Supporting Information File 1

for

Carbohydrate-auxiliary assisted preparation of enantiopure 1,2-oxazine derivatives and aminopolyols

Marcin Jasiński ${ }^{1,2}$, Dieter Lentz ${ }^{1, \S}$ and Hans-Ulrich Reissig ${ }^{\star, 1}$

Address: ${ }^{1}$ Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D14195 Berlin, Germany and ${ }^{2}$ Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Poland

Email: Hans-Ulrich Reissig* - hreissig@chemie.fu-berlin.de

* Corresponding author
${ }^{\text {§ }}$ Responsible for X-ray crystal structure determination

Experimental procedures and characterisation data

Methoxyallene [1], TMSE-allene [2], and benzyloxyallene [2] were prepared following literature procedures.

Preparation of 1,2-oxazines (3S)-3b and (3R)-3b
By a procedure similar to that for methoxyallene (Procedure 1), TMSE-allene ($411 \mathrm{mg}, 2.63 \mathrm{mmol}$) in THF (40 mL) was treated with n-BuLi (2.5 M in hexanes;
$1.0 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, followed by slow addition of nitrone $\mathbf{1 a}(263 \mathrm{mg}$, $1.00 \mathrm{mmol})$ in dry $\mathrm{THF}(6 \mathrm{~mL})$ at $-130^{\circ} \mathrm{C}$. The mixture was allowed to reach $-80^{\circ} \mathrm{C}$ within 2.5 h . After standard workup, crude products were isolated, by filtration through silica gel pad (hexane/ethyl acetate 6:1), as a yellow oil. Diastereomers were separated by an additional column (silica gel, hexane/ethyl acetate 9:1) to give (3S)3b ($133 \mathrm{mg}, 32 \%,>95 \%$ purity) and ($3 R$)-3b ($78 \mathrm{mg}, 19 \%$) as colourless oils.

(3S,3a' S,4' S,6a'S)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-(2-trimethylsilylethoxy)-3-phenyl-3,6-dihydro-2H-[1,2]oxazine ((3S)-3b):

$[\alpha]_{\mathrm{D}}{ }^{22}=+107.2\left(c 1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=-0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, 0.79 (ddd, $\left.J=5.8,8.7,14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.85$ (ddd, $J=7.2,9.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Si}$), $1.31,1.41\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, 2 Me), $3.68\left(\mathrm{td}, \mathrm{J} \approx 7.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.79$ (dt, $\left.J \approx 5.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 4.02\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right), 4.24(\mathrm{dd}, J=3.5$, $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.28\left(\mathrm{dd}_{\mathrm{br}}, J \approx 3.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.39\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.60(\mathrm{dt}, J$ $\approx 2.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.80\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.82(\mathrm{dt}, J \approx 1.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.86-$ $4.89\left(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{a} \cdot \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 7.26-7.31,7.34-7.37(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-1.6\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 16.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Si}\right), 24.6,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 63.7$ (d, C-3), 64.8 (t, 4-OCH ${ }_{2}-$), 67.4 (t, C-6), 76.6 (t, C-6'), 81.2, 84.3 (2 d, C-3a', C-6a'), 92.2 (d, C-5), 94.8 (d, C-4'), 111.6 (s, C-2'), 127.8, 128.2, 129.9, 136.5 (3 d, s, Ph), 154.3 (s, C-4) ppm; IR (ATR): $\tilde{v}=3065-2850(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1730$ (C=C), 1210, 1060 (C-O) cm^{-1}; ESI-TOF (m / z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 442.2025; found: 442.2014.
(3R,3a'S,4'S,6a'S)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-(2-trimethylsilylethoxy)-3-phenyl-3,6-dihydro-2H-[1,2]oxazine ((3R)-3b):

$[\alpha]_{\mathrm{D}}{ }^{22}=-55.7\left(c 1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, 0.79 (ddd, $\left.J=5.8,8.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.85$ (ddd, $J=7.1,9.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.33,1.44\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, 2 Me), $3.68\left(\mathrm{td}, J \approx 7.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.81$ $\left(\mathrm{td}, J \approx 5.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.89\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.03(\mathrm{dd}, J=4.0$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '-H), 4.39 (ddd, $J=1.7,3.1,14.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.51$ (ddd, $J=1.3,2.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.73\left(\mathrm{~s}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 4.80(\mathrm{dd}, J=4.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.6 a^{\prime}-H\right), 4.84(t, J \approx 3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.26-7.31,7.36-$ $7.39(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-1.5\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 16.9(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{Si}\right)$, 24.8, 26.3 (2 q, 2 Me), 63.7 ($\mathrm{d}, \mathrm{C}-3$), 64.6 ($\mathrm{t}, 4-\mathrm{OCH}_{2}$), 65.2 (t, C-6), 74.5 (t , C-6'), 81.1 (d, C-6a'), 81.6 (d, C-3a'), 91.8 (d, C-5), 96.4 (d, C-4'), 112.0 (s, C-2'), 127.6, 128.1, 129.1, 138.3 (3 d, s, Ph), 152.2 (s, C-4) ppm; IR (ATR): $\tilde{v}=3060-2845$ (=C-H, C-H), 1730 (C=C), 1105, 1055 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 442.2025$; found: 442.2010; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}$ (419.6): C 62.98, H 7.97, N 3.34; found: C 62.99, H 7.99, N 3.35 .

Preparation of 1,2-oxazines (3S)-3c and (3R)-3c

By the procedure similar to that for methoxyallene (Procedure 1), benzyloxyallene $(719 \mathrm{mg}, 4.92 \mathrm{mmol})$ in THF (45 mL) was treated with n-BuLi (2.5 M in hexanes; $1.8 \mathrm{~mL}, 4.5 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$, followed by slow addition of nitrone $\mathbf{1 a}(540 \mathrm{mg}$, $2.05 \mathrm{mmol})$ in dry $\operatorname{THF}(10 \mathrm{~mL})$ at $-130^{\circ} \mathrm{C}$. The mixture was allowed to reach $-80^{\circ} \mathrm{C}$
within 1.5 h . After standard workup, crude products were separated on a column (silica gel, hexane/ethyl acetate 6:1) to give enriched fractions of (3S)-3c (235 mg) and $(3 R)-3 \mathrm{c}(394 \mathrm{mg})$ as pale yellow oils. Each fraction was additionally chromatographed (silica gel, hexane/acetone 6:1, and 5:1, resp.) to give pure (3S)-3c ($182 \mathrm{mg}, 21 \%$) and ($3 R$)-3c (371 mg, 44\%) as colourless oils.
(3S,3a'S,4'S,6a'S)-4-Benzyloxy-2-(2',2'-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-3-phenyl-3,6-dihydro-2H-[1,2]oxazine ((3S)-3c):

