Supporting Information

for

Catalytic asymmetric tandem Friedel–Crafts alkylation/Michael addition reaction for the synthesis of highly functionalized chromans

Jiahuan Peng and Da-Ming Du*

Address: School of Chemical Engineering and Environment, Beijing Institute of

Technology, Beijing 100081, China

Email: Da-Ming Du*- dudm@bit.edu.cn

* Corresponding author

Characterization data, copies of NMR spectra and HPLC chromatographs of products 3.

General Methods: Commercially available compounds were used without further purification. Solvents were dried according to standard procedures. Column chromatography was performed using silica gel (200–300 mesh). Melting points were determined on a XT–4 melting point apparatus without correction. The 1H NMR spectra were measured on Varian Mercury-plus 400 MHz spectrometer. Chemical shifts were recorded in δ (ppm) relative to tetramethylsilane (TMS) as the internal standard. ^{13}C NMR spectra were measured at 100 MHz. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. Infrared spectra were obtained with a Perkin Elmer Spectrum One spectrometer. ESI-HRMS spectra were measured with a Bruker APEX IV Fourier-Transform mass spectrometer. Optical rotations were measured with a WZZ–3 polarimeter. Enantiomeric excesses were determined by chiral HPLC using an Agilent 1200 LC instrument with Daicel Chiralpak IA, IB or ADH column.

Materials: Chiral bis(oxazoline) **I–X** [1] and nitroalkene enoates **1** [2] were prepared according to the reported procedures. The racemic reference compounds of **3** were synthesized by the direct treatment of nitroalkene enoates **1** and indoles **2** in the presence of 10 mol% Zn(OTf)₂.

General Procedure (A) for the catalytic asymmetric tandem Friedel–Crafts alkylation/Michael addition reaction of indoles with nitroolefin enoates: To a dried Schlenk tube were added Zn(OTf)₂ (7.3 mg, 0.02 mmol), ligand I (12.2 mg, 0.02 mmol) and NaOtBu (1.9 mg, 0.02 mmol) under argon followed by the addition of toluene (3 mL). The solution was stirred at room temperature for 0.5 h and then nitroolefin enoate 1 (0.2 mmol) was added. The mixture was stirred for 10 min then the indole 2 (0.3 mmol) was added. After stirring for 48 h at room temperature, the solvent was removed under vacuum. Purification by column chromatography afforded the desired product 3.

$$R^{2} \longrightarrow NO_{2} \qquad + \qquad R^{4} \longrightarrow NO_{2} \qquad + \qquad 10 \text{ mol-}\% \text{ Ligand } I \qquad R^{4} \longrightarrow NO_{2} \qquad + \qquad 10 \text{ mol-}\% \text{ NaOBu}^{t} \qquad R^{2} \longrightarrow NO_{2} \qquad + \qquad NO_{$$

Ethyl 2-(4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3a): Compound 3a (the mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (27.7 mg, 73% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (96:4 dr, 89% ee for the major diastereomer) by HPLC (Daicel Chiralpak IA column, *n*-hexane/2-propanol 85:15, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 19.9 \text{ min}$, $t_{\text{minor}} = 18.7 \text{ min}$; minor diastereomer: $t_{\text{R}} = 17.3 \text{ min}$. The major diastereomer was purified by flash chromatography and obtained as a white solid, mp 163–168 °C. $[\alpha]_{\text{D}}^{25} = +76.5$ (*c* 1.51 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H, NH), 7.36 (d, J = 8.0 Hz, 1H, ArH), 7.17–7.14 (m, 3H, ArH), 6.95–6.93

(m, 4H, ArH), 6.81 (t, J = 7.2 Hz, 1H, ArH), 5.23 (t, J = 10.4 Hz, 1H, CH), 5.09 (d, J = 10.4 Hz, 1H, CH), 4.94–4.88 (m, 1H, CH), 4.23 (q, J = 7.0 Hz, 2H, CH₂), 2.84–2.71 (m, 2H, CH₂), 1.31–1.26 (m, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 152.6, 136.8, 129.5, 128.4, 124.8, 124.5, 122.5, 122.1, 121.9, 119.9, 119.2, 116.6, 111.9, 111.6, 88.2, 73.2, 61.2, 40.5, 37.2, 14.1 ppm. IR (KBr): ν 3416, 3061, 2983, 2908, 1737, 1585, 1552, 1485, 1456, 1365, 1281, 1230, 1189, 1085, 1055, 745 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₁H₂₀N₂NaO₅ [M + Na]⁺ 403.12644, found: 403.12618.

Ethyl 2-(4-(5-methyl-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3b): Compound 3b

Me NH NO₂ CO₂Et

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (54.2 mg, 69% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (90:10 dr, 80% ee for the major diastereomer) by HPLC (Daicel Chiralpak IB column, n-hexane/2-propanol = 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer:

 $t_{\rm major} = 26.4~{\rm min},\ t_{\rm minor} = 28.4~{\rm min};\ {\rm minor}\ {\rm diastereomer}:\ t_{\rm R} = 22.7~{\rm min}.$ The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_{\rm D}^{25}$: +98.7 (c 3.83 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H, NH), 7.24 (d, J = 7.6 Hz, 1H, ArH), 7.17 (t, J = 7.4 Hz, 1H, ArH), 7.08 (d, J = 2.4 Hz, 1H, ArH), 6.99–6.93 (m, 3H, ArH), 6.81 (t, J = 7.2 Hz, 1H, ArH), 6.73 (s, 1H, ArH), 5.22 (t, J = 10.0 Hz, 1H, CH), 5.06 (d, J = 10.4 Hz, 1H, CH), 4.94–4.88 (m, 1H, CH), 4.23 (q, J = 7.2 Hz, 2H, CH₂), 2.86–2.71 (m, 2H, CH₂), 2.29 (s, 3H, CH₃), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 152.6, 135.2, 129.5, 129.2, 128.4, 125.2, 124.5, 124.2, 122.2, 122.1, 118.7, 116.5, 111.4, 111.2, 88.2, 73.3, 61.2, 40.4, 37.3, 21.4, 14.1 ppm. IR (KBr): v 3415, 2981, 2925, 1736, 1584, 1552, 1485, 1455, 1367, 1280, 1229, 1197, 1054, 798, 759 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₂₃N₂O₅ [M + H]⁺ 395.16015, found: 395.16069; calcd. for C₂₂H₂₂N₂NaO₅ [M + Na]⁺ 417.14209, found: 417.14216.

Ethyl 2-(4-(5-methoxy-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3c): Compound 3c

MeO NH NO₂ NO₂ CO₂EI

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (62.0 mg, 76% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (93:7 dr). The enantioselectivity for major diastereomer (72% ee) was determined by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol= 90:10, flow rate 0.5 mL·min⁻¹,

detection at 254 nm), $t_{\text{major}} = 40.1 \text{ min}$, $t_{\text{minor}} = 38.2 \text{ min}$. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. [α]_D²⁵: +58.7 (c 2.35 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H, NH), 7.23 (d, J = 8.8 Hz, 1H, ArH), 7.16 (t, J = 7.4 Hz, 1H, ArH), 7.08 (d, J = 2.4 Hz, 1H, ArH), 6.97–6.94 (m, 2H, ArH), 6.84–6.80 (m, 2H, ArH), 6.35 (d, J = 2.0 Hz, 1H, ArH), 5.18 (t, J = 10.2 Hz, 1H, CH), 5.07 (d, J = 10.8 Hz, 1H, CH), 4.93–4.88 (m, 1H, CH), 4.23 (q, J = 7.2 Hz, 2H, CH₂), 3.62 (s, 3H, OCH₃), 2.85–2.71 (m, 2H, CH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 153.9, 152.6, 131.9, 129.5, 128.4, 125.5, 125.0, 122.1, 121.9, 116.5, 112.3, 111.6, 101.2, 88.2, 73.2, 61.2, 55.6, 40.3, 37.2, 14.1 ppm. IR (KBr): v 3417, 2985, 2938, 1736, 1625,

1584, 1553, 1486, 1456, 1366, 1302, 1280, 1222, 1175, 1055, 1029, 925, 804, 760 cm⁻¹. HRMS (ESI): calcd. for $C_{22}H_{23}N_2O_6$ [M + H]⁺ 411.15506, found: 411.15478.

Ethyl 2-(4-(5-chloro-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3d): Compound 3d (the mixture of the major and minor diastereomer) was obtained according to the general procedure A (40.6 mg, 49% yield). It was analyzed to determine the diastereoselectivity of the

reaction by the ratio of weight (82:18 dr). The enantioselectivity for the major diastereomer (62% ee) was determined by HPLC (Daicel Chiralpak IB column, n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), $t_{\rm major} = 36.5$ min, $t_{\rm minor} = 41.2$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_D^{25}$: +39.9 (c 1.47 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H, NH), 7.29 (d, J = 8.4 Hz, 1H, ArH), 7.22–7.11 (m, 3H, ArH), 6.97 (d, J = 8.4 Hz, 1H, ArH), 6.90–6.82 (m, 3H, ArH), 5.21–5.16 (m, 1H, CH), 5.06 (d, J = 10.4 Hz, 1H, CH), 4.93–4.88 (m, 1H, CH), 4.24 (q, J = 7.2 Hz, 2H, CH₂), 2.87–2.72 (m, 2H, CH₂), 1.31 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 152.6, 135.2, 129.2, 128.7, 125.9, 125.8, 125.6, 123.0, 122.3, 121.3, 118.6, 116.7, 112.7, 111.6, 88.1, 73.2, 61.3, 40.4, 37.2, 14.1 ppm. IR (KBr): ν 3423, 2982, 1729, 1584, 1552, 1484, 1456, 1366, 1279, 1228, 1055, 893, 798, 757 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₀ClN₂O₅ [M + H]⁺ 415.10553, found: 415.10519; calcd. for C₂₁H₂₃ClN₃O₅ [M + NH₄]⁺ 432.13207, found: 432.13171.

Ethyl 2-(4-(1-methyl-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3e) [3]: Compound 3e

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (47.3 mg, 60% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (88:12 dr). The enantioselectivity for major diastereomer (67% ee) was determined by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol 95:5, flow rate 0.5 mL·min⁻¹, detection at 254 nm),

 $t_{\rm major} = 29.3$ min, $t_{\rm minor} = 22.4$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_{\rm D}^{25}$: +69.7 (c 1.56 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 1H, ArH), 7.24–7.14 (m, 2H, ArH), 7.01–6.94 (m, 5H, ArH), 6.82–6.78 (m, 1H, ArH), 5.23–5.17 (m, 1H, CH), 5.07 (d, J = 10.4 Hz, 1H, CH), 4.92–4.86 (m, 1H, CH), 4.22 (q, J = 7.2 Hz, 2H, CH₂), 3.74 (s, 3H, NCH₃), 2.83–2.69 (m, 2H, CH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 152.6, 137.6, 129.5, 128.9, 128.3, 125.5, 122.2, 122.1, 122.0, 119.4, 119.3, 116.5, 110.3, 109.6, 88.4, 73.2, 61.1, 40.3, 37.2, 32.8, 14.1 ppm. IR (KBr): ν 3059, 2982, 2936, 1740, 1584, 1552, 1485, 1456, 1369, 1332, 1281, 1231, 1212, 1187, 1054, 921, 760, 742 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₂₃N₂O₅ [M + H]⁺ 395.16015, found: 395.15976; calcd. for C₂₂H₂₂N₂NaO₅ [M + Na]⁺ 417.14209, found: 417.14127. The preparation of chiral **3e** with a different configuration was reported in the literature [^{3]}, [α]_D²² –66.63 (c 1.00, CHCl₃), 83% ee (>95:5 dr).

