2CO_3 (0.03 g, 0.11 mmol) and 3-methylphenylboronic acid (0.010 g, 0.07 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted

with EtOAc (20 mL), washed with water (2 \times 30 mL) and brine (2 \times 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The crude reaction mixture was purified (hexane/EtOAc 9:1) to afford **10** (0.032 g, 61%), as an oil.

*R*_f 0.40 (hexane/EtOAc 9:1); $[\alpha]_D$ +10.0 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.14 (m, 20 H, aromatic), 7.05–6.99 (m, 2 H, aromatic), 6.85 (d, *J* = 6.8 Hz, 2 H, aromatic), 5.41 (s, 1 H, H-1), 4.80 (d, *J* = 12.4 Hz, 1 H, PhCH₂), 4.62 (d, *J* = 12.4 Hz, 1 H, PhCH₂), 4.56 (d, *J* = 12.4 Hz, 1 H, PhCH₂), 4.50 (d, *J* = 12.4 Hz, 1 H, PhCH₂), 4.40 (d, *J* = 9.6 Hz, 2 H, PhCH₂), 4.32–4.27 (m, 2 H, H-4, H-6), 4.25 (d, *J* = 11.6 Hz, 2 H, PhCH₂), 3.80 (dd, *J* = 8.8, 2.0 Hz, 1 H, H-5), 3.66 (dd, *J* = 10.4, 6.0 Hz, 1 H, H-7a), 3.58 (dd, *J* = 10.4, 2.4 Hz, 1 H, H-7b), 3.31 (s, 3 H, OMe), 2.29 (s, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 152.0 (C-3), 138.4–136.6 (aromatic), 130.2 (aromatic), 129.2 (C-2), 128.9–126.4 (aromatic), 102.1 (C-1), 80.6 (C-5), 78.0 (C-4), 73.0 (PhCH₂), 72.6 (PhCH₂), 72.1 (PhCH₂), 71.2 (C-6), 71.1 (C-7), 55.8 (OMe), 21.4 (Me); ESI-MS *m*/*z* [M + Na]⁺ calcd for 679.3036; found, 679.3016.

Methyl 2-deoxy-2-C-(2-phenylethynyl)-3,4,5,7-tetra-O-benzyl-a-D-arabino-hept-2-

enoseptanoside (11). A solution of 2 (0.05 g, 0.07 mmol) in DMF/THF/Et₃N 5:3:2 (1 mL) was admixed with Pd(PPh₃)₂Cl₂ (0.01 g, 20 mol %) under N₂ atmosphere, and was followed by addition of CuI (0.012 g, 10 mol %) and phenylacetylene (0.017 mL, 0.15 mmol), in a sealed tube. The reaction mixture was stirred at 98 °C for 72 h, cooled, filtered, diluted with EtOAc (20 mL), washed with water (2 × 30 mL) and brine (2 × 10 mL), dried (Na₂SO₄) and concentrated in vacuo. The crude reaction mixture was purified (hexane/EtOAc 9:1) to afford **11** (0.039 g, 77%), as a semi-solid.

 $R_{\rm f}$ 0.45 (hexane/EtOAc 9:1); $[\alpha]_{\rm D}$ +22.0 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.23 (m, 23 H, aromatic), 7.08–7.06 (m, 2 H, aromatic), 5.39 (s, 1 H, H-1), 5.19 (d, J = 11.6 Hz, 1 H, PhC H_2), 4.93 (d, J = 11.6 Hz, 1 H, PhC H_2), 4.75 (d, J = 12.2 Hz, 1 H, PhC H_2), 4.61 (d, J = 12.2 Hz, 1 H, PhC H_2), 4.48 (d, J = 11.8, 2 H, PhC H_2), 4.37 (d, J = 11.8 Hz, 1 H, PhC H_2), 4.33–4.22 (m, 3 H, H-4, H-6 and PhC H_2), 3.73 (app. d, J = 9.2 Hz, 1 H, H-5), 3.62 (dd, J = 10.4, 6.0 Hz, 1 H, H-7a), 3.53–3.49 (band, 4 H, H-7b, OMe); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (C-3), 138.3–137.2 (aromatic), 131.3 (aromatic), 128.3–123.6 (aromatic), 108.4 (C-2), 100.5 (C-1), 95.8 (- $C \equiv CPh$), 85.2 (- $C \equiv CPh$), 80.3 (C-5), 78.5 (C-4), 73.6 (PhC H_2), 72.8 (PhC H_2), 71.9 (PhC H_2), 71.2 (PhC H_2), 71.1 (C-6), 70.6 (C-7), 55.9 (OMe); HRMS–ESI (m/z): [M + Na]⁺ calcd for 689.2879; found, 689.2877.