$[\alpha]_{\mathrm{D}}{ }^{22}=+109.8\left(c 1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=1.31,1.41(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), $4.03\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.23-4.27(\mathrm{~m}, 2 \mathrm{H}, 6$ '-H, 6-H$), 4.44(\mathrm{~s}, 1 \mathrm{H}$, 4'-H), $4.59(\mathrm{dt}, J \approx 2.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.70,4.77(2 \mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 4.87-$ $4.89(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 4.90(\mathrm{dt}, \mathrm{J} \approx 1.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.91\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 3-\mathrm{H}\right)$, $7.00-7.02,7.20-7.25,7.29-7.34,7.40-7.42(4 \mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $175 \mathrm{MHz}): \delta=24.6,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 63.6(\mathrm{~d}, \mathrm{C}-3), 67.2(\mathrm{t}, \mathrm{C}-6), 69.0(\mathrm{t}, \mathrm{Bn}), 76.6(\mathrm{t}$, C-6'), 81.2, 84.3 (2 d, C-3a', C-6a'), 93.6 (d, C-5), 94.8 (d, C-4'), 111.7 (s, C-2'), 126.5, 127.4, 128.0, 128.2*, 129.8, 136.4, 136.9 (5 d , $2 \mathrm{~s}, 2 \mathrm{Ph}$), 153.7 (s, C-4) ppm, *higher intensity; IR (ATR): $\tilde{v}=3090-2850(=C-H, C-H), 1675$ (C=C), 1202, 1090, 1070, $1055(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 432.1787; found: 432.1792. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}$ (409.5): C 70.40, H 6.65, N 3.42; found: C 68.70, H 6.58, N 3.44 .
(3R,3a'S,4'S,6a'S)-4-Benzyloxy-2-(2',2'-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-3-phenyl-3,6-dihydro-2H-[1,2]oxazine ((3R)-3c):

$[\alpha]_{\mathrm{D}}{ }^{22}=-51.3\left(c 1.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.35,1.46(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), 3.91 (d, $\left.J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.05\left(\mathrm{dd}, J=4.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.40$ (ddd, $J=1.7,3.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 4.53 (ddd, $J=1.7,2.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.57$ (s, 1H, 3-H), $4.72(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.76\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.80(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}), 4.82\left(\mathrm{dd}, \mathrm{J}=4.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.96(\mathrm{t}, \mathrm{J} \approx 3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.05(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 7.06-7.08, 7.22-7.35, 7.41-7.44 (3 m, 10H, 2 Ph$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=24.8,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 63.6(\mathrm{~d}, \mathrm{C}-3), 65.1(\mathrm{t}, \mathrm{C}-6)$, 69.0 (t, Bn), 74.5 (t, C-6'), 81.0 (d, C-6a'), 81.6 (d, C-3a'), 93.2 (d, C-5), 96.5 (d, C-4'), 112.0 (s, C-2'), 126.7, 127.6, 127.7, 128.2, 128.3, 129.0136 .7138 .2 (6 d, 2 s, 2 Ph), 152.0 (s, C-4) ppm; IR (ATR): $\tilde{v}=3090-2845$ (=C-H, C-H), 1675 (C=C), 1220, 1205, 1090 (C-O) cm^{-1}; ESI-TOF (m / z): calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 432.1787$; found: 432.1766. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}$ (409.5): C 70.40, H 6.65, N 3.42; found: C 70.41, H 6.63, N 3.41.

Isolation of by-products 4 and 5

Compounds 4 ($8 \mathrm{mg}, 1 \%$) and 5 ($38 \mathrm{mg}, 3 \%$) were isolated as colourless oils from the reaction of lithiated methoxyallene (2.4 equiv.) generated from methoxyallene ($640 \mathrm{mg}, 0.77 \mathrm{~mL}, 9.13 \mathrm{mmol}$) and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes; $3.5 \mathrm{~mL}, 8.75 \mathrm{mmol}$) with nitrone 1a ($960 \mathrm{mg}, 3.65 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, after standard workup (see Procedure 1) and additional purification on column. Diene 4 undergoes fast
decomposition either during purification on silica or storage. Major products (3S)-3a $(303 \mathrm{mg})$ and $(3 R)-3 \mathrm{a}(92 \mathrm{mg})$ were isolated in 25% and 8% yield, respectively.
(Z)-2-Methoxy-1-phenylbuta-1,3-diene (4) [3,4]:

CC (silica gel, hexane/dichloromethane 7:3). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 5.22$ (dt, J $\approx 2.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.75(\mathrm{dd}, J=2.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, $5.84(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=11.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.17-7.24,7.29-7.34(2 \mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=54.8(\mathrm{q}, \mathrm{OMe}), 103.9(\mathrm{~d}, \mathrm{C}-1), 116.0$ (t, C-4), 125.8, 128.1, 129.4, 136.6 (3 d, s, Ph), 129.6 (d, C-3), 154.0 (s, C-2) ppm.
(4'S,5'S)-2-(2',2'-Dimethyl-5'-hydroxymethyl-[1,3]dioxolan-4'-yl)-4-methoxy-3-methyl-5-phenyl-1 H-pyrrole (5):

CC (silica gel, hexane/ethyl acetate 4:1). [$\alpha]_{\mathrm{D}}{ }^{22}=-43.1\left(c \quad 0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.49,1.62(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), 2.08 (s, 3H, 3-Me), 2.11 (dd, $J \approx 4.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.45\left(\mathrm{ddd}, J=3.8,8.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{2}-\right), 3.61(\mathrm{dt}, J=$ 4.0, $\left.12.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{2}-\right), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.33\left(\mathrm{dt}, \mathrm{J}=3.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, 5.37 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4$ '-H), 7.15-7.19, 7.34-7.38, 7.60-7.64 (3 m, 5H, Ph), 8.98 $\left(\mathrm{s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{NH}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=7.6(\mathrm{q}, 3-\mathrm{Me}), 24.3,27.1(2 \mathrm{q}$, $2 \mathrm{Me}), 61.3$ (q, OMe), 62.2 (t, $5^{\prime}-\mathrm{CH}_{2}-$), 71.7 (d, C-4'), 77.5 (d, C-5'), 107.8 (s, C-2'), 112.4, 119.3, 119.4 (3 s, C-2, C-3, C-5), 123.9, 125.5, 128.7, 131.9 (3 d, s, Ph), 143.9 (s, C-4) ppm; IR (ATR): $\tilde{v}=3470-3340(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3080-2830(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H})$,

1210, $1035(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 340.1525$; found: 340.1566; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ (317.4): C 68.17, H 7.30, N 4.41 ; found: C 68.19, H 7.39, N 4.37.

Hydroxylation of (3S)-3b

Following the general Procedure 2, compound (3S)-3b (289 mg, 0.69 mmol) in THF (40 mL) was treated with a solution of $\mathrm{BF}_{3} \cdot \mathrm{THF}(1 \mathrm{M}$ in THF, $3.6 \mathrm{~mL}, 3.6 \mathrm{mmol}$). After oxidative workup, the crude mixture was chromatographed (silica gel, hexane/ethyl acetate 2:1) to yield compounds 8 (106 mg, 35\%, first eluted) as colourless crystals and 9 (175 mg, 58\%) as a colourless oil.
(3S,4S,5S,3'aS,4'S,6'aS)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-(2-trimethylsilylethoxy)-3-phenyl-[1,2]oxazinan-5-ol (8):