Ethyl 2-(6-chloro-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3f): Compound 3f (the

mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (53.8 mg, 65% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (95:5 dr, 91% ee for the major diastereomer) by HPLC (Daicel Chiralpak IA column, *n*-hexane/2-propanol 90:10, flow rate 0.5

mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 32.7 \text{ min}$, $t_{\text{minor}} = 28.4 \text{ min}$; minor diastereomer: $t_{\text{major}} = 22.9 \text{ min}$, $t_{\text{minor}} = 20.5 \text{ min}$. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_D^{25}$: +12.6 (c 2.34 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H, NH), 7.36 (d, J = 8.4 Hz, 1H, ArH), 7.20–7.11 (m, 3H, ArH), 6.99 (d, J = 4.0 Hz, 2H, ArH), 6.90 (d, J = 8.0 Hz, 2H, ArH), 5.24 (t, J = 10.2 Hz, 1H, CH), 5.04 (d, J = 10.4 Hz, 1H, CH), 4.91–4.86 (m, 1H, CH), 4.22 (q, J = 7.2 Hz, 2H, CH₂), 2.84–2.71 (m, 2H, CH₂), 1.28 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 151.2, 136.8, 128.9, 128.6, 127.1, 124.6, 124.5, 123.8, 122.6, 120.1, 118.9, 118.0, 111.7, 111.0, 87.6, 73.3, 61.3, 40.2, 37.0, 14.1 ppm. IR (KBr): ν 3417, 3060, 2983, 1736, 1554, 1479, 1458, 1365, 1263, 1228, 1186, 1096, 1147, 898, 823, 744 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₀ClN₂O₅ [M + H]⁺ 415.10553, found: 415.10520; calcd. for C₂₁H₂₃ClN₃O₅ [M + NH₄]⁺ 432.13207, found: 432.13170.

Ethyl 2-(6-bromo-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3g): Compound 3g

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (60.9 mg, 66% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (93:7 dr, 87% ee for the major diastereomer) by HPLC (Daicel Chiralpak IB column, *n*-hexane/2-propanol 90:10, flow rate

0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 35.7$ min, $t_{\text{minor}} = 38.8$ min; minor diastereomer: $t_{\text{major}} = 32.5$ min, $t_{\text{minor}} = 25.4$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow solid; mp 156–159 °C. [α]_D²⁵: +6.3 (c 1.88 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H, NH), 7.37 (d, J = 8.4 Hz, 1H, ArH), 7.28–7.25 (m, 1H, ArH), 7.21–7.17 (m, 1H, ArH), 7.13 (d, J = 2.4 Hz, 1H, ArH), 7.06–7.00 (m, 3H, ArH), 6.85 (d, J = 8.8 Hz, 1H, ArH), 5.23 (t, J = 10.2 Hz, 1H, CH), 5.05 (d, J = 10.8 Hz, 1H, CH), 4.91–4.86 (m, 1H, CH), 4.22 (q, J = 7.0 Hz, 2H, CH₂), 2.83–2.70 (m, 2H, CH₂), 1.28 (t, J = 7.0 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 151.8, 136.8, 131.8, 131.5, 124.6, 124.5, 124.3, 122.6, 120.2, 118.9, 118.5, 114.5, 111.7, 111.1, 87.6, 73.4, 61.3, 40.1, 37.0, 14.1 ppm. IR (KBr): v 3418, 2982, 1736, 1553, 1476, 1458, 1365, 1265, 1229, 1184, 1047, 820, 744 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₀BrN₂O₅ [M + H]⁺ 459.05501, found: 459.05524; calcd. for C₂₁H₁₉BrN₂NaO₅ [M + Na]⁺ 481.03696, found: 481.03643.

Ethyl 2-(4-(1H-indol-3-yl)-3,6-dinitro-2H-chroman-2-yl)acetate (3h): Compound 3h (the

NH O₂N NO₂ CO₂Et

mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (47.8 mg, 56% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (85:15 dr). The enantioselectivity for major diastereomer (80% ee) was determined by HPLC (Daicel Chiralpak AD-H column,

n-hexane/2-propanol 80:20, flow rate 1.0 mL·min⁻¹, detection at 254 nm), $t_{\rm major} = 31.1$ min, $t_{\rm minor} = 28.2$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. [α]_D²⁵: -11.3 (c 1.04 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H, NH), 8.07 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H, ArH), 7.86 (d, J = 2.4 Hz, 1H, ArH), 7.39 (d, J = 8.0 Hz, 1H, ArH), 7.20–7.16 (m, 2H, ArH), 7.07 (d, J = 9.2 Hz, 1H, ArH), 6.98 (t, J = 7.6 Hz, 1H, ArH), 6.91 (d, J = 8.0 Hz, 1H, ArH), 5.32 (t, J = 10.0 Hz, 1H, CH), 5.12 (d, J = 10.4 Hz, 1H, CH), 5.04–4.99 (m, 1H, CH), 4.23 (q, J = 7.2 Hz, 2H, CH₂), 2.89–2.77 (m, 2H, CH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 157.5, 142.6, 137.0, 125.8, 124.9, 124.4, 124.2, 123.2, 122.8, 120.3, 118.5, 117.5, 112.0, 109.9, 86.7, 73.9, 61.4, 40.2, 36.7, 14.1 ppm. IR (KBr): v 3417, 3062, 2983, 2928, 1733, 1586, 1556, 1521, 1481, 1459, 1342, 1258, 1208, 1095, 1042, 911, 842, 747 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₀N₃O₇ [M + H]⁺ 426.12958, found: 426.12945.

Ethyl 2-(4-(1*H*-indol-3-yl)-8-methoxy-3-nitro-chroman-2-yl)acetate (3i): Compound 3i

NO₂
NO₂
CO₂Et

(the major diastereomer) was obtained according to the general procedure $\bf A$ (9.9 mg, 12% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (minor diastereomer was not detected). Enantioselectivity for the major diastereomer (24% ee) was determined by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol 90:10, flow rate 1.0 mL·min⁻¹, detection at

254 nm), $t_{\text{major}} = 21.6$ min, $t_{\text{minor}} = 18.9$ min; The major diastereomer was purified by flash chromatography and obtained as a white solid; mp 160–162 °C. $[\alpha]_{\text{D}}^{25}$: +22.0 (c 0.88 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H, NH), 7.35 (d, J = 8.4 Hz, 1H, ArH), 7.17–7.12 (m, 2H, ArH), 6.98–6.93 (m, 2H, ArH), 6.79–6.73 (m, 2H, ArH), 6.56–6.54 (m, 1H, ArH), 5.25 (t, J = 10.0 Hz, 1H, CH), 5.11 (d, J = 10.4 Hz, 1H, CH), 4.94–4.88 (m, 1H, CH), 4.23–4.17 (m, 2H, CH₂), 3.87 (s, 3H, CH₃), 2.91 (dd, J₁ = 7.6 Hz, J₂ = 16.0 Hz, 1H, CH₂), 2.79 (dd, J₁ = 4.0 Hz, J₂ = 16.0 Hz, 1H, CH₂), 1.28 (t, J = 7.0 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 148.1, 142.5, 136.8, 124.9, 124.4, 123.1, 122.5, 121.8, 121.0, 119.9, 119.3, 112.1, 111.6, 110.6, 88.2, 73.4, 61.2, 56.1, 40.4, 37.1, 14.1 ppm. IR (KBr): ν 3414, 2985, 1729, 1587, 1551, 1480, 1459, 1369, 1325, 1267, 1202, 1088, 1078, 767, 741 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₂₃N₂O₆ [M + H]⁺ 411.15506, found: 411.15549; calcd. for C₂₂H₂₆N₃O₆ [M + NH₄] + 428.18161, found: 428.18254.

Ethyl 2-(8-ethoxy--4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3j): Compound 3j (the

NH NO₂ OFt mixture of the major and minor diastereomer) was obtained according to the general procedure **A** (40.3 mg, 47% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (85:15 dr). Enantioselectivity for the major diastereomer (31% ee) was determined by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol 85:15, flow rate 0.5 mL·min⁻¹, detection at 254 nm), $t_{\text{major}} = 22.2$ min,

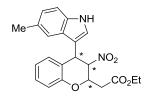
 $t_{\rm minor} = 19.0$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. [α]_D²⁵: +29.3 (c 0.75 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H, NH), 7.34 (d, J = 8.4 Hz, 1H, ArH), 7.17–7.11 (m, 2H, ArH), 6.98–6.92 (m, 2H, ArH), 6.79–6.71 (m, 2H, ArH), 6.55 (d, J = 7.6 Hz, 1H, ArH), 5.20 (t, J = 10.0 Hz, 1H, CH), 5.11 (d, J = 10.4 Hz, 1H, CH), 4.94–4.88 (m, 1H, CH), 4.21 (q, J = 7.2 Hz, 2H, CH₂), 4.07 (q, J =

7.0 Hz, 2H, CH₂), 2.91 (dd, J_1 = 8.4 Hz, J_2 = 16.0 Hz, 1H, CH₂), 2.76 (dd, J_1 = 3.6 Hz, J_2 = 15.6 Hz, 1H, CH₂), 1.44 (t, J = 7.0 Hz, 3H, CH₃), 1.30 (t, J = 7.0 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 147.4, 136.8, 124.9, 124.3, 123.2, 122.5, 121.9, 121.2, 119.9, 119.3, 112.5, 112.1, 111.5, 88.5, 73.5, 64.9, 61.2, 40.4, 37.3, 14.9, 14.2 ppm. IR (KBr): ν 3411, 2982, 2935, 1737, 1552, 1472, 1366, 1342, 1266, 1203, 1094, 1065, 767, 744 cm⁻¹. HRMS (ESI): calcd. for C₂₃H₂₅N₂O₆ [M + H]⁺ 425.17071, found: 425.17123; calcd. for C₂₃H₂₈N₃O₆ [M + NH₄]⁺ 442.19726, found: 442.19779.

Ethyl 2-(6,8-dibromo-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3k): Compound 3k (the mixture of the major and minor diastereomer) was obtained according to the general

procedure **A** (23.1 mg, 21% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (72:28 dr, 57% ee for the major diastereomer) by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol 90:10, flow rate 1.0 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 17.6 \text{ min}$, $t_{\text{minor}} = 16.3 \text{ min}$; minor diastereomer: $t_{\text{major}} = 10.0 \text{ min}$, $t_{\text{minor}} = 9.3 \text{ min}$. The major

diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_D^{25}$: +29.3 (c 0.75 g/100 mL, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H, NH), 7.62 (d, J = 2.0 Hz, 1H, ArH), 7.56 (d, J = 8.0 Hz, 1H, ArH), 7.41 (d, J = 8.0 Hz, 1H, ArH), 7.30–7.18 (m, 4H, ArH), 6.61 (d, J = 2.0 Hz, 1H, ArH), 5.16 (t, J = 1.8 Hz, 1H, CH), 5.02 (s, 1H, CH), 4.80–4.77 (m, 1H, CH), 4.17–4.08 (m, 2H, CH₂), 2.97 (dd, J_1 = 8.4 Hz, J_2 = 16.8 Hz, 1H, CH₂), 2.75 (dd, J_1 = 5.2 Hz, J_2 = 16.8 Hz, 1H, CH₂), 1.18 (t, J = 7.2 Hz, 3H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 149.4, 136.4, 134.2, 132.0, 125.1, 124.8, 123.9, 123.3, 120.6, 117.5, 116.1, 113.9, 111.9, 111.8, 84.0, 69.1, 61.3, 36.6, 36.3, 14.0 ppm. IR (KBr): ν 3415, 3063, 2982, 2930, 1733, 1552, 1455, 1366, 1316, 1286, 1244, 1191, 1097, 1026, 921, 864, 745 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₉Br₂N₂O₅ [M + H]⁺ 536.96552, found: 536.96564; calcd. for C₂₁H₂₂ Br₂N₃O₅ [M + NH₄]⁺ 553.99207, found: 553.99228.


General procedure (B) for the catalytic asymmetric tandem Friedel–Crafts alkylation/Michael addition reaction of indoles with nitroolefin enoates: To a dried Schlenk tube were added Zn(OTf)₂ (7.3 mg, 0.02 mmol), ligand I (12.2 mg, 0.02 mmol) under argon followed by addition of the toluene (3 mL). The solution was stirred at room temperature for 0.5 h and then nitroolefin enoate 1 (0.2 mmol) was added. The mixture was stirred for 10 min then the indole 2 (0.3 mmol) was added. After stirring for 72 h at -10 °C, Et₃N (100 mg, 1 mmol) was added and stirred for another 24 h at room remperature. The solvent was removed under vacuum. Purification by column chromatography afforded the desired product 3.