Methyl 2-deoxy-2-C-(2-(tert-butoxycarbonyl)ethyl)-a-D-glycero-D-ido-septanoside

(14). To a solution of 13 (0.017 g, 0.05 mmol) in MeOH (2 mL) was added NaBH₄ (0.003 g, 0.07 mmol) at 0 °C and the mixture was stirred for 3 h at rt. The solvents were then removed in vacuo, and the resulting residue was dissolved in EtOAc (2×15 mL), washed with brine (10 mL), dried (Na₂SO₄), concentrated in vacuo and purified (CHCl₃/MeOH 8 :2) to afford 14 (0.016 g, 93%), as a colorless oil.

 $R_{\rm f}$ 0.3 (MeOH/CHCl₃ 8:2); [α]_D +21.5 (*c* 0.5, MeOH); ¹H NMR (400 MHz, D₂O) δ 4.50 (d, J = 6.8 Hz, 1 H, H-1), 4.24 (band, 2 H, H-6, H-7a), 3.77 (dd, J = 12.4, 4.8 Hz, 1 H, H-7b), 3.73–3.63 (app. ddd, J = 12.4, 9.6, 4. 8 Hz, 2 H, H-3, H-4), 3.49 (s, 3 H, OMe), 3.47–3.44 (br, 1 H, H-5), 2.47–2.34 (br, 2 H, -CH₂CH₂CO₂*t*-Bu), 1.89–1.78 (m, 3 H, H-2, -CH₂CH₂CO₂*t*-Bu), 1.49 (s, 9 H, *t*-Bu); ¹³C NMR (100 MHz, D₂O) δ 175.4 (C=O), 103.7 (C-1), 82.5 (*C*-*t*-Bu), 78.7 (C-5), 73.1 (C-6), 70.3 (C-4), 70.1 (C-3), 61.9 (C-7), 55.4 (OMe), 42.6 (C-2), 33.0 (-CH₂CH₂CO₂*t*-Bu), 27.2 (*t*-Bu), 25.7 (-CH₂CH₂CO₂*t*-Bu); HRMS–ESI (*m*/*z*): [M + Na]⁺ calcd for 359.1682; found, 359.1680.

Figure 1: ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure 2: ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

Figure 3: ¹H NMR spectrum of **4** (400 MHz, CDCl₃).

Figure 4: ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

Figure 5: ¹H NMR spectrum of 5 (400 MHz, CDCl₃).

Figure 6: ¹³C NMR spectrum of 5 (100 MHz, CDCl₃).

Figure 7: ¹H NMR spectrum of **6** (400 MHz, CDCl₃).

Figure 8: ¹³C NMR spectrum of 6 (100 MHz, CDCl₃).

Figure 9: ¹H NMR spectrum of 7 (400 MHz, CDCl₃).

Figure 10: ¹³C NMR spectrum of 7 (100 MHz, CDCl₃).

Figure 11: ¹H NMR spectrum of 8 (400 MHz, CDCl₃).

Figure 12: ¹³C NMR spectrum of 8 (100 MHz, CDCl₃).

Figure 13: ¹H NMR spectrum of 9 (400 MHz, CDCl₃).

Figure 14: ¹³C NMR spectrum of 9 (100 MHz, CDCl₃).

Figure 15: ¹H NMR spectrum of 10 (400 MHz, CDCl₃).

Figure 16: ¹³C NMR spectrum of 10 (100 MHz, CDCl₃).

Figure 17: ¹H NMR spectrum of 11 (400 MHz, CDCl₃).

Figure 18: ¹³C NMR spectrum of 11 (100 MHz, CDCl₃).

Figure 19: ¹H NMR spectrum of 12 (400 MHz, CDCl₃).

Figure 20: ¹³C NMR spectrum of 12 (100 MHz, CDCl₃).

Figure 21: ¹H NMR spectrum of 13 (400 MHz, CD₃OD).

Figure 22: ¹³C NMR spectrum of **13** (100 MHz, CD₃OD).

Figure 23: ¹H NMR spectrum of **14** (400 MHz, D₂O).

Figure 24: ¹³C NMR spectrum of **14** (100 MHz, D₂O).

Figure 25: HSQC NMR spectrum of 5 (400 MHz, CDCl₃).

Figure 26: COSY NMR spectrum of 5 (400 MHz, CDCl₃).

Figure 27: COSY NMR spectrum of 7 (400 MHz, CDCl₃).

Figure 28: HSQC NMR spectrum of 7 (400 MHz, CDCl₃).

Figure 29: COSY NMR spectrum of 9 (400 MHz, CDCl₃).

Figure 30: HSQC NMR spectrum of 9 (400 MHz, CDCl₃).

Figure 31: COSY NMR spectrum of 12 (400 MHz, CDCl₃).

Figure 32: HSQC NMR spectrum of 12 (400 MHz, CDCl₃).

Figure 33: COSY NMR spectrum of 13 (400 MHz, CD₃OD).

Figure 34: HSQC NMR spectrum of 13 (400 MHz, CD₃OD).

Figure 35: COSY NMR spectrum of 14 (400 MHz, D₂O).

Figure 36: HSQC NMR spectrum of 14 (400 MHz, D₂O).

References

1. Ganesh, N. V.; Jayaraman, N. J. Org. Chem. 2007, 72, 5500–5504.