mp 121-125 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+131.8\left(c 1.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=$ -0.22 (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.50 (ddd, $\left.J=5.4,11.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.69$ (ddd, $J=$ $\left.5.5,11.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 1.29,1.35\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, 2 Me), $2.36\left(\mathrm{~d}_{\mathrm{br}}, J=3.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{OH}$), 2.72 (ddd, $J=5.4,9.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}$), 3.11 (ddd, $J=5.5,9.5$, $\left.11.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.47\left(\mathrm{dd}_{\mathrm{br}}, \mathrm{J} \approx 8.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.63-3.71(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 6-$ H), $3.92(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.94\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 6\right.$ 'H), $4.08\left(\mathrm{dd}_{\mathrm{br}}, J \approx 4.0\right.$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.19\left(\mathrm{dd}, J=4.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.46\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.81(\mathrm{dd}, J=$ $4.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}$), $4.87\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}^{\prime}-\mathrm{H}\right), 7.26-7.34,7.37-7.42(2 \mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-1.7\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 18.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Si}\right), 24.5$,
26.3 ($2 \mathrm{q}, 2 \mathrm{Me}$), 67.9 (d, C-3), $69.8\left(\mathrm{t}, 4-\mathrm{OCH}_{2}\right.$), 70.6 (d, C-5), 71.4 (t, C-6), 77.4 (t, C-6'), 81.4 (d, C-6a'), 84.5 (d, C-3a'), 85.6 (d, C-4), 94.9 (d, C-4'), 111.7 (s, C-2'), 128.3, 128.7*, 137.1 (2 d, s, Ph) ppm, *higher intensity; IR (ATR): $\tilde{v}=3400(\mathrm{O}-\mathrm{H})$, 3035-2870 (=C-H, C-H), $1050(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NNaO}_{6} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 460.2131$; found: 460.2149; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Si}$ (437.6): C 60.38, H 8.06, N 3.20; found: C 60.57, H 8.10, N 3.21 .
(3S,4R,5R,3'aS,4'S,6'aS)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-(2-trimethylsilylethoxy)-3-phenyl-[1,2]oxazinan-5-ol (9):

$[\alpha]_{\mathrm{D}}{ }^{22}=+122.6\left(c 1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, 0.67 (ddd, $\left.J=4.9,10.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}\right), 0.76$ (ddd, $J=6.3,11.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.29,1.36\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, 2 Me), $2.30\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{OH}\right), 2.95$ (ddd, $J=4.9,9.5$, $\left.11.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.31(\mathrm{ddd}, J=6.3,9.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ OCH_{2}), $3.70\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.95(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 6$ ' H), 4.21 (dd, $J=4.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '-H), $4.40(\mathrm{dd}, J=1.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.44$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.64\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.82\left(\mathrm{t}_{\mathrm{br}}, J \approx 5.2 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.96(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.24-7.31,7.43-7.46(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta=-1.5\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 18.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Si}\right), 24.6,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 62.8(\mathrm{~d}, \mathrm{C}-3)$, 66.4 (d, C-5), 69.1 (t, 4-OCH ${ }_{2}$), 71.1 (t, C-6), 77.6 (t, C-6'), 78.2 (d, C-4), 81.2 (d, C6a'), 84.6 (d, C-3a'), 95.7 (d, C-4'), 111.6 (s, C-2'), 127.8, 128.1, 129.5, 136.6 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3450(\mathrm{O}-\mathrm{H}), 3065-2845(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1090,1065(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NNaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 460.2131; found: 460.2128;

Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Si}$ (437.6): C 60.38, H 8.06, N 3.20 ; found: C 60.36, H 8.09, N 3.25.

Hydroxylation of (3R)-3a

By the procedure similar to that for (3S)-3a (Procedure 2), compound (3R)-3a ($810 \mathrm{mg}, 2.43 \mathrm{mmol}$) in THF (60 mL) was treated with a solution of $\mathrm{BF}_{3} \cdot \mathrm{THF}(1 \mathrm{M}$ in THF, $9.8 \mathrm{~mL}, 9.8 \mathrm{mmol})$. After standard oxidative workup, the crude mixture was chromatographed (silica gel, hexane/ethyl acetate 1:1) to yield an enriched fraction of 10 (186 mg, first eluted) and pure 11 (568 mg, 66\%). Additional chromatography purification of 10 (silica gel, dichloromethane/acetone 9:1) yielded an analytically pure sample ($109 \mathrm{mg}, 13 \%$). Both alcohols were isolated as colourless oils.
(3R,4R,5R,3a'S,4'S,6a'S)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-methoxy-3-phenyl-[1,2]oxazinan-5-ol (10):

$[\alpha]_{\mathrm{D}}{ }^{22}=-79.4\left(c 1.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.29,1.32(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), $2.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.37(\mathrm{t}, J \approx 8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $4-H), 3.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.63-3.69\left(\mathrm{~m}_{\mathrm{br}}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.79(\mathrm{t}, J \approx 10.9 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 3.88\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.04(\mathrm{dd}, J=5.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.17$ (dd, $J=$ 4.3, $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.45\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.75\left(\mathrm{dd}, \mathrm{J}=4.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.99$ (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), 7.27-7.37, 7.41-7.45 (2 m, 5H, Ph) ppm; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $126 \mathrm{MHz}): \delta=24.7,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 60.8(\mathrm{q}, \mathrm{OMe}), 69.6(\mathrm{~d}, \mathrm{C}-3), 70.6^{*}(\mathrm{t}, \mathrm{C}-6$, and d, C-5), 75.5 (t, C-6'), 78.8 (d, C-3a'), 81.2 (d, C-6a'), 87.8 (d, C-4), 96.5 (d, C-4'),
111.9 (s, C-2'), 128.5, 129.0*, 136.8 (2 d, s, Ph) ppm, *higher intensity; IR (ATR): $\tilde{v}=$ 3455 (O-H), 3035-2835 (=C-H, C-H), 1105, 1055 (C-O) cm ${ }^{-1}$; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}$ (351.4): C 61.52, H 7.17, N 3.99; found: C 61.53, H 7.19, N 3.79.
(3R,4S,5S,3a'S,4'S,6a'S)-2-(2',2'-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4'-yl)-4-methoxy-3-phenyl-[1,2]oxazinan-5-ol (11):

$[\alpha]_{\mathrm{D}}{ }^{22}=+4.4\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.30,1.34(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), $2.32(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.30\left(\mathrm{t}_{\mathrm{br}}, J \approx 4.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 4-\mathrm{H}), 3.77$ (dd, $J=4.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.81\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 6\right.$ '-H), $3.89\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}, 5-\mathrm{H}), 4.08(\mathrm{dd}, J=4.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '-H), $4.28(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.38(\mathrm{dd}$, $J=2.8,11.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.67\left(\mathrm{~s}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 4.76\left(\mathrm{dd}, J=4.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right)$, $4.98(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.26-7.33,7.44-7.48(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=24.7,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 58.7(\mathrm{q}, \mathrm{OMe}), 64.4(\mathrm{~d}, \mathrm{C}-3), 65.3(\mathrm{~d}$, C-5), 70.7 (t, C-6), 75.3 (t, C-6'), 80.6 (d, C-3a'), 81.1 (d, C-6a'), 81.3 (d, C-4), 97.8 (d, C-4'), 111.8 (s, C-2'), 127.7, 128.1, 129.2, 137.1 ($3 \mathrm{~d}, \mathrm{~s}, \mathrm{Ph}$) ppm; IR (ATR): $\tilde{v}=$ 3440 (O-H), 3090-2830 (=C-H, C-H), 1095, $1050(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 374.1580$; found: 374.1577; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}$ (351.4): C 61.52, H 7.17, N 3.99; found: C 61.47, H 7.15, N 3.88 .
(3S,4R,5R)-4-Methoxy-3-phenyl-[1,2]oxazinan-5-ol (13):

By a procedure similar to that for 6 (Procedure 3), 1,2-oxazine 7 ($255 \mathrm{mg}, 0.72 \mathrm{mmol}$) was dissolved in 1 N HCl in $\mathrm{MeOH}(8 \mathrm{~mL})$ and heated at $40{ }^{\circ} \mathrm{C}$ for 4 h (TLC monitoring, hexane/AcOEt 1:2, potassium permanganate stain). After workup and purification on a column (silica gel, dichloromethane/methanol 40:1) compound 13 ($127 \mathrm{mg}, 83 \%$) was isolated as a colourless solid.
mp 112-113 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+47.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=3.19$ (s, 3H, OMe), $3.40\left(\mathrm{t}_{\mathrm{br}}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.87$ (ddd $_{\mathrm{br}}, J=12.1,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ H), 3.89 (dd, $J=3.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $4.25(\mathrm{dd}, J=12.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.58(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=$ 59.0 (q, OMe), 60.3 (d, C-3), 65.2 (d, C-5), 71.2 (t, C-6), 78.2 (d, C-4), 127.5, 127.6, 128.3, 137.3 (3d, s, Ph) ppm; IR (ATR): $\tilde{v}=3390-3220(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3060-2830(=\mathrm{C}-$ $\mathrm{H}, \mathrm{C}-\mathrm{H}), 1090(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 210.1130$; found: 210.1128; Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ (209.2): C 63.14, H 7.23, N 6.69; found: C 63.15, H 7.13, N 6.72.