Ethyl 2-(4-(1H-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3a): Compound 3a (the mixture

of the major and minor diastereomer) was obtained according to the general procedure $\bf B$ (67.2 mg, 88% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (92:8 dr, 92% ee for the major diastereomer and 88% ee for the minor diastereomer) by HPLC (Daicel Chiralpak IA column,

n-hexane/2-propanol 85:15, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 19.8 \text{ min}$, $t_{\text{minor}} = 18.9 \text{ min}$; minor diastereomer: $t_{\text{major}} = 16.9 \text{ min}$, $t_{\text{minor}} = 14.4 \text{ min}$. $[\alpha]_D^{25} = +90.1$ (c = 3.02 g/100 mL, CH_2Cl_2).

Ethyl 2-(4-(5-methyl-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3b): Compound 3b

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (69.1 mg, 88% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (44:56 dr). Enantioselectivity for major diastereomer (98% ee) and minor diastereomer (62% ee) were determined by HPLC

separately (Daicel Chiralpak IA column, n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm and IB column, n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\rm major} = 23.3$ min, $t_{\rm minor} = 19.0$ min; minor diastereomer: $t_{\rm major} = 28.0$ min, $t_{\rm minor} = 30.7$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_{\rm D}^{25}$ (major diastereomer): -2.8 (c 2.17 g/100 mL, CH₂Cl₂), $[\alpha]_{\rm D}^{25}$ (minor diastereomer): +29.9 (c 1.78 g/100 mL, CH₂Cl₂).

Ethyl 2-(4-(5-methoxy-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3c): Compound 3c

(the mixture of the major and minor diastereomer) was obtained according to the general procedure $\bf B$ (78.8 mg, 96% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (28:72 dr). Enantioselectivity for the major diastereomer (99% ee) and the minor diastereomer (73% ee) were determined by HPLC separately (Daicel Chiralpak IB column,

n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm and IA column, n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\rm major} = 34.8$ min, $t_{\rm minor} = 33.2$ min; minor diastereomer: $t_{\rm major} = 42.9$ min, $t_{\rm minor} = 40.8$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. [α]_D²⁵(major diastereomer): -3.15 (c 2.67 g/100 mL, CH₂Cl₂), [α]_D²⁵(minor diastereomer): +34.8 (c 1.36 g/100 mL, CH₂Cl₂).

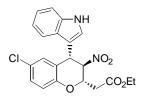
Ethyl 2-(4-(5-chloro-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3d): Compound 3d (the

CI—NH
NO₂
O CO₂Et

mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (47.8 mg, 58% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (76:24 dr, 82% ee for the major diastereomer and 53% ee for the minor diastereomer) by HPLC (Daicel Chiralpak IB column,

n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer:

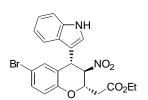
 $t_{\text{major}} = 36.4 \text{ min}, t_{\text{minor}} = 41.2 \text{ min};$ minor diastereomer: $t_{\text{major}} = 28.6 \text{ min}, t_{\text{minor}} = 27.1 \text{ min}.$ The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_D^{25}$ (major diastereomer): +17.6 (c 1.67 g/100 mL, CH_2CI_2).


Ethyl 2-(4-(1-methyl-1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3e): Compound 3e (the

NO₂
NO₂
CO₂Et

mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (70.1 mg, 89% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (82:18 dr). Enantioselectivity for major diastereomer (65% ee) and minor diastereomer (79% ee) were determined by HPLC separately (Daicel Chiralpak IA column, n-hexane/2-propanol = 95:5, flow rate

0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 29.0 \text{ min}$, $t_{\text{minor}} = 22.1 \text{ min}$; minor diastereomer: $t_{\text{major}} = 23.7 \text{ min}$, $t_{\text{minor}} = 21.4 \text{ min}$. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. [α]_D²⁵(major diastereomer): +53.0 (c 2.81 g/100 mL, CH₂Cl₂), [α]_D²⁵(minor diastereomer): -15.1 (c 1.07 g/100 mL, CH₂Cl₂).


Ethyl 2-(6-chloro-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3f): Compound 3f (the

mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (71.4 mg, 86% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (74:26 dr, 95% ee for the major diastereomer, 95% ee for the minor diastereomer) by HPLC (Daicel Chiralpak IA column,

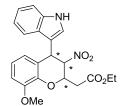
n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\rm major} = 32.2$ min, $t_{\rm minor} = 28.5$ min; minor diastereomer: $t_{\rm major} = 22.1$ min, $t_{\rm minor} = 20.1$ min. The major diastereomer was purified by flash chromatography and obtained as a yellow oil. $[\alpha]_{\rm D}^{25}$ (major diastereomer): +10.0 (c 2.07 g/100 mL, CH₂Cl₂).

Ethyl 2-(6-bromo-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3g): Compound 3g (the

mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (91.8 mg, 100% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (60:40 dr, 91% ee for the major diastereomer, 93% ee for the minor diastereomer) by HPLC (Daicel Chiralpak IB column,

n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 37.9 \text{ min}$, $t_{\text{minor}} = 41.6 \text{ min}$; minor diastereomer: $t_{\text{major}} = 34.0 \text{ min}$, $t_{\text{minor}} = 26.6 \text{ min}$. [α]_D²⁵(major diastereomer): +7.4 (c 2.74 g/100 mL, CH₂Cl₂).

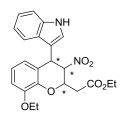
Ethyl 2-(4-(1*H*-indol-3-yl)-3,6-dinitro-chroman-2-yl)acetate (3h): Compound 3h (the


 $\begin{array}{c|c} & & \text{NH} \\ & & \text{NO}_2 \\ & & \text{CO}_2 \text{Et} \end{array}$

mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (76.1 mg, 89% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (49:51 dr, 95% ee for both diastereomers) by HPLC (Daicel Chiralpak IA + AD-H column, n-hexane/2-propanol 80:20, flow rate

1.0 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 18.4 \text{ min}$, $t_{\text{minor}} = 22.3 \text{ min}$;

minor diastereomer: $t_{\text{major}} = 28.5 \text{ min}$, $t_{\text{minor}} = 26.5 \text{ min}$. Both diastereomers were purified by flash chromatography and obtained as yellow oils. [α]_D²⁵(major diastereomer): -160.0 (c 1.32 g/100 mL, CH₂Cl₂).


Ethyl 2-(4-(1*H*-indol-3-yl)-8-methoxy-3-nitro-chroman-2-yl)acetate (3i): Compound 3i

(the mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (69.6 mg, 85% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (58:42 dr). Enantioselectivity for major diastereomer (39% ee) and minor diastereomer (83% ee) were determined by HPLC separately (Daicel Chiralpak IA column, n-hexane/2-propanol 90:10, flow rate 1.0 mL·min⁻¹,

detection at 254 nm and IA column, n-hexane/2-propanol 95:5, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\rm major} = 23.0$ min, $t_{\rm minor} = 20.2$ min; minor diastereomer: $t_{\rm major} = 79.4$ min, $t_{\rm minor} = 85.7$ min. The major diastereomer was purified by flash chromatography and obtained as a white solid; mp 167–172 °C. The minor diastereomer was purified by flash chromatography and obtained as yellow oil. [α]_D²⁵ (major diastereomer): +39.2 (c 1.55 g/100 mL, CH₂Cl₂), [α]_D²⁵ (minor diastereomer): +28.0 (c 1.27 g/100 mL, CH₂Cl₂).

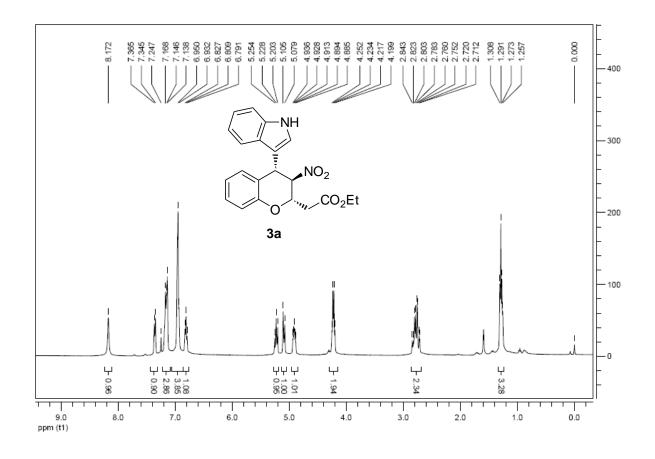
Ethyl 2-(8-ethoxy-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3j): Compound 3j

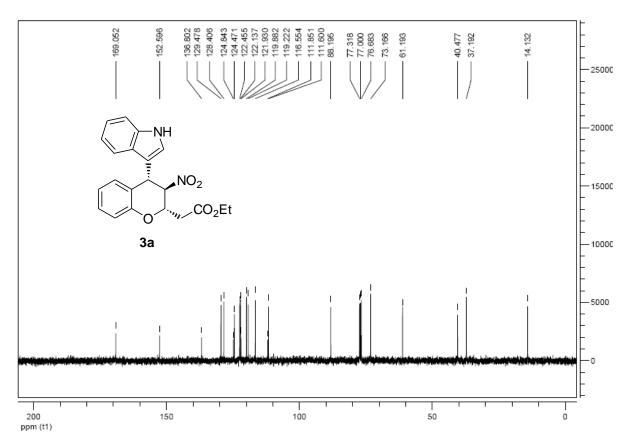
(the mixture of the major and minor diastereomer) was obtained according to the general procedure **B** (79.7 mg, 94% yield). It was analyzed to determine the diastereoselectivity of the reaction by the ratio of weight (54:46 dr). Enantioselectivity for major diastereomer (30% ee) and minor diastereomer (97% ee) were determined by HPLC separately (Daicel Chiralpak IA column, *n*-hexane/2-propanol 85:15, flow rate 0.5 mL·min⁻¹,

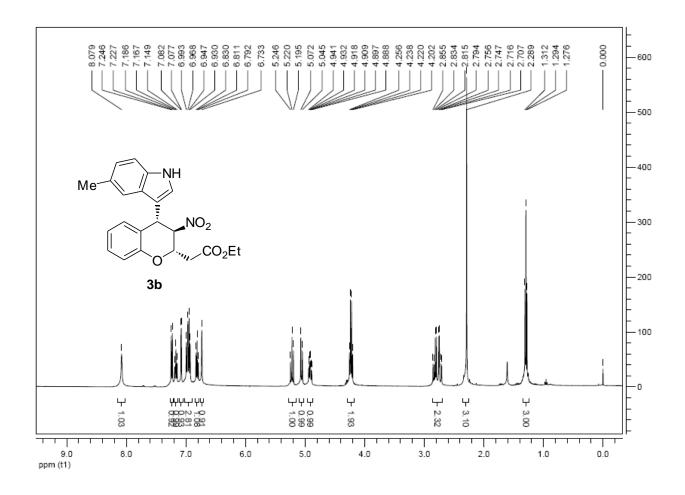
detection at 254 nm and AD-H column, n-hexane/2-propanol 90:10, flow rate 0.5 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\rm major} = 22.5$ min, $t_{\rm minor} = 19.5$ min; minor diastereomer: $t_{\rm major} = 51.5$ min, $t_{\rm minor} = 49.2$ min. Both diastereomers were purified by flash chromatography and obtained as a yellow oil. $\left[\alpha\right]_{\rm D}^{25}$ (major diastereomer): +38.4 (c 1.78 g/100 mL, CH₂Cl₂), $\left[\alpha\right]_{\rm D}^{25}$ (minor diastereomer): +58.0 (c 1.57 g/100 mL, CH₂Cl₂).

