Supporting Information

for

Space filling of β -cyclodextrin and β -cyclodextrin

derivatives by volatile hydrophobic guests

Sophie Fourmentin^{1,2}, Anca Ciobanu^{1,2,3}, David Landy^{1,2} and Gerhard Wenz^{*,4}

Address: ¹University Lille Nord de France, F-59000 Lille, France, ²ULCO, UCEIV, F-59140 Dunkerque, France, ³University Vasile Alecsandri, 600115 Bacau, Romania and ⁴Organic Macromolecular Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany

Email: Gerhard Wenz* - g.wenz@mx.uni-saarland.de

*Corresponding author

Derivation of Equation 1 and determination of

Henry's law constant

Derivation of Equation (1) [1]

Equation (1) was derived from the law of mass action (2), Henry's law (3), the mass balance, Equations (4, 5) and the Benesi–Hildebrand approximation (6) [2], which neglects the consumption of the host by the formation of the complex. This approximation is valid in our case because the total concentration of CD, $[CD]_0$, was several orders of magnitude higher than the concentration of the CD complex of the guest in the aqueous phase, $[CD\bullet G]$. Henry's constant k_H , the ratio of the concentrations of the guest in the gas phase, $[G]^{gas}$, over the one in the aqueous phase, [G], was determined separately, as described in the section below. *V* and V^{gas} denote the volumes of the aqueous phase and the gas phase, respectively.

$$K = \frac{[CD \bullet G]}{[CD][G]} \cong \frac{[CD \bullet G]}{[CD]_0[G]}$$
(2)

$$k_H = \frac{[G]^{gas}}{[G]} \tag{3}$$

$$n_G^{total} = [G]^{gas} V^{gas} + [G]V + [CD \bullet G]V$$
(4)

$$c = n_G^{total} / V = f[G]^{gas} + [G] + [CD \bullet G] \quad \text{with} \quad f = V^{gas} / V \tag{5}$$

$$[CD] = [CD]_0 - [CD \bullet G] \cong [CD]_0$$
(6)

$$c = fk_H[G] + [G] + K[CD]_0[G] = [G](1 + fk_H + K[CD]_0)$$

$$[G] = \frac{c}{1 + fk_H + K[CD]_0}$$

$$[G]^{gas} = \frac{k_H c}{1 + fk_H + K[CD]_0}$$

$$[G]_{0}^{gas} = \frac{k_{H}c}{1+fk_{H}} \text{ for } [CD]_{0} = 0$$
$$y = \frac{A_{0}}{A} = \frac{[G]_{0}^{gas}}{[G]^{gas}} = \frac{1+fk_{H}+K[CD]_{0}}{1+fk_{H}} = 1 + \frac{K}{1+fk_{H}}[CD]_{0}$$

$$K = (fk_{H} + 1)\frac{y-1}{[CD]_{0}} = (fk_{H} + 1)\frac{A_{0}/A - 1}{[CD]_{0}}$$
(1)

Determination of Henry's law constant k_H

We used the phase ratio variation (PRV) for the determination of Henry's law constant ($k_{\rm H}$). This method is based on the following equation [3]:

$$\frac{C_o}{A} = \frac{1}{\alpha} \left(\frac{V^{gas}}{V} + \frac{1}{k_H} \right)$$
(7)

where C_0 is the initial chemical concentration in the prepared liquid solution (mg mL⁻¹), *V* is the aqueous sample volume added into the vial (mL), V^{gas} is the headspace gas volume in the vial (mL), *A* is the integrated area counts of GC peak for a given sample, and α is a specific parameter of the headspace, defined by $A = \alpha C_0$. In this study we used a fixed number of moles, n_0 so Equation (7) becomes:

$$\frac{1}{A} = \frac{1}{\alpha} \left(\frac{V^{gas}}{n_0} + \frac{V}{n_0 * k_H} \right)$$

 $\frac{1}{A} = m \frac{V}{V^{total}} + b$

with $b = \frac{V^{total}}{\alpha * n_0}$ and $m = \frac{1}{\alpha * n_0} \left(-V^{total} + \frac{V^{total}}{k_H} \right)$

Linear regression of 1/A against V/V^{total} gives the slope and intercept. Henry's constant is calculated as $k_H = \frac{1}{m/b+1}$

Guest\NaCl	0	0.04 M	0.25 M	1 M	2.25 M	4 M
benzene	0.27	0.27	0.29	0.43	0.68	0.85
toluene	0.30	0.30	0.35	0.52	0.91	1.07
ethylbenzene	0.36	0.36	0.44	0.67	1.26	1.35
cumene	0.50	0.50	0.64	0.97	1.97	1.91
tert-butylbenzene	0.55	0.55	0.70	1.08	2.26	2.20

Table 1: Henry's constant for benzene derivatives.

Table 2: Henry's constant for cyclohexane derivatives.

Guest\NaCl	0	2.25 M
cyclohexane	7.05	7.35
methylcyclohexane	8.71	8.59
<i>tert</i> -butylcyclohexane	10.86	13.54

References

- 1. Lantz, A. W.; Wetterer, S. M.; Armstrong, D. W. *Anal. Bioanal. Chem.* **2005**, *383*, 160–166.
- 2. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. **1949**, *71*, 2703–2707.
- 3. Peng, J.; Wan, A. M. *Chemosphere* **1998**, *36*, 2731–2740.