(3S,4S,5S)-3-Phenyl-[1,2]oxazine-4,5-diol (14):

To a solution of 1,2-oxazine 8 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{EtOH}(8.0 \mathrm{~mL})$ acidic ion exchange resin DOWEX-50 (1.26 g; washed several times with EtOH before usage) was added. The suspension was vigorously stirred at $50{ }^{\circ} \mathrm{C}$ for 10 d , and then decanted. The resin was washed with three portions of ammonia in methanol solution (7 N , ca. 5.0 mL each) and the organics combined. After evaporation of the solvents, compound 14 ($35 \mathrm{mg}, 78 \%$) was isolated as a colourless solid.
mp $153-154{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+33.8\left(c 1.05, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right):$ $\delta=3.60-3.69(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.02-4.08(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{H}), 7.27-7.31,7.32-7.36,7.38-7.41(3 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $126 \mathrm{MHz}, 5{ }^{\circ} \mathrm{C}$): $\delta=69.2(\mathrm{~d}, \mathrm{C}-3), 72.6(\mathrm{~d}, \mathrm{C}-5), 74.3(\mathrm{t}, \mathrm{C}-6), 77.1(\mathrm{~d}, \mathrm{C}-4), 129.2$, 129.5, 129.9, 137.6 (3 d, s, Ph) ppm; IR (neat): $\tilde{v}=3460,3150(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3085-$ 2885 (=C-H, C-H), $1030(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NNaO}_{3}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 218.0793 ;$ found: 218.0843; Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ (195.2): C 61.53, H 6.71, N 7.18; found: C 61.45, H 6.67, N 7.13.

Synthesis of 14 by demethylation of 12

To a solution of 1,2 -oxazine $12(59 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{~mL})$ a solution of $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.85 \mathrm{~mL}, 0.85 \mathrm{mmol}\right)$ was slowly added at $-78^{\circ} \mathrm{C}$ and stirred for 1 h , and then at room temperature overnight. The mixture was diluted with MeOH $(3 \mathrm{~mL})$ and the solvents were removed. The crude mixture was flash chromatographed (silica gel, dichloromethane/methanol 20:1) to give an enriched fraction of $14(33 \mathrm{mg})$. Additional purification on a column (silica gel, dichloromethane/methanol 25:1) furnished 14 (10 mg, 18\%) as a colourless solid.

(3S,4R,5R)-3-Phenyl-[1,2]oxazine-4,5-diol (15):

Following the general Procedure 3, compound $9(160 \mathrm{mg}, 0.37 \mathrm{mmol})$ in 1 N HCl in $\mathrm{MeOH}(10 \mathrm{~mL})$ was heated overnight at $40^{\circ} \mathrm{C}$. The crude product was purified on a column (silica gel, dichloromethane/methanol 30:1) to give N-unsubstituted 1,2oxazine derivative ($89 \mathrm{mg}, 82 \%$) as a colourless oil. $[\alpha]_{\mathrm{D}}{ }^{22}=25.7\left(c 0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.68$ (ddd, $J=5.6,10.5,13.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}$), 0.74 (ddd, $J=6.3,10.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Si}$), 3.07 (ddd, $J=5.6,9.7$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}$), 3.40 (ddd, $\left.J=6.3,9.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{OCH}_{2}\right), 3.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\right.$ $H), 3.81\left(m_{c}, 1 H, 5-H\right), 3.86\left(d_{b r}, J \approx 12.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.23(\mathrm{dd}, J=1.2,12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.58(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.24-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta=-1.5\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 18.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Si}\right), 60.1(\mathrm{~d}, \mathrm{C}-3), 66.0(\mathrm{~d}, \mathrm{C}-5), 68.7(\mathrm{t}, 4-$ OCH_{2}), 71.4 (t, C-6), 76.1 (d, C-4), 127.40, 127.44, 128.1, 137.6 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3485-3230(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3090-2850(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1245,1085$ (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 318.1501; found: 318.1504. To a solution of this partially deprotected 1,2 -oxazine ($80 \mathrm{mg}, 0.27 \mathrm{mmol}$) in EtOH (7.0 mL), acidic ion exchange resin DOWEX-50 (533 mg ; washed several times with EtOH before usage) was added. The suspension was vigorously stirred at $50^{\circ} \mathrm{C}$ for 4 d, and then decanted. The resin was washed with three portions of ammonia in methanol solution (7 N , ca. 4.0 mL each) and the organics were combined. After evaporation of the solvents compound 15 ($49 \mathrm{mg}, 92 \%$) was isolated as a colourless solid.
mp 190-192 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+65.6\left(c\right.$ 1.26, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta=$ $3.70(\mathrm{dt}, J \approx 1.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.74\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.89\left(\mathrm{ddd}_{\mathrm{br}}, J \approx 0.9,1.7\right.$, $12.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.25(\mathrm{dd}, J=1.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, 7.24-7.27, 7.30-7.35 (2 m, 5H, Ph) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}\right): \delta=61.7(\mathrm{~d}$, C-3), 69.3 (d, C-5), 69.5 (d, C-4), 71.3 (t, C-6), 128.3, 128.7, 129.2, 139.6 (3 d, s, Ph) ppm; IR (neat): $\tilde{v}=3480,3170(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3065-2850(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1070,1005$ (CO) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 218.0793$; found: 218.0787; Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ (195.2): C 61.53, $\mathrm{H} 6.71, \mathrm{~N} 7.18$; found: C 61.57, H 6.69, N 7.18.

(3R,4R,5R)-4-Methoxy-3-phenyl-[1,2]oxazinan-5-ol (ent-12):

Following the Procedure 4 compound $10(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ was dissolved in 1 N HCl in $\mathrm{MeOH}(2 \mathrm{~mL})$. Standard workup and purification on a column (silica gel, dichloromethane/methanol 40:1) furnished ent-12 (30 mg, 84\%) as a colourless solid. mp 110-112 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=-61.5\left(c 1.18, \mathrm{CHCl}_{3}\right)$; The spectroscopic data correspond with those of compound 12. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ (209.2): C 63.14, H 7.23, N 6.69; found: C 63.12, H 7.24, N 6.61.
(3R,4S,5S)-4-Methoxy-3-phenyl-[1,2]oxazinan-5-ol (ent-13):

Following the Procedure 4 compound 11 ($289 \mathrm{mg}, 0.82 \mathrm{mmol}$) was dissolved in methanolic $\mathrm{HCl}(1 \mathrm{~N}, 9.5 \mathrm{~mL})$. Standard workup and purification on a column (silica gel, dichloromethane/methanol 40:1) yielded ent-13 (159 mg, 92\%) as a colourless solid.
mp 110-113 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=-48.8\left(c 1.10, \mathrm{CHCl}_{3}\right)$; The spectroscopic data correspond with those of compound 13. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ (209.2): $\mathrm{C} 63.14, \mathrm{H} 7.23, \mathrm{~N}$ 6.69; found: C 63.17, H 7.32, N 6.54 .
(2R,3R,4S)-4-Amino-3-methoxy-4-phenylbutane-1,2-diol (17):