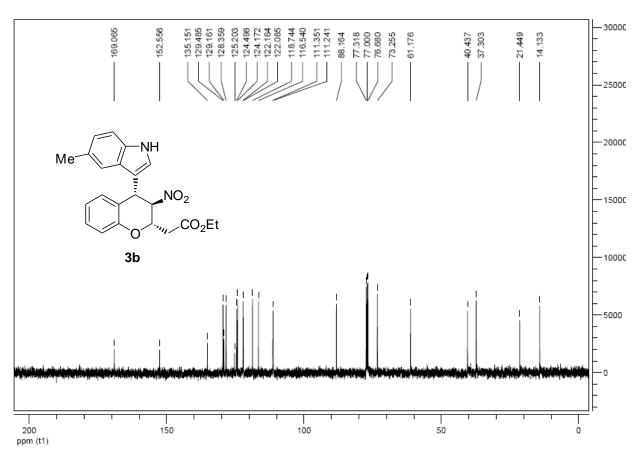
Ethyl 2-(6,8-dibromo-4-(1*H*-indol-3-yl)-3-nitro-chroman-2-yl)acetate (3k): Compound 3k (the mixture of the major and minor diastereomer) was obtained according to general

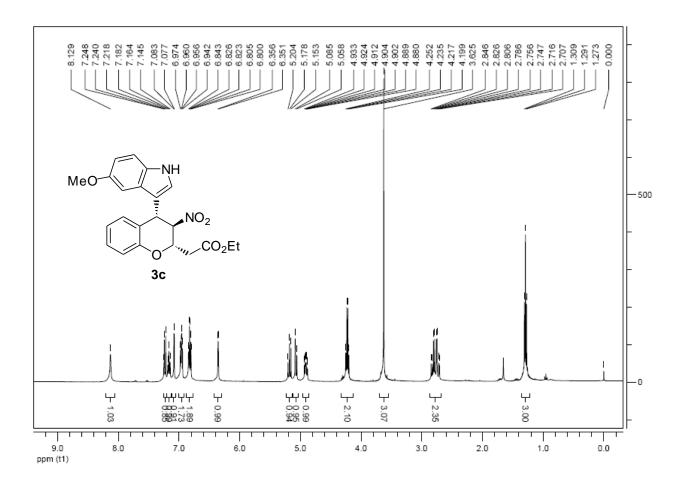
$$Br$$
 $*$
 NO_2
 $*$
 CO_2Et

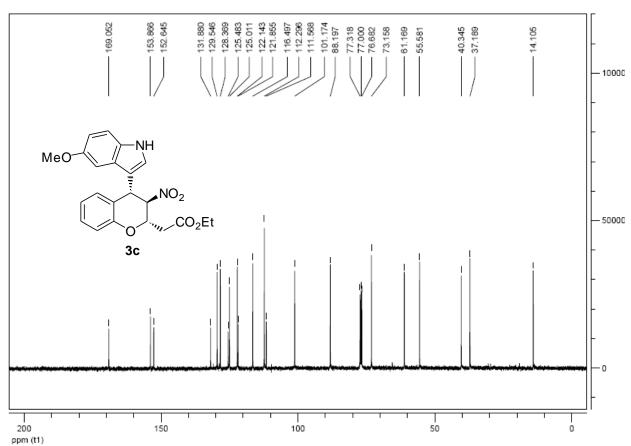

procedure **B** (81.2 mg, 75% yield). It was analyzed to determine the diastereoselectivity and enantioselectivity of the reaction (38:62 dr, 90% ee for the major diastereomer, 53% ee for the minor diastereomer) by HPLC (Daicel Chiralpak IA column, n-hexane/2-propanol 90:10, flow rate 1.0 mL·min⁻¹, detection at 254 nm), major diastereomer: $t_{\text{major}} = 9.8 \text{ min}$, $t_{\text{minor}} = 9.2 \text{ min}$; minor diastereomer: $t_{\text{major}} = 17.5 \text{ min}$, t_{minor}

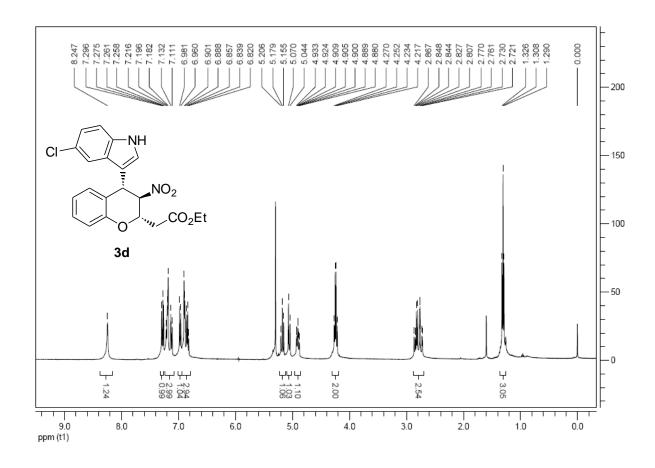

= 16.3 min. The major diastereomer was purified by flash chromatography and obtained as a white solid; mp 189–191 °C. The minor diastereomer was purified by flash chromatography and obtained as a white solid, mp 91–95 °C. $[\alpha]_D^{25}$ (major diastereomer): +41.0 (c 1.46 g/100 mL, CH₂Cl₂), $[\alpha]_D^{25}$ (minor diastereomer): +39.2 (c 0.97 g/100 mL, CH₂Cl₂).

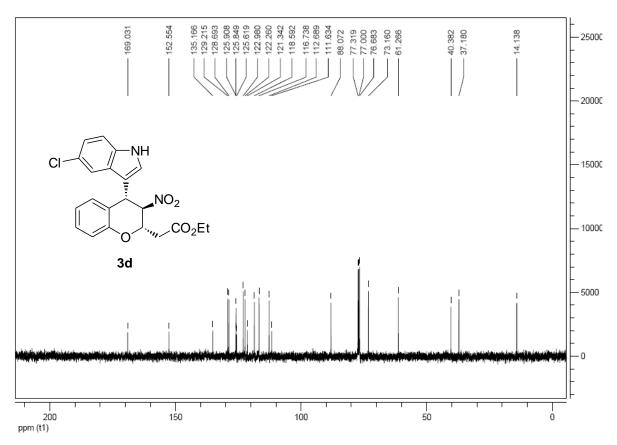

References:

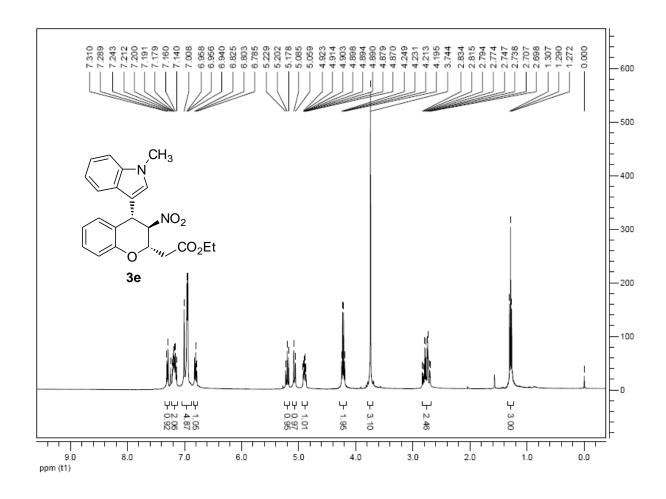

- 1. (a) Liu, H.; Xu, J.-X.; Du, D. M. *Org. Lett.* **2007**, *9*, 4725. (b) Lu, S. F.; Du, D. M.; Zghang, S.-W.; Xu, J. *Tetrahedron: Asymmetry* **2004**, *15* (21), 3433.
- 2. (a) Ciganek, E. *Synthesis* **1995**, 1311. (b) Lu, L.-Q.; Li, F.; An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao, W.-J. *Angew. Chem., Int. Ed.* **2009**, *48*, 9542.
- 3. Li, C.; Liu, F.-L.; Zou, Y.-Q.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. *Synthesis* **2013**, *45*, 601–608 (See for a similar preparation of a stereoisomer of **3e**.)

