Supporting Information
for
Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides
Yohsuke Kobiki, Shin-ichi Kawaguchi, Takashi Ohe and Akiya Ogawa*

Address: Department of Applied Chemistry, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531,
Japan

Email: Akiya Ogawa - ogawa@chem.osakafu-u.ac.jp

* Corresponding author

Spectral and analytical data of the new compound 3cb
4-Tolyl 4-(trifluoromethyl)phenyl selenide (3cb): white solid; mp 104–105 °C;
1H NMR (400 MHz, CDCl$_3$) δ 2.37 (s, 3H), 7.17 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ
21.2, 124.1 (q, $J_{C-F} = 271.7$ Hz), 124.5, 125.5 (q, $J_{C-F} = 3.9$ Hz), 128.4 (q, $J_{C-F} = 32.6$
Hz), 130.2, 130.6, 135.4, 138.7, 139.0; 19F NMR (376 MHz, CDCl$_3$) δ –62.4; 77Se NMR
(75 MHz, CDCl$_3$) δ 418; HRMS–FAB (m/z): [M + H]$^+$ calcd for C$_{14}$H$_{12}$F$_3$Se: 317.0056;
found, 317.0077.
Spectra of

Copies of

1H NMR, 13C NMR, 19F NMR, 77Se NMR spectra of compound 3cb.
 Filename = C:\Users\Y. Kobiki\Deskt
 Anchor = delta
 Experiment = carbon.jsp
 Sample_Id = ex380_recrys_kobiki
 Solvent = CH2Cl2/DMSO-d6
 Creation_Time = 9-Mar-2013 20:21:31
 Comment = single pulse decoupled g
 Data_Format = 10 COMPLEX
 Dim_Size = 26214
 Dim_Title = Selenium??
 Dim_UNITS = [ppm]
 Dimensions = X
 Site = RCX 400
 Spectrometer = DAREX NRA
 Field_strength = 9.389766[IT] [400MHz]
 X_Azi_Duration = 0.3007872[s]
 X_Domain = 775u
 X_Freq = 75.24442922[MHz]
 X_Offset = 300[ppm]
 X_Points = 32768
 X_PRESCANS = 4
 X_RESOLUTION = 2.994082311[MHz]
 X_Sweep = 94.135444100[MHz]
 X_Sweep_Clip = 76.92336492[MHz]
 Irr_Freq = 309.70228383[MHz]
 Irr_Offset = 5[ppm]
 Clipped = TPEE
 Scans = 256
 Total_Scans = 256
 Relaxation_Delay = 2[s]
 Recov_delay = 56
 Temp_Set = 29.4[OC]
 X95_Width = 15[us]
 X_Azi_Time = 0.34078272[s]
 X_Angle = 30[deg]
 X_Aux = 3.43333333[us]
 Irr_Auxewidth = 22.38[us]
 Irr_Aux_gain = 22.38[db]
 Irr_Bulk = WATTS
 Irr_Width = 0.115[ms]
 Decoupling = TRUS

abundance

800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0 -100.0 -200.0

X : parts per Million : Selenium??