Following the Procedure 4 compound 13 ($76 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (4 mL) was reacted with Sml_{2} (ca. 0.1 M solution in THF, $11 \mathrm{~mL}, \sim 1.1 \mathrm{mmol}$). After workup and filtration through a short silica gel pad (dichloromethane/methanol 15:1), compound 17 (73 mg, 95\%) was isolated as a colourless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+17.1(c 1.12, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 20: 1,500 \mathrm{MHz}\right): \delta=3.31(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.58\left(\mathrm{t}_{\mathrm{br}}, J \approx 3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 3.62(\mathrm{dd}, J=4.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.69$ (dd, $J=5.6,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.88 (td, $J \approx 2.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $4.57(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.30-7.39,7.46-7.49(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}\right.$ 20:1, 126 MHz): $\delta=56.1(\mathrm{~d}, \mathrm{C}-4), 61.5(\mathrm{q}, \mathrm{OMe}), 62.0(\mathrm{t}, \mathrm{C}-1), 71.6(\mathrm{~d}, \mathrm{C}-2), 82.2(\mathrm{~d}$, C-3), 127.1, 128.8, 129.1, 136.7 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3530-3245(\mathrm{O}-\mathrm{H}, \mathrm{N}-$ H), 3035-2855 (=C-H, C-H), $1080(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m/z): calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 212.1287$; found: 212.1282 .

(3S,4R,5R,3a'S,4'S,6a'S)-5-Benzyloxy-2-(2',2'-dimethyltetrahydrofuro[3,4-

 d][1,3]dioxol-4'-yl)-4-methoxy-3-phenyl-[1,2]oxazine (18):

A solution of 7 (261 mg, 0.74 mmol) in DMF (3 mL) was added to $\mathrm{NaH}(60 \%$ in mineral oil; $46 \mathrm{mg}, 1.04 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. Benzyl bromide ($160 \mathrm{mg}, 0.89 \mathrm{mmol}$) was added and the solution was stirred at room temperature overnight. Then $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, and the combined organics dried with MgSO_{4}. After filtration, the solvent was removed in
vacuo. The crude product was purified by column chromatography (silica gel, hexane/ethyl acetate, 5:1) to give compound 18 as a colourless oil ($278 \mathrm{mg}, 85 \%$). $[\alpha]_{\mathrm{D}}{ }^{22}=+111.3\left(c 0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.29,1.36(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), 3.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.48\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.94(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}, 6$ '-H), $4.00\left(\mathrm{~d}_{\mathrm{br}}, J \approx 12.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 4.23(\mathrm{dd}, J=1.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ H), $4.31\left(\mathrm{dd}, J=4.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.62(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.63\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.69(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.81\left(\mathrm{t}_{\mathrm{br}}, J \approx\right.$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}$), 4.96 (d, J = 6.1 Hz, 1H, 3a'-H), 7.24-7.33, 7.35-7.41, 7.45-7.48 ($3 \mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}$) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=24.5,26.3(2 \mathrm{q}, 2 \mathrm{Me}), 59.1$ (q, OMe), 63.2 ($\mathrm{d}, \mathrm{C}-3$), $68.0(\mathrm{t}, \mathrm{C}-6), 70.8(\mathrm{t}, \mathrm{Bn}), 71.6$ (d, C-5), 77.6 (t, C-6'), $78.8(\mathrm{~d}$, C-4), 81.4 (d, C-6a'), 84.6 (d, C-3a'), 95.6 (d, C-4'), 111.4 (s, C-2'), 127.5, 127.7, 127.8, 128.2, 128.5, 129.6, 137.0, 138.2 ($6 \mathrm{~d}, 2 \mathrm{~s}, 2 \mathrm{Ph}$) ppm; IR (ATR): $\tilde{v}=3090-$ 2825 (=C-H, C-H), 1105, 1090, 1065, 1055 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 464.2044$; found: 464.2054; Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{6}$ (441.5): C 68.01, H 7.08, N 3.17; found: C 68.23, H 7.24, N 2.99 .

Reaction of 1,2-oxazine 18 with Sml_{2}

Following the general Procedure 4, compound 18 (105 mg, 0.24 mmol) in THF (3 mL) was added to Sml_{2} solution (ca. 0.1 M in THF, $10 \mathrm{~mL}, \sim 1.0 \mathrm{mmol}$) and stirred overnight. After standard workup, the crude mixture was purified on column (silica gel, dichloromethane/methanol 40:1 gradient to 10:1) to give unconsumed 18 (5 mg, 5%), an enriched fractions of 19 (40 mg), and diol 20 ($18 \mathrm{mg}, 17 \%$). Additional purification of the second fraction (silica gel, hexane/ethyl acetate 1:2) yielded compound 20 (19 mg, 18\%). All compounds were isolated as colourless oils.

(2R,3R,3a'S,4S,4'S,6a'S)-2-Benzyloxy-4-(2,2-dimethyltetrahydrofuro[3,4-

 d][1,3]dioxol-ylamino)-3-methoxy-4-phenylbutan-1-ol (19):
$[\alpha]_{\mathrm{D}}{ }^{22}=+66.8\left(c 1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.27,1.38(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), $3.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.49(\mathrm{dd}, J=3.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.62(\mathrm{dt}, J \approx 4.2$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.73(\mathrm{dd}, J=3.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.78(\mathrm{dd}, J=4.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 3.95\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.00\left(\mathrm{dd}, J=3.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.17(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.43$ (d, J = 6.0 Hz, 1H, 3a'-H), 4.47 (s, 1H, 4'-H), 4.58, 4.67 (2 d, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 4.81$ (dd, $\left.J=3.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 7.27-7.36(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=24.6,26.1(2 \mathrm{q}, 2 \mathrm{Me}), 56.4(\mathrm{~d}, \mathrm{C}-4), 60.1(\mathrm{t}, \mathrm{C}-$ 1), 60.2 (q, OMe), 71.4 (t, C-6'), 72.2 (t, Bn), 78.1 (d, C-2), 80.7 (d, C-6a'), 85.4 (d, C3), 85.8 (d, C-3a'), 91.7 (d, C-4'), 112.2 (s, C-2'), 127.5, 127.67, 127.73, 127.8, 128.4, 128.7, 138.3, 140.5 ($6 \mathrm{~d}, 2 \mathrm{~s}, 2 \mathrm{Ph}$) ppm; IR (ATR): $\tilde{v}=3455-3345(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H})$, 3090-2830 (=C-H, C-H), 1095, 1060 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{H}^{+}: 444.2381\right.$; found: 444.2372.
(2R,3R,4S,4’R,5'S)-2-Benzyloxy-4-[(5-hydroxymethyl-2,2-dimethyl-[1,3]dioxolan-4-ylmethyl)amino]-3-methoxy-4-phenylbutan-1-ol (20):