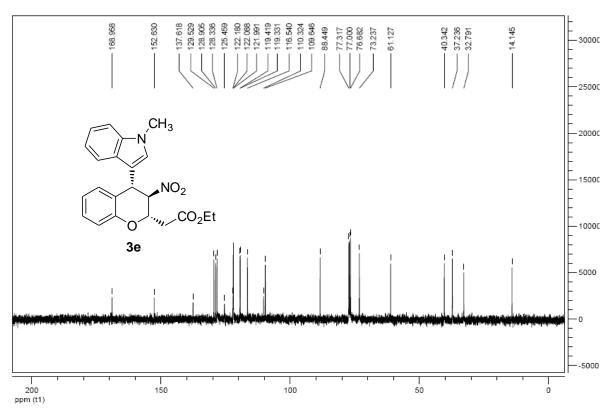

Copies of ¹H and ¹³C NMR spectra of new compounds

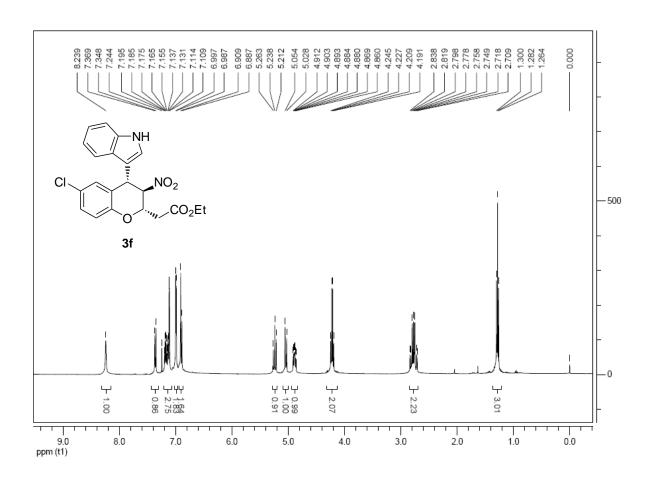


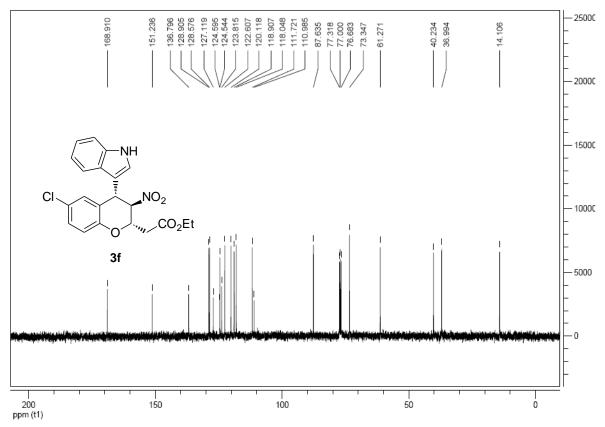


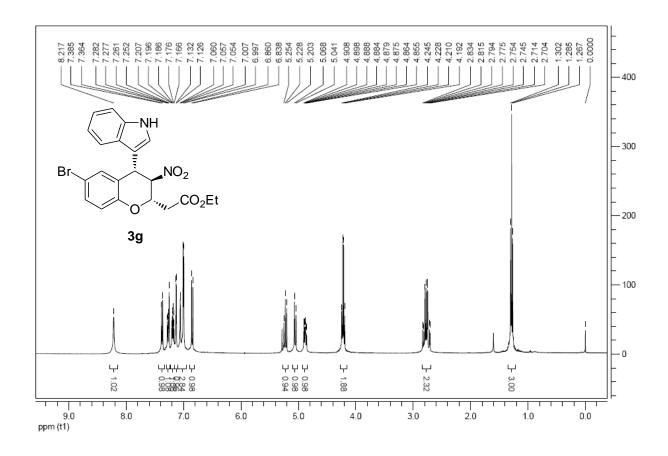


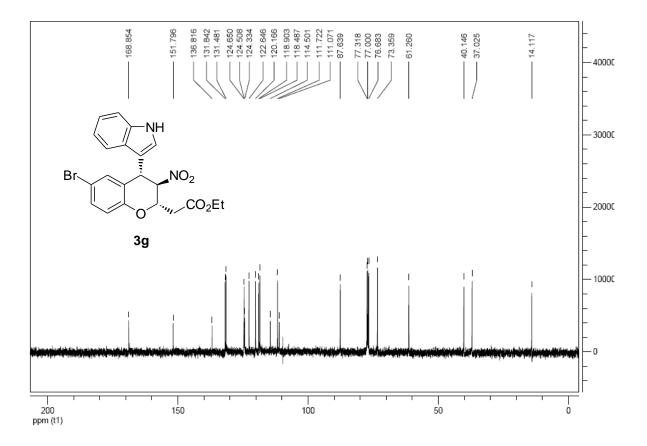


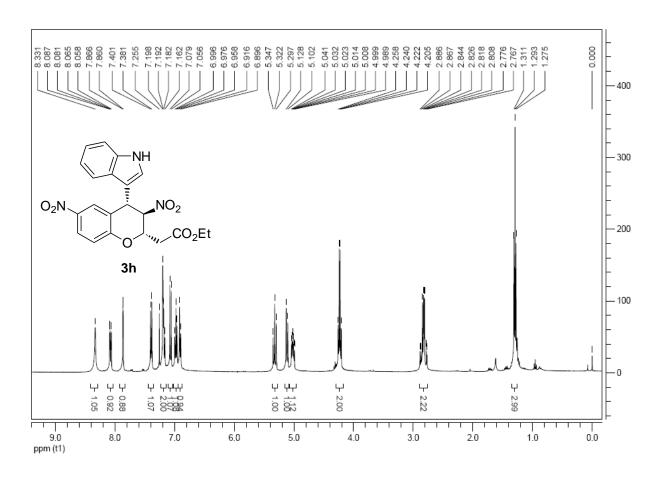


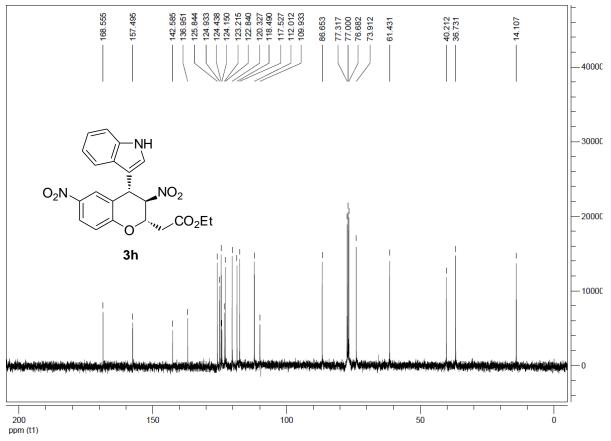


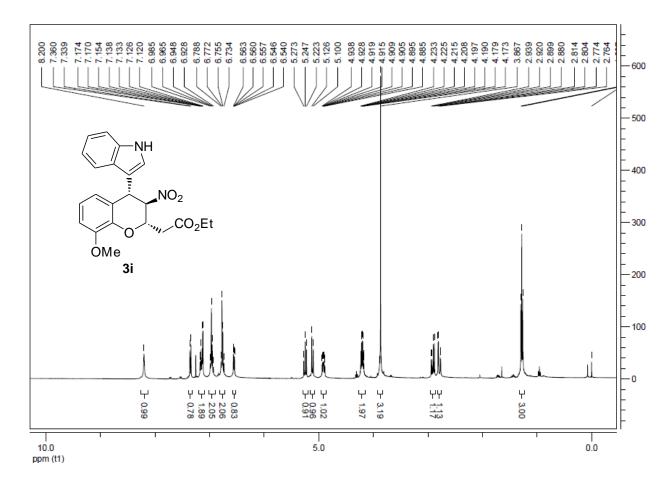


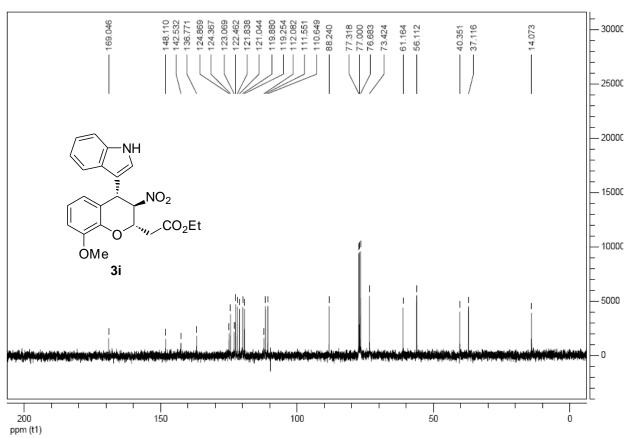


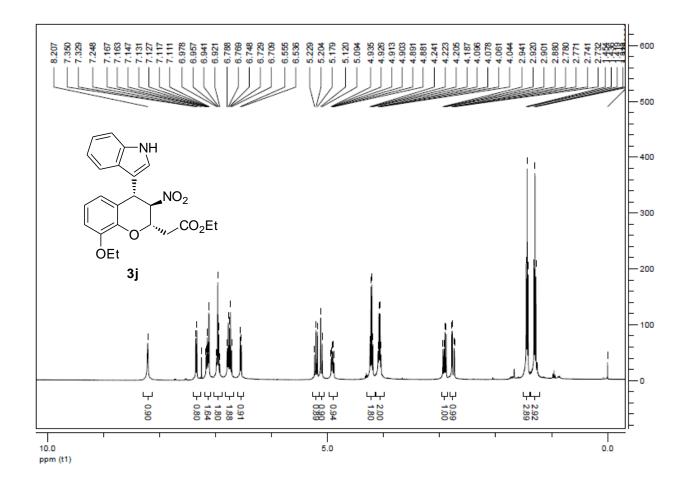


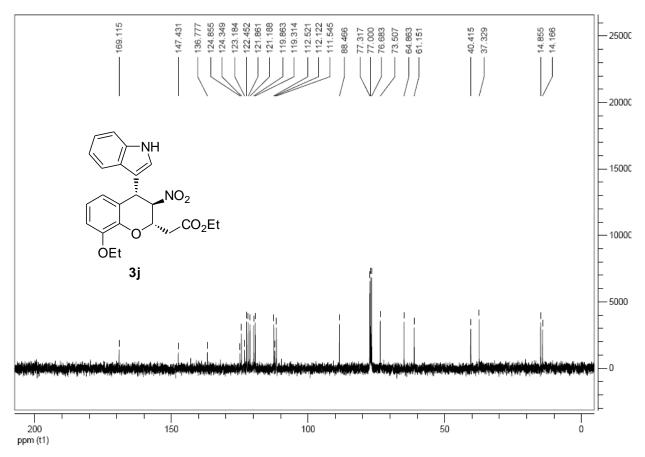


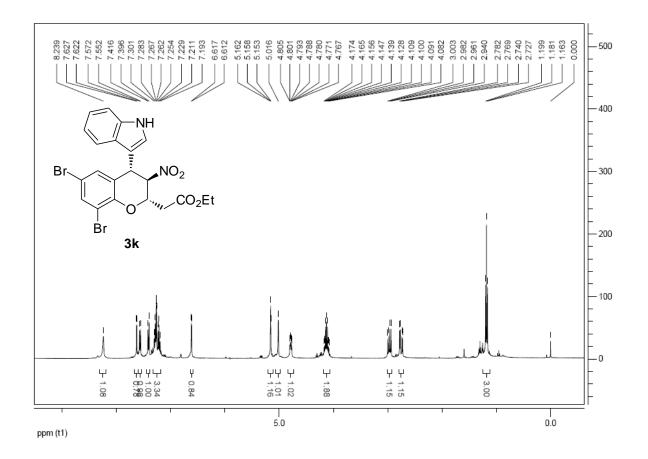


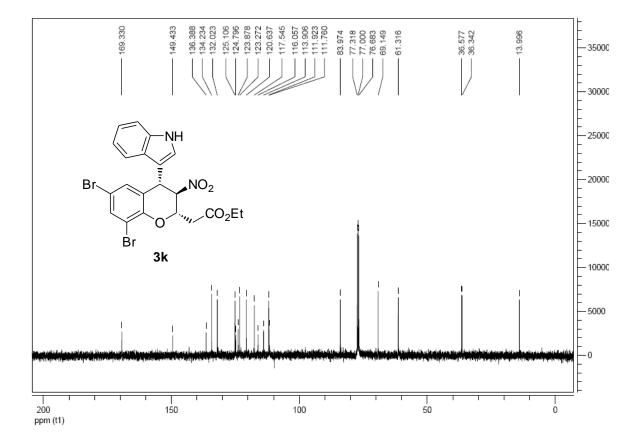


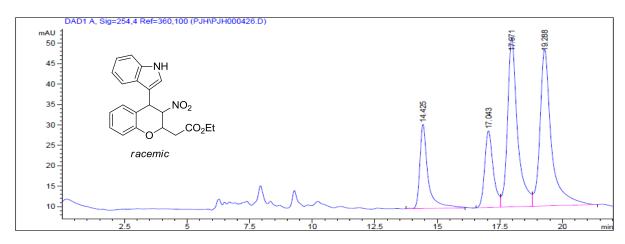


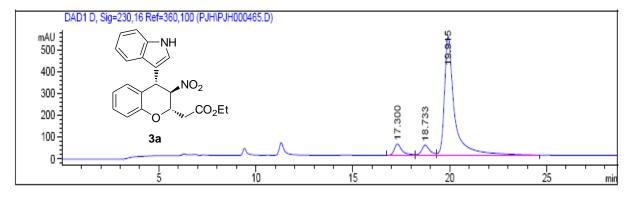




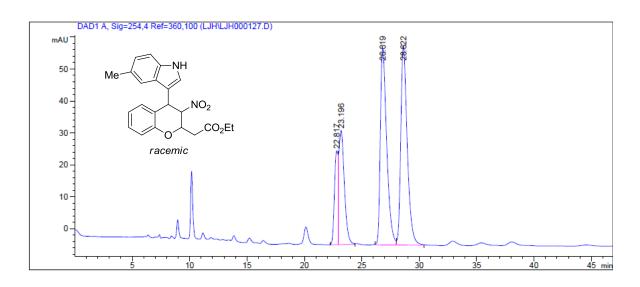


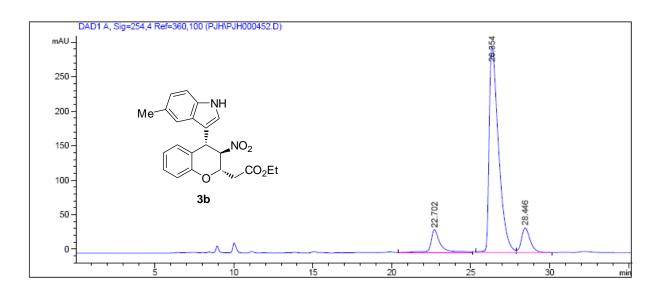


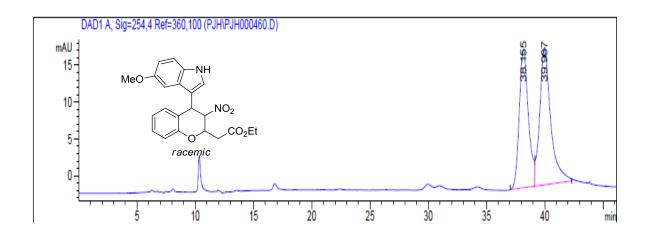


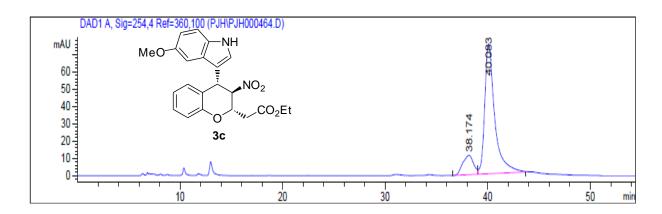

Copies of HPLC chromatograms of Friedel–Crafts alkylation products 3 HPLC for general procedure A:

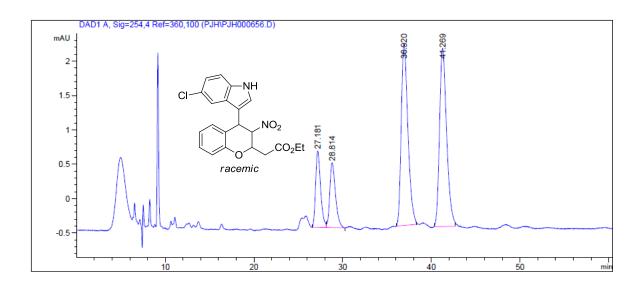
$$R^{2} \xrightarrow{NO_{2}} + R^{4} \xrightarrow{10 \text{ mol-}\% \text{ Ligand I} \atop 10 \text{ mol-}\% \text{ Zn(OTf)}_{2}} \times R^{2} \xrightarrow{*} NO_{2} \times CO_{2}\text{Et}$$

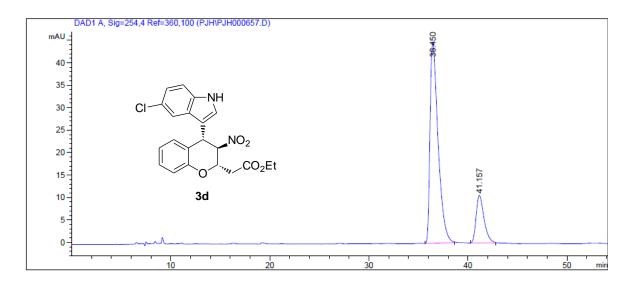

$$1 \qquad 2 \qquad \qquad 1 \qquad \qquad 2 \qquad \qquad 3$$

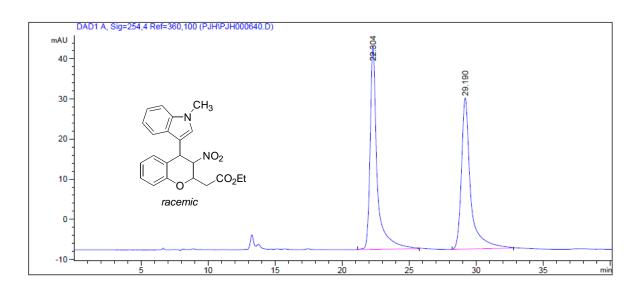

Peak	RetTim	e Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-						
1	14.425	BB	0.3348	470.94208	20.59301	14.3463
2	17.043	BV	0.3578	446.39096	18.74902	13.5984
3	17.971	$\nabla\nabla$	0.4082	1147.83350	41.30601	34.9664
4	19.288	VB	0.4621	1217.51172	38.37741	37.0890

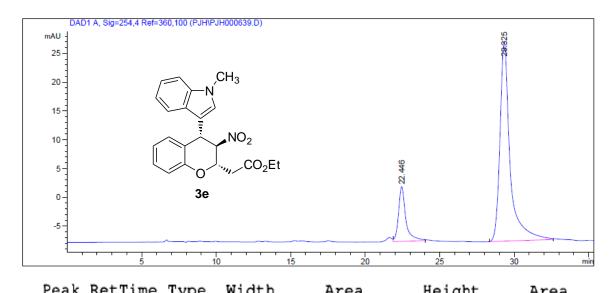

Peak	RetTime	e Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
-		-					
1	17.300	BB	0.3808	204.86740	8.05411	4.2582	
2	18.733	BV	0.3891	261.34995	10.26371	5.4322	
3	19.915	VB	0.4789	4344.92334	132.39555	90.3096	

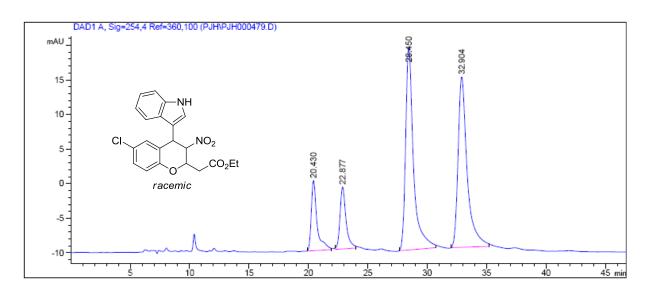

Peak	RetTime	Type	Width	Area	Height	Area
			-	[mAU*s]		8
_						
1	22.817	BV	0.3231	613.68274	29.45423	9.2343
2	23.196	VB	0.4966	1215.54846	35.75359	18.2908
3	26.819	BV	0.5863	2375.89819	61.55963	35.7511
4	28.622	VB	0.5921	2440.53882	62.42520	36.7238

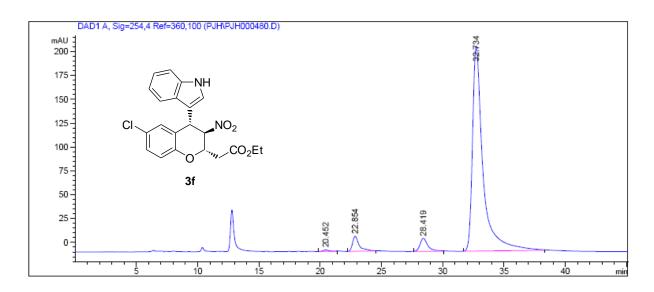

Peak	RetTime	Type	Width	Area	Height	Area
				[mAU*s]		
1	22.702	VB	0.6327	1497.18750	33.29017	9.8494
2	26.354	BV	0.6173	1.23321e4	298.94305	81.1276
3	28.446	VB	0.5839	1371.57043	35.72448	9.0230

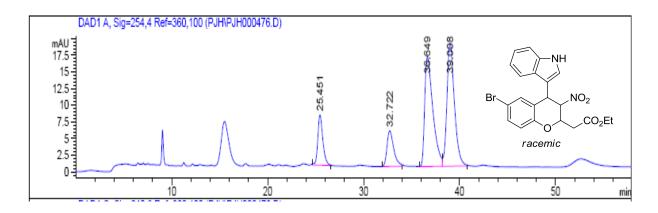

	Peak	RetTime	e Type	Width	Area	Height	Area
						[mAU]	
-						18.77684	
		39.967				18.60975	

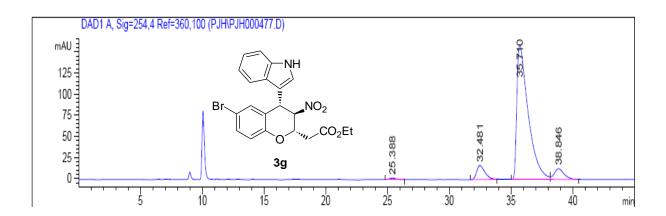

	Peak	RetTime	e Type	Width	Area	Height	Area
		-			-	[mAU]	
-							
	1	38.174	BV	0.9971	821.18170	11.23021	13.9044
	2	40.083	VB	0.9908	5084.72754	75.01569	86.0956

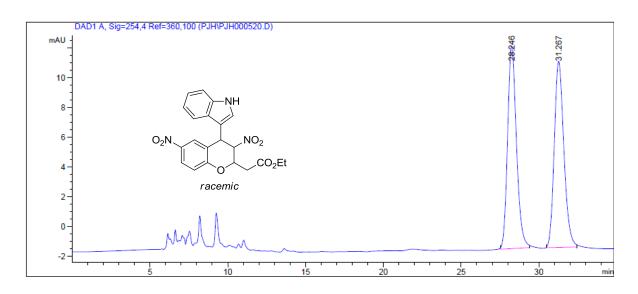

Peak	RetTime	Type	Width	Area	Height	Area
	-		-	-	[mAU]	
1	27.181	BV	0.5521	43.28242	1.10725	11.7468
2	28.814	VB	0.5982	42.10659	9.40729e-1	11.4277
3	36.920	BB	0.7853	138.91309	2.64237	37.7009
4	41.269	BB	0.8198	144.15857	2.59607	39.1245

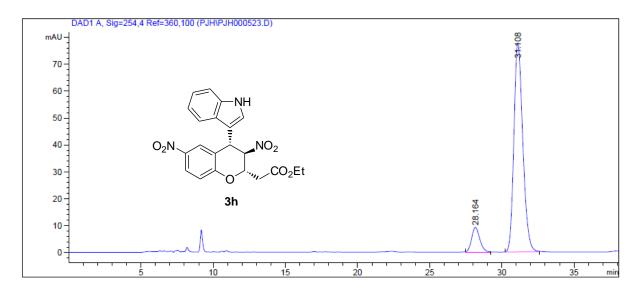

Peak	RetTime	Type	Width	Area	Height	Area
				[mAU*s]		
1	36.450	BB	0.8414	2522.50000	44.76487	81.0962
2	41.157	BB	0.8193	588.00244	10.59714	18.9038

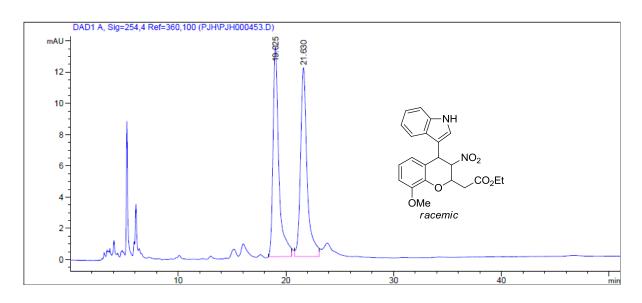

Peak	RetTime	Type	Width	Area	Height	Area	
				[mAU*s]			
				1856.25916			
	29.190			1799.64893			

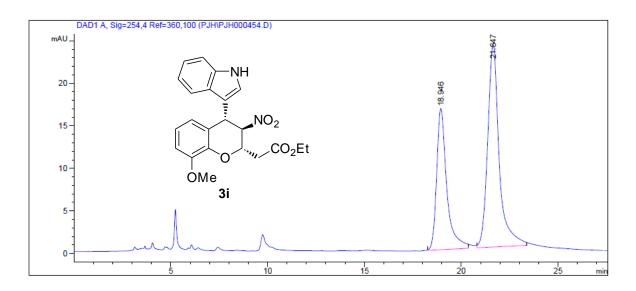

reak	RetTime	туре	wiath	Area	Height	Area
				[mAU*s]		
1	22.446	VB	0.4973	323.63562	9.50392	16.5062
2	29.325	BB	0.6878	1637.05017	34.61126	83.4938

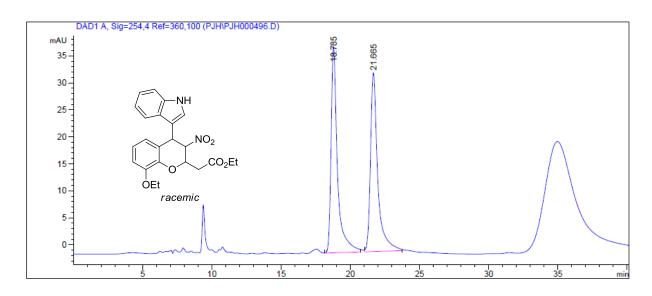

Peak	RetTime	Type	Width	Area	Height	Area	
			-	[mAU*s]			
	20.430			343.98013			
2	22.877	BB	0.5273	315.23315	8.94243	9.4860	
3	28.450	BB	0.6762	1349.34094	29.35835	40.6043	
4	32.904	BB	0.7865	1314.59058	24.63610	39.5586	

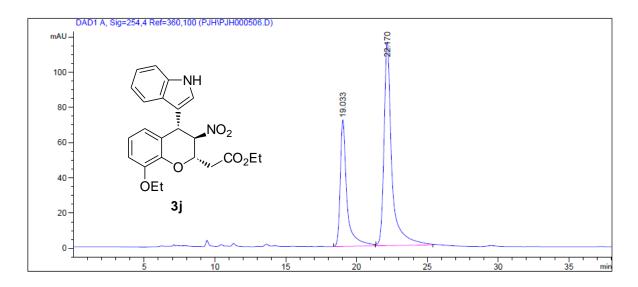

Peak	RetTime	Type	Width	Area	Height	Area
			-	[mAU*s]		
-		-				
1	20.452	BB	0.5064	53.41059	1.58008	0.3784
2	22.854	BB	0.5630	609.21869	15.75852	4.3156
3	28.419	BB	0.6640	610.86908	13.70481	4.3273
4	32.734	BB	0.8688	1.28432e4	215.03745	90.9788

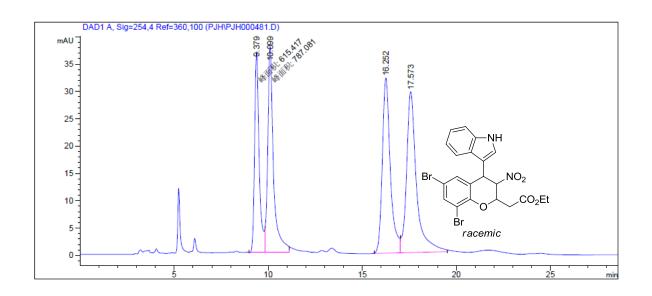

Peak	RetTime	Type	Width	Area	Height	Area	
				[mAU*s]			
	25.451			276.43765			
2	32.722	BB	0.7307	259.29739	5.33794	10.2831	
3	36.649	BV	0.8989	979.20367	16.43908	38.8328	
4	39.008	VB	0.8221	1006.64923	18.52100	39.9212	