$[\alpha]_{\mathrm{D}}{ }^{22}=+38.5\left(c 1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.34,1.43(2 \mathrm{~s}, 3 \mathrm{H}$ each, 2 Me), 2.49 (dd, $J=5.8,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), $2.58(\mathrm{dd}, J=4.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.45\left(\mathrm{dd}_{\mathrm{br}}, J \approx 4.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.47-3.52(\mathrm{~m}, 2 \mathrm{H}, 3-$
$\mathrm{H}, 5{ }^{\prime}-\mathrm{CH}_{2}$), $3.61\left(\mathrm{dd}, \mathrm{J}=5.2,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{CH}_{2}\right), 3.72-3.79(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 3.97(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.17\left(\mathrm{dt}, J \approx 4.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.26(\mathrm{td}, J \approx 4.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}$, 4'-H), 4.49, 4.68 (2 d, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}$), $7.27-7.36(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=25.0,27.4(2 \mathrm{q}, 2 \mathrm{Me}), 46.1\left(\mathrm{t}, \mathrm{N}-\mathrm{CH}_{2}\right), 59.7(\mathrm{t}, \mathrm{C}-1), 60.49(\mathrm{t}$, 5'- CH_{2}), 60.53 (q, OMe), 61.83 (d, C-4), 71.8 (t, Bn), 75.8 (d, C-4'), 77.32 (d, C-2), 77.34 (d, C-5'), 85.7 (d, C-3), 108.2 (s, C-2'), 127.70, 127.71, 127.74, 127.76, 128.4, 128.7, 138.3, 140.2 ($6 \mathrm{~d}, 2 \mathrm{~s}, 2 \mathrm{Ph}$) ppm; IR (ATR): $\tilde{v}=3465-3300(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H})$, 3090-2825 (=C-H, C-H), 1090, 1050 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 446.2543$; found: 446.2564 .

(3S,4R,5R)-4-Methoxy-3-phenyl-5-trimethylsilanyloxy-[1,2]oxazinane (21):

To a solution of 1,2 -oxazine $13(70 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ were added dropwise at $0{ }^{\circ} \mathrm{C}$ imidazole ($36 \mathrm{mg}, 0.52 \mathrm{mmol}$), DMAP ($2 \mathrm{mg}, 5 \mathrm{~mol} \%$) and TMSCI ($63 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction mixture was allowed to reach room temperature and stirred overnight. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added followed by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL each), the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then filtered, and the solvents were removed under reduced pressure. Purification by column chromatography (silica gel, hexane/ethyl acetate $2: 1$) yielded 21 ($85 \mathrm{mg}, 90 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=-13.8(c 1.35, \mathrm{THF}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 3.22$ $(\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}), 3.25\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.78\left(\mathrm{dt}_{\mathrm{br}}, J \approx 1.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.87(\mathrm{dt}, J \approx$ $1.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.16(\mathrm{dd}, J=1.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-$
$\mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=0.05\left(\mathrm{q}, \mathrm{SiMe}_{3}\right)$, 58.9 (q, OMe), 60.0 (d, C-3), 65.4 (d, C-5), 71.3 (t, C-6), 78.9 (d, C-4), 127.4, 127.6, 128.2, 137.9 ($3 \mathrm{~d}, \mathrm{~s}, \mathrm{Ph}$) ppm; IR (ATR): $\tilde{v}=3280-3225(\mathrm{~N}-\mathrm{H}), 3090-2825(=\mathrm{C}-\mathrm{H}, \mathrm{C}-$ H), 1250, 1090 (C-O) cm^{-1}; ESI-TOF (m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 304.1345; found: 304.1339; Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Si}$ (281.4): C 59.75 , H 8.24, N 4.98; found: C 59.73, H 8.26, N 4.98 .

Reaction of 21 with Sml_{2} and attempted cyclisation with MsCl

Following the general Procedure 4, compound 21 (168 mg, 0.60 mmol) in THF (5 mL) was added to a solution of Sml_{2} (ca. 0.1 M in THF, $18 \mathrm{~mL}, \sim 1.8 \mathrm{mmol}$). After workup and drying over MgSO_{4}, the crude product was filtered and the solvents were removed to give a colourless oil (160 mg). This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, triethylamine ($1 \mathrm{~mL}, 7.0 \mathrm{mmol}$) and methanesulfonyl chloride ($150 \mu \mathrm{~L}, 1.94 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred overnight, then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with several portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$. Crude products were separated on a column (silica gel, hexane/ethyl acetate) to give compounds 23 (16 mg, 7\%), 24 ($63 \mathrm{mg}, 25 \%$), 25 ($10 \mathrm{mg}, 5 \%$) as colourless oils and compound 26 ($68 \mathrm{mg}, 35 \%$) as a colourless solid.
(2R,3R,4S)-4-methylsulfonylamino-3-methoxy-4-phenyl-1,2-O-bis(trimethylsilyl)-butan-1,2-diol (23):

$[\alpha]_{\mathrm{D}}{ }^{22}=+36.9\left(c 1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.12,0.14(2 \mathrm{~s}, 9 \mathrm{H}$ each, $2 \mathrm{SiMe}_{3}$), 2.56 (s, 3H, NMs), 3.26 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.43 (dd, $J=3.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3-H), 3.66(\mathrm{dd}, J=3.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.79-3.85(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}), 4.72(\mathrm{dd}, J=$ 3.1, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 5.41 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.29-7.40 (m, 5H, Ph) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-0.5,0.3,\left(2 \mathrm{q}, 2 \mathrm{SiMe}_{3}\right), 42.0(\mathrm{q}, \mathrm{NMs}), 57.1$ (d, C4), 61.2 (q, OMe), 64.1 (t, C-1), 73.9 (d, C-2), 85.4 (d, C-3), 127.0, 127.9, 128.8, 140.2 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3290(N-H), 3065-2830(=C-H, C-H), 1320$ (S=O), 1250, 1150, $1085(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NNaO}_{5} \mathrm{SSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 456.1672 ;$ found: 456.1678.

(2R,3R,4S)-2-O-Methylsulfonyl-4-methylsulfonylamino-3-methoxy-4-phenyl-1-O-

 trimethylsilylbutan-1,2-diol (24):
$[\alpha]_{\mathrm{D}}{ }^{22}=+28.8\left(c 1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, 2.58 (s, 3H, NMs), 3.07 (s, $3 \mathrm{H}, \mathrm{OMs}$), 3.17 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.67 (dd, $J=1.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 4.02$ (dd, $J=2.1,12.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.16(\mathrm{dd}, J=4.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H})$, 4.71 (dd, $J=1.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.77$ (ddd, $J=2.1,4.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.61$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=$ -0.6 (q, SiMe_{3}), 38.1 (q, OMs), 42.0 (q, NMs), 56.5 (d, C-4), 61.6 (q, OMe), 61.7 (t, $\mathrm{C}-1$), 83.9 (d, C-3), 84.2 (d, C-2), 126.6, 128.3, 129.1, 139.0 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3285$ (N-H), 3060-2840 (=C-H, C-H), 1320 (S=O), 1175, 1155 (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NNaO}_{7} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 462.1052$; found: 462.1052.
(25):

$[\alpha]_{\mathrm{D}}{ }^{22}=+98.5\left(c 0.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, 2.75 (s, 3H, NMs), 2.95 (s, 3H, OMe), 3.55 (dt, J $\approx 1.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.65 (ddd, $J=0.9,2.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.78(\mathrm{dd}, J=3.4,11.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.24\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right)$, $4.90(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.25-7.29,7.31-7.39(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-0.1$ (q, $\left.\mathrm{SiMe}_{3}\right), 36.4$ (q, NMs), 55.3 (t, C-5), 58.9 (q, OMe), 65.7 (d, C-2), 73.4 (d, C-4), 88.6 (d, C-3), 127.5, 128.0, 128.1, 136.8 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3065-2830(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1340(\mathrm{~S}=\mathrm{O}), 1155,1110,1020$ (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}: 366.1171$; found: 366.1171.