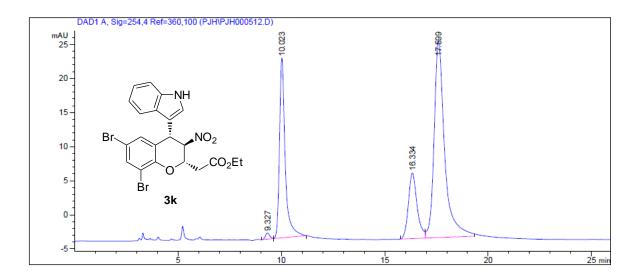

Peak	RetTime	Type	Width	Area	Height	Area
	-			-	[mAU]	
		-				
1	25.388	BB	0.5063	63.38261	1.76761	0.5450
2	32.481	BB	0.7015	764.64581	16.47381	6.5744
3	35.710	BV	0.9203	1.01006e4	158.32646	86.8442
4	38.846	VB	0.8342	702.08453	12.59846	6.0365


Pea	ak RetTime	Type	Width	Area	Height	Area	
					[mAU]		
	-						
	1 28.246	BB	0.6059	538.32477	13.59794	50.1577	
	2 31.267	BB	0.6560	534.94037	12.48315	49.8423	

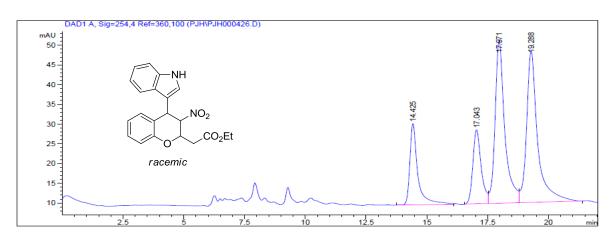

Peak	RetTime	Type	Width	Area	Height	Area
				[mAU*s]		
	-				•	
1	28.164	BB	0.5974	359.86734	9.17875	9.7714
2	31.108	BB	0.6592	3322.99829	77.65696	90.2286


Peak	RetTime	Type	Width	Area	Height	Area
					[mAU]	
1	19.025	BB	0.5542	504.31268	13.42552	49.5421
2	21.630	BB	0.6277	513.63428	12.08769	50.4579

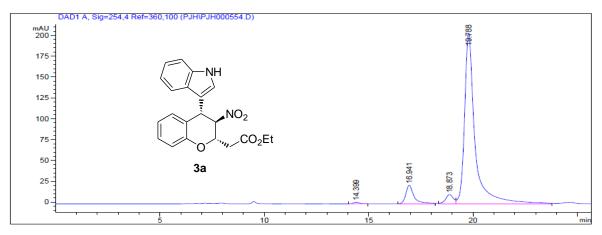

reak	RetTime	Type	Width	Area	Height	Area
					[mAU]	
					16.61307	
2	21.647	BB	0.6132	982.89618	23.82914	62.0186


Pea	k RetTime	Type	Width	Area	Height	Area	
					[mAU]		
				•	38.21683		
2	21.665	BB	0.5338	1211.14795	33.18376	49.6729	

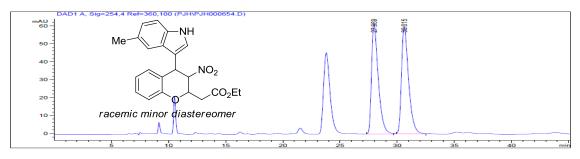
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.033	BB	0.4772	2345.41577	71.77733	34.5454
2	22.170	BB	0.5608	4443.96289	115.52087	65.4546

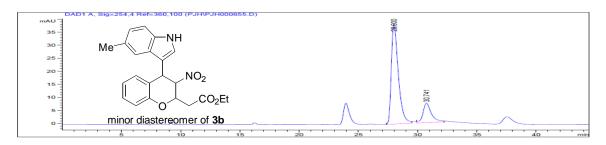


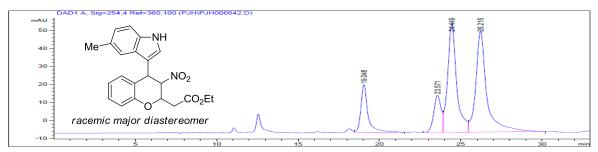
₽€	eak	RetTim	е Туре	Width	Area	Height	Area
#		[min]		[min]	[mAU*s]	[mAU]	8
	- -		-				
:	1	9.379	MM	0.2796	615.41724	36.67808	17.9115
	2	10.099	MM	0.3484	787.08063	37.64749	22.9077
;	3	16.252	BV	0.4450	948.49451	32.07032	27.6056
	4	17.573	VB	0.5379	1084.88025	29.44399	31.5751

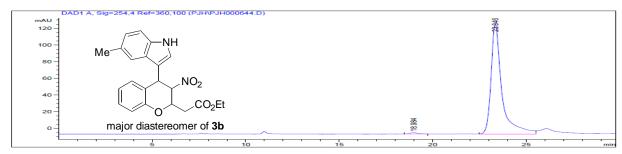


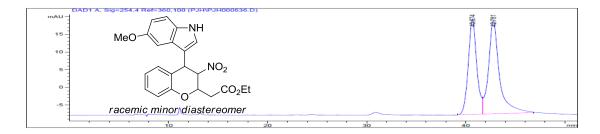
#	[min]	-		[min]	[mAU*s]	Height [mAU]	8	
-			-1					
1	9.327	ΒV	S	0.2200	12.97383	9.01080e-1	0.7131	
2	10.023	VΒ	S	0.2824	503.13354	26.39430	27.6550	
3	16.334	ΒV		0.4416	281.95447	9.62871	15.4978	
4	17.599	VΒ		0.5259	1021.25946	28.78873	56.1341	

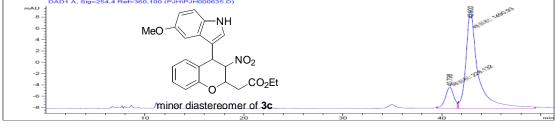

HPLC for general procedure **B**:

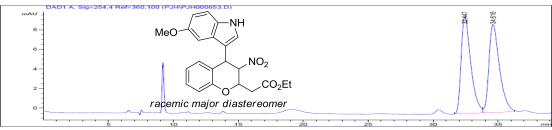

				Area [mAU*s]	Height [mAU]	Area %
		-				
1	14.425	BB	0.3348	470.94208	20.59301	14.3463
2	17.043	BV	0.3578	446.39096	18.74902	13.5984
3	17.971	VV	0.4082	1147.83350	41.30601	34.9664
4	19.288	VB	0.4621	1217.51172	38.37741	37.0890

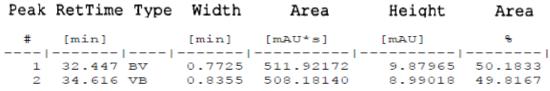

				Area	Height	Area
				[mAU*s]		8
		-				
1	14.399	BB	0.3060	37.47469	1.83684	0.4644
2	16.941	BB	0.4024	612.50964	22.16479	7.5908
3	18.873	BV	0.3882	288.42459	11.06204	3.5744
4	19.788	VB	0.5028	7130.74170	204.49789	88.3704

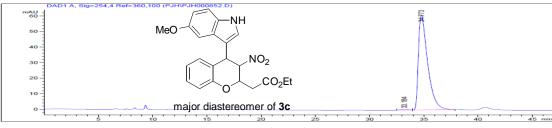

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	27.969	BB	0.6207	2516.91699	61.08672	49.3982	
2	30.615	BB	0.6520	2578.23779	59.68681	50.6018	

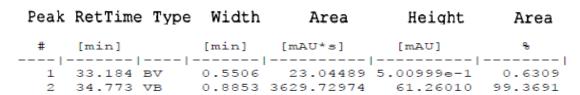

Pea	k RetTim	e Type	Width	Area	Height	Area
				[mAU*s]		
1	28.000 30.741	вв	0.6187	1573.56995 366.76266	38.34930	81.0979

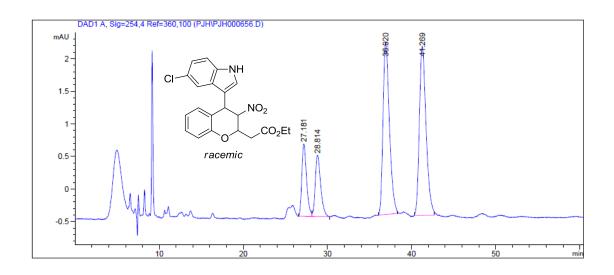

Pe	ak RetTime	Type	Width	Area	Height	Area
			-	-	[mAU]	
		-				
1	19.048	VB	0.4509	825.65344	26.54324	12.7752
2	23.571	vv	0.4725	640.87122	20.51011	9.9161
3	24.449	VV	0.5700	2344.78638	60.26061	36.2806
4	26.216	VB	0.6755	2651.61792	56.09292	41.0281

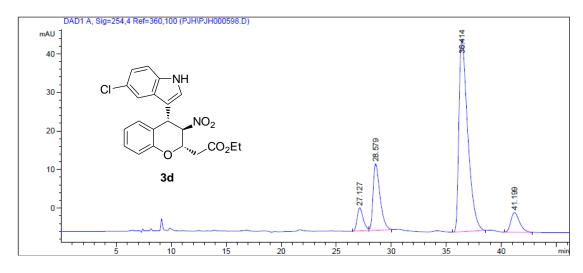

Pe	eak RetTim	e Type	Width	Area	Height	Area	
-				[mAU*s]			
	- -	-					
1	18.984	BB	0.4179	44.85406	1.62584	0.8390	
2	23.346	BV	0.5798	5301.20850	132.19774	99.1610	

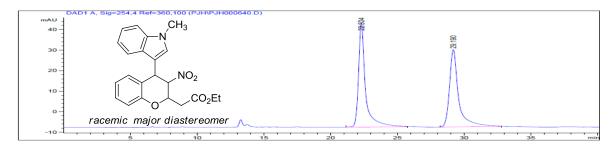


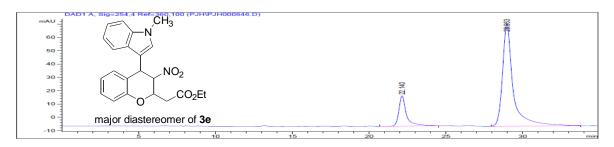


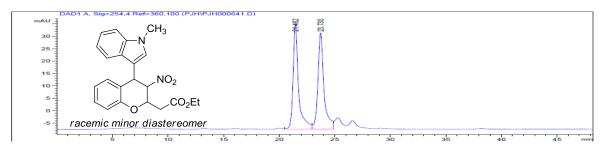


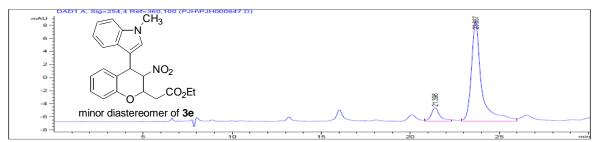


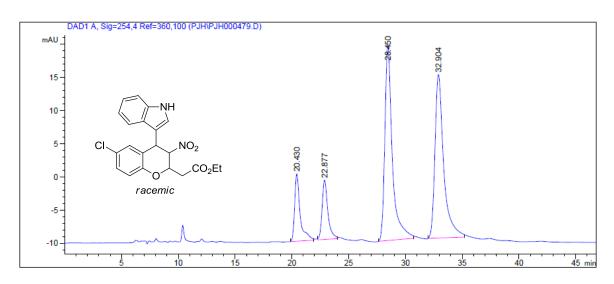


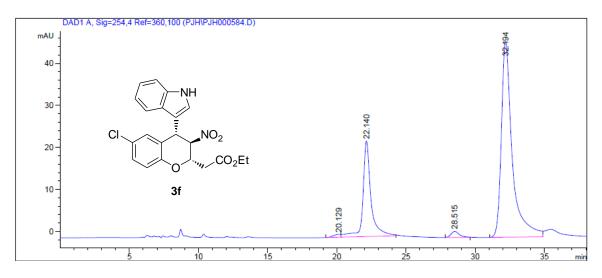


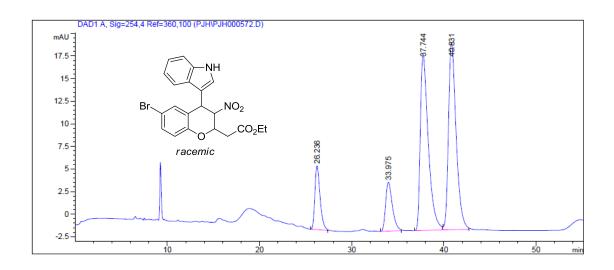

	Pea:	k RetTim	e Type	Width	Area	Height	Area
		-			-	[mAU]	
-			-				
	1	27.181	BV	0.5521	43.28242	1.10725	11.7468
	2	28.814	VB	0.5982	42.10659	9.40729e-1	11.4277
	3	36.920	BB	0.7853	138.91309	2.64237	37.7009
	4	41.269	BB	0.8198	144.15857	2.59607	39.1245