(2S,3R,4R)-3-Methoxy-2-phenyl-4-methylsulfonyloxy-1-methylsulfonyl-

 pyrrolidine (26):
$[\alpha]_{\mathrm{D}}{ }^{22}=+57.1\left(c \quad 1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMs})$, 3.06 (s, 3H, OMe), 3.14 (s, 3H, OMs), 3.89 (dd, $J=3.8,12.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 4.07-4.11 (m, 2H, 2-H, 4-H), $5.06(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.12(\mathrm{dt}, J \approx 2.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, 7.30-7.39 (m, 5H, Ph) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=39.1$ (q, OMs), 40.1 (q, NMs), 51.6 (t, C-2), 59.1 (q, OMe), 65.0 (d, C-5), 79.6 (d, C-3), 85.6 (d, C-4), 128.26, 128.29, 128.4, 135.1 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3020-2840(=C-H, C-H), 1325$
$(\mathrm{S}=\mathrm{O}), 1175,1145(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NNaO}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 372.0551; found: 372.0552; Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}_{2}$ (349.4): C 44.68, H 5.48, N 4.01; found: C 44.70, H 5.56, N 4.11 .

(3S,4R,5R)-5-(tert-Butyldimethylsilyloxy)-4-methoxy-3-phenyl-[1,2]oxazinane

 (27):

By a similar procedure to that for TMSCI, to 1,2-oxazine 13 (713 mg, 3.41 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added dropwise at $0{ }^{\circ} \mathrm{C}$ imidazole ($525 \mathrm{mg}, 7.71 \mathrm{mmol}$), DMAP ($21 \mathrm{mg}, 0.17 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and TBSCl ($1.035 \mathrm{~g}, 6.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The reaction mixture was stirred for five days at room temperature. After workup and purification through a column (silica gel, hexane/ethyl acetate 3:1) compound 27 ($995 \mathrm{mg}, 90 \%$) was isolated as a colourless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+4.0\left(c \quad 0.92, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.136,0.140(2 \mathrm{~s}, 3 \mathrm{H}$ each, SiMe_{2}), $0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 3.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.25\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.78(\mathrm{dt}, \mathrm{J} \approx$ $1.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.88(\mathrm{dt}, J \approx 1.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.13(\mathrm{dd}, J=1.4,12.3 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 4.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.25-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta=-4.9,-4.7\left(2 \mathrm{q}, \mathrm{SiMe}_{2}\right), 18.1,25.8\left(\mathrm{~s}, \mathrm{q}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 58.9(\mathrm{q}, \mathrm{OMe}), 60.0(\mathrm{~d}$, C-3), 65.6 (d, C-5), 71.3 (t, C-6), 78.9 (d, C-4), 127.4, 127.5, 128.2, 138.1 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3290(\mathrm{~N}-\mathrm{H}), 3065-2825(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1255,1120,1095$ (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 324.1995; found: 324.2010.
(2R,3R,4S)-4-Amino-2-O-(tert-butyldimethylsilyl)-3-methoxy-4-phenyl-butane-

1,2-diol (28):

Following the general Procedure 4, compound 27 ($500 \mathrm{mg}, 1.54 \mathrm{mmol}$) in THF (25 mL) was added to a solution of Sml_{2} (ca. 0.1 M in THF, $57 \mathrm{~mL}, \sim 5.7 \mathrm{mmol}$). After workup and filtration through a short silica gel pad (dichloromethane/methanol 15:1), compound 28 (463 mg, 92\%) was isolated as a colourless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+27.0\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.07,0.12(2 \mathrm{~s}, 3 \mathrm{H}$ each, SiMe_{2}), 0.92 (s, $9 \mathrm{H}, \mathrm{Si}^{t} \mathrm{Bu}$), 3.27 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.37 (dd, $J=0.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ H), 3.57 (dd, $J=4.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.83(\mathrm{dd}, J=1.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.91$ (ddd, $J=1.5,4.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.46\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 7.25-7.30,7.32-7.41(2 \mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-4.9,-4.6\left(2 \mathrm{q}, \mathrm{SiMe}_{2}\right), 18.1,25.9(\mathrm{~s}$, q, $S^{t}{ }^{t} B u$), 52.1 (d, C-4), 59.7 (q, OMe), 61.2 (t, C-1), 70.6 (d, C-2), 87.0 (d, C-3), 126.2, 127.1, 128.6, 145.4 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=3460-3250(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H})$, 3065-2855 (=C-H, C-H), 1255, 1130, 1090 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 326.2146; found: 326.2137.
(2S,3R,4R)-4-(tert-ButyIdimethylsilyloxy)-3-methoxy-1-methylsulfonyl-2phenylpyrrolidine (29):

To a solution of amino alcohol $28(86 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, triethylamine ($147 \mu \mathrm{~L}, 105 \mathrm{mg}, 1.04 \mathrm{mmol}$) followed by methanesulfonyl chloride ($41 \mu \mathrm{~L}, 61 \mathrm{mg}$, $0.53 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring at room temperature overnight, $\mathrm{H}_{2} \mathrm{O}(8$
mL) was added. The two layers were separated, and the aqueous layer was extracted with a few portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined extracts were dried with MgSO_{4}, and the solvents were removed in vacuo. The crude mixture was purified by column chromatography (silica gel, hexane/EtOAc, 4:1) to furnish compound 29 as a colourless oil ($56 \mathrm{mg}, 55 \%$).
$[\alpha]_{\mathrm{D}}{ }^{22}=+88.1\left(c 1.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.14,0.15(2 \mathrm{~s}, 3 \mathrm{H}$ each, SiMe_{2}), 0.93 (s, $9 \mathrm{H}, \mathrm{Si}^{t} \mathrm{Bu}$), 2.75 (s, 3H, NMs), 2.96 (s, 3H, OMe), 3.63 (dd d_{br}, $J \approx 1.1,11.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.63(\mathrm{dd}, J=2.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.78(\mathrm{dd}, J=3.5$, $11.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.26-4.27(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.90(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.25-7.39$ (m, 5H, Ph) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-4.8^{*}\left(\mathrm{q}, \mathrm{SiMe}_{2}\right), 18.1,25.7(\mathrm{~s}, \mathrm{q}$, $\mathrm{Si}^{\mathrm{t}} \mathrm{Bu}$), 36.9 (q, NMs), 55.3 (t, C-5), 58.9 (q, OMe), 65.7 (d, C-2), 73.8 (d, C-4), 88.8 (d, C-3), 127.6, 128.0, 128.2, 136.7 (3 d, s, Ph) ppm, *double intensity; IR (ATR): $\tilde{v}=$ 3065-2830 (=C-H, C-H), 1345 (S=O), 1160, 1120, $1020(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NNaO}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}: 408.1635$; found: 408.1611.

(2S,3R,4R)-4-(tert-Butyldimethylsilyloxy)-3-methoxy-2-phenylpyrrolidine (30):

To a solution of freshly prepared, crude amino alcohol 28 ($350 \mathrm{mg}, 1.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, were added triethylamine ($166 \mu \mathrm{~L}, 121 \mathrm{mg}, 1.21 \mathrm{mmol}$), CBr_{4} $(414 \mathrm{mg}, 1.25 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(328 \mathrm{mg}, 1.25 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight at room temperature and quenched with aqueous NaOH soln. (1 N, ca. 20 mL). The layers were separated, the aqueous layer was extracted with a few portions of $\mathrm{Et}_{2} \mathrm{O}$, and the organics were combined, dried over MgSO_{4} and filtered, and the solvents were removed under reduced pressure. The crude mixture
was filtered through a short silica gel pad to give enriched $30(210 \mathrm{mg})$, with the triphenylphosphine oxide as the main inpurity. Additional column chromatography (silica gel, diethylether) furnished $30(110 \mathrm{mg}, 33 \%)$ as a colourless oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+29.7\left(c\right.$ 1.11, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.11,0.13(2 \mathrm{~s}, 3 \mathrm{H}$ each, SiMe_{2}), 0.92 (s, $\left.9 \mathrm{H}, \mathrm{Si}^{t} \mathrm{Bu}\right), 2.83(\mathrm{dd}, J=3.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.47 (dd, $J=5.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.58 (dd, $J=1.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 4.31 (ddd, $J=1.2,3.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.34(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.22-7.26,7.30-$ 7.34, 7.38-7.41 (3 m, 5H, Ph) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-4.73,-4.68$ (2 q, SiMe_{2}), 18.0, 25.8 (s, q, SitBu), 54.4 (t, C-5), 57.9 (q, OMe), 64.3 (d, C-2), 76.4 (d, C-4), 89.7 (d, C-3), 126.8, 127.8, 127.9, 138.9 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v}=$ 3315 (N-H), 3090-2825 (=C-H, C-H), 1105 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 308.2040; found: 308.2055.

Synthesis of pyrrolidine derivative 30 by demesylation of 29

To a solution of mesylated pyrrolidine $29(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (8 mL), a freshly prepared solution of LDA [by treatment of diisopropylamine (1.0 equiv.) with BuLi (1.0 equiv.) at $-78^{\circ} \mathrm{C}$ in THF and stirring for 30 min] was added (0.70 mmol added in three portions, ~ 0.23 mmol each every 4 h) at room temperature and stirred for 16 h . The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution followed by the addition of EtOAc. The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered and concentrated. Compound 30 (5 mg, 13\%) was isolated by chromatography (silica gel, dichloromethane/methanol 30:1) as a light orange oil.

Attempted cyclisation of 28 with pTsCl

To a solution of freshly prepared unpurified amino alcohol 28 ($501 \mathrm{mg}, 1.54 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, triethylamine ($1.24 \mathrm{~mL}, 893 \mathrm{mg}, 8.82 \mathrm{mmol}$) followed by pTsCl ($656 \mathrm{mg}, 3.44 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$, and stirred at room temperature overnight. Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the resulting solution was extracted with a few portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvents were removed. The crude mixture was chromatographed on silica (hexane/ethyl acetate $3: 1$ gradient to $1: 1$) to furnish an inseparable $\sim 1: 1$ mixture of N, O-tosylated compounds ($136 \mathrm{mg}, 14 \%$, first eluted fraction, see Results and Discussion part) and $\sim 4: 1$ mixture of tosylamides (301 mg , 41%). The latter fraction was additionally purified (silica gel, hexane/ethyl acetate 3:1) to yield analytically pure 31 ($177 \mathrm{mg}, 24 \%$) as a colourless solid.

(2R,3R,4S)-2-(tert-Butyldimethylsilyl)-3-methoxy-4-phenyl-4-(p-

 toluenesulfonylamino)butan-1-ol (31):
mp 124-126 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+22.5\left(c 0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.07$, $0.08\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each, $\left.\mathrm{SiMe}_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 2.00\left(\mathrm{dd}_{\mathrm{br}}, J \approx 3.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right)$, $2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.36(\mathrm{dd}, J=1.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.65\left(\mathrm{dt}_{\mathrm{br}}, J \approx\right.$ $2.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.77\left(\right.$ ddd $\left._{\mathrm{br}}, J=3.3,8.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.81(\mathrm{dt}, J \approx 3.3$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.63\left(\mathrm{dd}_{\mathrm{br}}, J \approx 1.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.55(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 7.01 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ts}$), $7.03-7.11$ (m, 5H, Ph), 7.46 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ts}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=-4.8,-4.6\left(2 \mathrm{q}, \mathrm{SiMe}_{2}\right), 18.0\left(\mathrm{~s}, \mathrm{Si}{ }^{t} \mathrm{Bu}\right)$, $21.3(\mathrm{q}, \mathrm{Me})$, 25.8 ($\mathrm{q}, \mathrm{Si}^{t} \mathrm{Bu}$), 56.6 (d, C-4), 61.3 (q, OMe), 63.7 (t, C-1), 73.3 (d, C-2), 86.1 (d, C-3),
126.5, 126.9, 127.0 128.1, 129.1, 137.7, 139.4, 142.9 (5 d, $3 \mathrm{~s}, \mathrm{Ph}, \mathrm{Ts}$) ppm; IR (ATR): $\tilde{v}=3580-3175(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3035-2825(=\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{H}), 1335(\mathrm{~S}=\mathrm{O}), 1155$, 1090, $1050(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NNaO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 502.2054; found: 502.2041. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{SSi}$ (479.7): C 60.09, H 7.77, N 2.92; found: C 60.09, H 7.79, N 2.93.
(3R,4R,5S)-4-Methoxy-5-phenylpyrrolidin-3-ol (32):

Pyrrolidine 30 ($51 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in 1 N HCl in $\mathrm{MeOH}(8 \mathrm{~mL})$ and stirred at room temperature for three days. The reaction mixture was quenched with excess solid NaHCO_{3}, the inorganics were filtered off and the solvents removed to dryness. The crude mixture was chromatographed on silica gel (dichloromethane/methanol 9:1) to give 32 ($23 \mathrm{mg}, 72 \%$) as colourless crystals. mp $192-195{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+48.3\left(c \quad 0.88, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta=$ $3.29\left(\mathrm{~d}_{\mathrm{br}}, J \approx 12.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.75(\mathrm{dd}, J=4.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ $H), 3.93\left(d_{b r}, J \approx 0.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 4.60\left(\mathrm{dt}_{\mathrm{br}}, J \approx 0.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.85(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.41-7.48,7.51-7.54(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta=53.0(\mathrm{t}, \mathrm{C}-2), 58.5(\mathrm{q}, \mathrm{OMe}), 65.4(\mathrm{~d}, \mathrm{C}-5), 72.5(\mathrm{~d}, \mathrm{C}-3), 87.4(\mathrm{~d}, \mathrm{C}-4)$, 129.7, 129.9, 130.3, 132.3 ($3 \mathrm{~d}, \mathrm{~s}, \mathrm{Ph}$) ppm; IR (neat): $\tilde{v}=3400-3250(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H})$, 3100-2805 (=C-H, C-H), $1100(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z})$: calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+$ $H]^{+}$: 194.1181 ; found: 194.1153.

References

1. Pérez, M.; Canoa, P.; Gómez, G.; Teijeira, M.; Fall, Y. Synthesis 2005, 411-414. doi:10.1055/s-2004-834946
2. Helms, M.; Schade, W.; Pulz, R.; Watanabe, T.; Al-Harrasi, A.; Fišera, L.; Hlobilová, I.; Zahn, G.; Reissig, H.-U. Eur. J. Org. Chem. 2005, 1003-1019. doi:10.1002/ejoc. 200400627
3. Krijnen, E. S.; Zuilhof, H.; Lodder, G. J. Org. Chem. 1994, 59, 8139-8150. doi:10.1021/jo00105a035
4. Kucerovy, A.; Neuenschwander, K.; Meinreb, S. M. Synthetic Commun. 1983, 13, 875879. doi:10.1080/00397918308059540