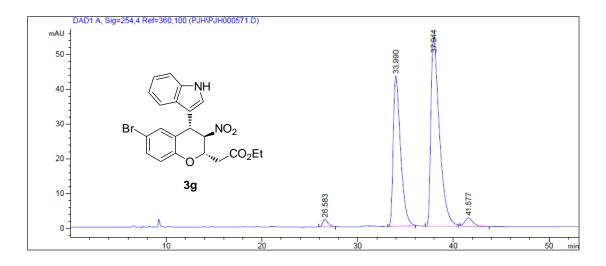

#	‡	[min]		[min]	Area [mAU*s]	Height [mAU]	Area
			_		228.35405		
	2	28.579	VB	0.6583	753.54620	17.22746	18.6176
	3	36.414	BB	0.8476	2783.51733	49.84023	68.7715
	4	41.199	BB	0.8107	282.07034	5.12024	6.9690

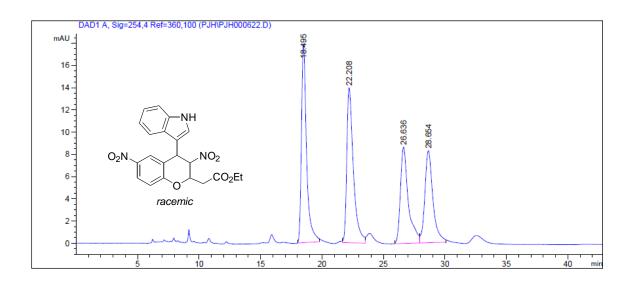

	Peak	RetTime	е Туре	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	8	
_	1-							
	1	22.304	BB	0.5271	1856.25916	50.70624	50.7742	
	2	29.190	BB	0.6971	1799.64893	37.68553	49.2258	

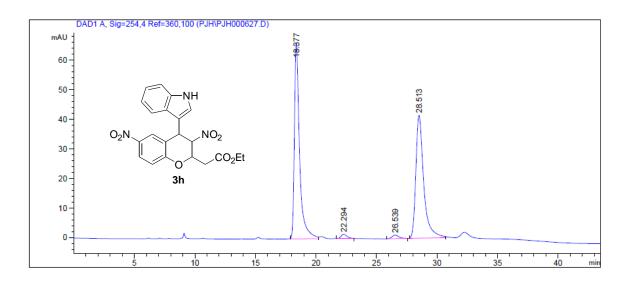

Peak	RetTime	Type	Width	Area	Height	Area
-				[mAU*s]		8
					I	
1	22.140	VB	0.5027	786.53900	22.78428	17.4382
2	28.963	BB	0.7042	3723.89355	76.46532	82.5618

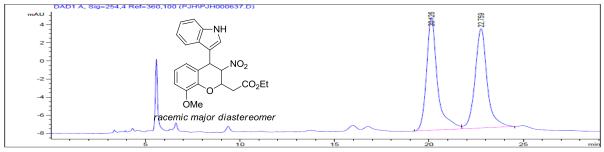

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.462	VV	0.4957	1452.49719	42.39354	49.9138
2	23.730	VV	0.5507	1457.51196	38.76280	50.0862

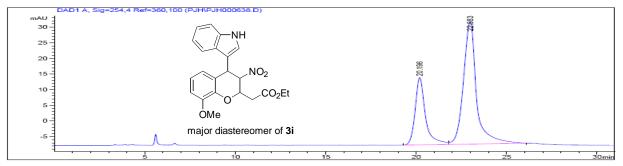

Pea	k RetTime T	ype Width	Area	Height	Area	
#	[min]	[min]	[mAU*s]	[mAU]	8	
1	21.396 VB	0.4954	70.22806	2.07194	10.3365	
2	23.667 BB	0.5745	609.18811	15.23444	89.6635	

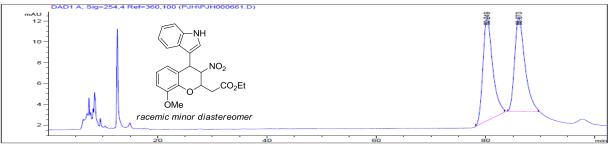

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		-				
1	20.430	BB	0.4955	343.98013	10.14562	10.3510
2	22.877	BB	0.5273	315.23315	8.94243	9.4860
3	28.450	BB	0.6762	1349.34094	29.35835	40.6043
4	32.904	BB	0.7865	1314.59058	24.63610	39.5586

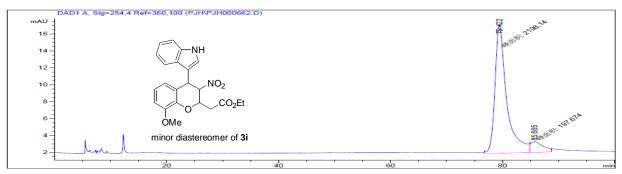

Peak	RetTime	Type	Width	Area	Height	Area
				-	[mAU]	
1	20.129	BV	0.4537	24.46895	6.83407e-1	0.6895
2	22.140	VB	0.5822	915.72150	22.72285	25.8042
3	28.515	BB	0.6125	59.56060	1.44629	1.6784
4	32.194	BB	0.8024	2548.98413	46.58105	71.8280

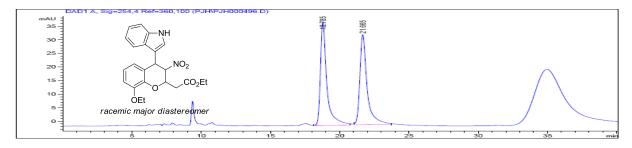

#	[min]		[min]	Area [mAU*s]		Area %
		-				
1	26.236	BB	0.5927	276.12054	7.05343	9.4728
2	33.975	BB	0.7685	275.09558	5.41643	9.4377
3	37.744	BB	0.8948	1169.99939	19.42315	40.1390
4	40.831	BB	0.8686	1193.65100	20.70538	40.9505

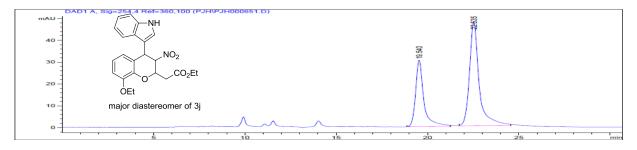

Peak	RetTime	Type	Width	Area	Height	Area	
				-	[mAU]		
1	26.583	BB	0.5809	84.89101	2.09442	1.4342	
2	33.990	BB	0.8011	2304.80957	43.29633	38.9378	
3	37.944	BB	0.9349	3375.88086	53.88437	57.0327	
4	41.577	BB	0.8428	153.62460	2.43924	2.5954	

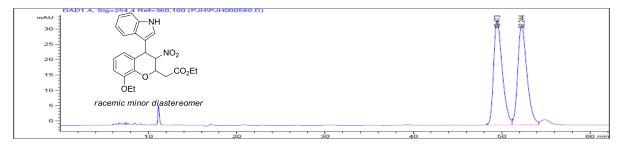

Peak	RetTime	ype Type	Width	Area	Height	Area
	-		-	-	[mAU]	
1	18.495	BB	0.4285	515.27405	17.86629	28.5916
2	22.208	BB	0.5542	518.97247	13.94456	28.7968
3	26.636	BV	0.6630	388.64386	8.66936	21.5651
4	28.654	VB	0.6781	379.29935	8.28535	21.0466

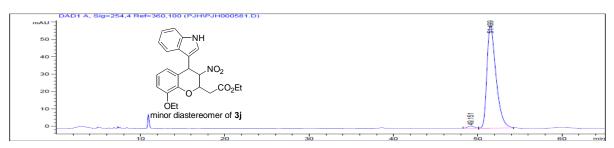

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.377	BB	0.4403	1977.49097	66.24683	50.0395
2	22.294	BB	0.5321	51.97419	1.48585	1.3152
3	26.539	BB	0.5969	46.21715	1.20120	1.1695
4	28.513	BB	0.6747	1876.17468	41.56017	47.4758

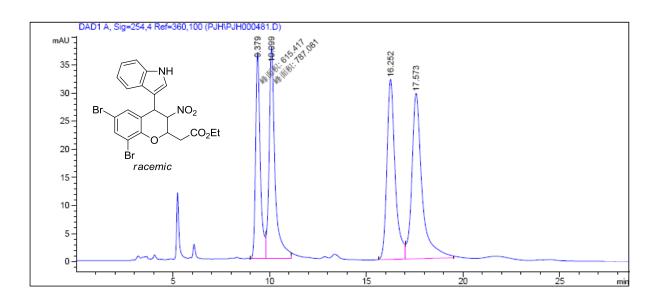

	RetTime			Area [mAU*s]	Height [mAU]	Area
	I					
1	20.126	BV	0.5909	501.79147	12.43117	50.6645
2	22.759	VB	0.6634	488.62848	10.97617	49.3355

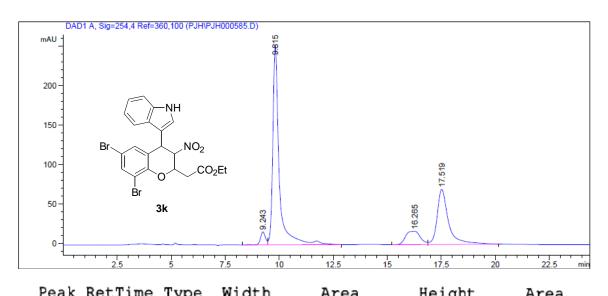

Peak Re	tTime Type	Width	Area	Height	Area
-	in]		[mAU*s]	[mAU]	8
	-			I	
1 20	.196 BV	0.5874	853.76044	21.49254	30.3346
2 22	.983 VB	0.7503	1960.71924	39.01451	69.6654


Peak	: RetTime	Type	Width	Area	Height	Area
-	-			[mAU*s]		8
	80.249			1227.86475		50.9418
2	86.070	BB	1.6936	1182.46167	9.01890	49.0582


1	Peak	RetTime	е Туре	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	8
	-						
	1	79.422	MM	2.4190	2198.14111	15.14480	91.7492
	2	85.665	MM	2.6341	197.67389	1.25071	8.2508


P	eak RetTi	me Typ	e Width	Area	Height	Area	
				-	[mAU]		
							ı
1	18.785	VB	0.4666	1227.09937	38.21683	50.3271	
2	21.665	BB	0.5338	1211.14795	33.18376	49.6729	


Pea.	k RetTime T	ype Width	Area	Height	Area	
-			[mAU*s]		8	
1	19.540 BB	0.4573	951.42200	30.38398	35.2151	
2	22.535 BB	0.5406	1750.32532	47.64565	64.7849	


Peak	RetTime	Type	Width	Area	Height	Area
-				[mAU*s]		8
1						
1	49.473	BV	1.0371	2334.13867	34.16302	49.7034
2	52.244	VB	1.0916	2361.99219	32.66733	50.2966

	Pea	k RetTime	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	8	
-		-	-					
	1	49.151 B	V	0.7148	66.87046	1.14935	1.4918	
	2	51.499 V	В	1.1292	4415.74072	58.99606	98.5082	

	Peak	RetTime	e Type	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	8
-	-		-				
	1	9.379	MM	0.2796	615.41724	36.67808	17.9115
	2	10.099	MM	0.3484	787.08063	37.64749	22.9077
	3	16.252	BV	0.4450	948.49451	32.07032	27.6056
	4	17.573	VB	0.5379	1084.88025	29.44399	31.5751

Peak	RetTime	Ту	рe	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
1	9.243	ΒV		0.2447	267.49939	16.53724	3.0027
2	9.815	VΒ	s	0.2999	5246.45068	253.04375	58.8910
3	16.265	$\nabla\nabla$		0.6382	803.31738	16.91024	9.0172
4	17.519	VB		0.5455	2591.48291	69.75050	29.0892