Supporting Information

for

Synthesis of nucleotide-amino acid conjugates designed for photo-CIDNP experiments by a phosphotriester approach

Tatyana V. Abramova ${ }^{\star 1,2}$, Olga B. Morozova ${ }^{2,3}$, Vladimir N. Silnikov ${ }^{1}$ and Alexandra
V. Yurkovskaya ${ }^{2,3}$

Address: ${ }^{1}$ Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrent'ev Ave, 8, Novosibirsk 630090, Russia, ${ }^{2}$ Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia and ${ }^{3}$ International Tomography Center, SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia

Email: Tatyana V. Abramova* - abramova@niboch.nsc.ru

*Corresponding author

Synthesis and physicochemical data for compounds 9, 10, 12, 15,

30 and 32

2-[4'-Benzoylbenzamido(2-ethoxy)]ethanol (9)
4-Benzoylbenzoic acid ($0.68 \mathrm{~g}, 3.0 \mathrm{mmol}$), N -hydroxysuccinimide (NHS) ($0.40 \mathrm{~g}, 3.5$ $\mathrm{mmol})$ and N, N^{\prime}-dicyclohexylcarbodiimide (DCC) ($0.68 \mathrm{~g}, 3.3 \mathrm{mmol}$) were dissolved in 1,4-dioxane (10 mL) under stirring. After $2 \mathrm{~h}, 2$ (2-aminoethoxy)ethanol ($0.37 \mathrm{~mL}, 3.5$ mmol) was added, and stirring was continued for 2 h . After that, reaction mixture was filtrated, precipitate was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the filtrate was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the solution was washed with water $(2 \times 25 \mathrm{~mL})$. Organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated. The residue was treated with petroleum ether $(30 \mathrm{~mL})$ and dried affording compound 9 as a glass-like residue with quantitative yield $(0.94 \mathrm{~g}, 3.0$ mmol). $R_{\mathrm{f}}: 0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9.5 / 0.5\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.90$ (dt, J 8.5, 1.7, 2 H , $H_{\text {Benzamido }}$), $7.84\left(\mathrm{dt}, J 8.5,1.7,2 \mathrm{H}, H_{\text {Benzamido }}\right), 7.80\left(\mathrm{dt}, J 7.1,2.1,2 \mathrm{H}, H_{\text {benzoyl }}\right), 7.62$ (tt, J7.4, 1.2, 1H, $H_{\text {benzoyl }}$), 7.50 (app.tt, J7.7, 1.7, 2H, $H_{\text {benzoyl }}$), 6.81 (br.t, J5.5, 1H, NH), 3.81-3.77 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{OH}$), 3.73-3.71 (m, 4H, CH2OCH2), 3.66-3.63 (m, 2H, $\mathrm{NHCH}_{2} \mathrm{CH}_{2}$); MALDI-TOFMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}, 314.14$; found, 314.19; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{4}, 336.12$; found, $336.18 ;[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{KNO}_{4}, 352.10$; found, 352.15.

2-[Boc-NH-L-tryptophanamido(2-ethoxy)]ethanol (10)

Boc-NH-L-tryptophan pentachlorophenyl ester (1g, 1.8 mmol) was dissolved in 1,4dioxane (10 mL). 2(2-Aminoethoxy)ethanol ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$) and TEA ($0.28 \mathrm{~mL}, 2$ $\mathrm{mmol})$ were added to the solution. After 1 h , reaction mixture was evaporated. The target product 10 was purified by silica gel chromatography. After drying, 0.66 g (1.68 mmol, yield 93%) was obtained. $R_{\mathrm{f}}: 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9 / 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.45$
(s, 1H, NH-Trp), 7.64 (d, J7.8, 1H, H-Trp), 7.33 (dt, J8.0, 0.9, 1H, H-Trp), 7.16 (ddd, J 8.2, 7.5, 1.1, 1H, H-Trp), 7.09 (ddd, J 8.2, 7.5, 1.1, 1H, H-Trp), 7.03 (d, J2.2, 1H, H-Trp), 6.27 (br.t, J 6.4, 1H, NHCH2CH2), 5.26 (br.s, 1H, Boc-NH), 4.43-4.31 (m, 1H, $\left.\mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 3.60-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.38-3.20 (m, 7H, $\mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 3.17-3.07 (m, 1H, CH(NH)CH), 1.40 (s, $9 \mathrm{H}, H-\mathrm{Boc}$); MALDI-TOFMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{2}{ }_{9} \mathrm{~N}_{3} \mathrm{NaO}_{5}$, 414.20; found, 414.06; [M $+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{KN}_{3} \mathrm{O}_{5}, 430.17$; found, 430.04.

Trifluoroacetamido-NH-L-tryptophanol (12)

L-Tryptophanol ($0.64 \mathrm{~g}, 3.35 \mathrm{mmol}$) was dissolved in MeOH, TEA ($0.7 \mathrm{~mL}, 5.0$ $\mathrm{mmol})$, and ethyl trifluoroacetate ($0.6 \mathrm{~mL}, 5 \mathrm{mmol}$) were added in the solution. After 3 h, reaction mixture was evaporated. After drying, N-trifluoroacetamido-L-tryptophanol 10 ($0.94 \mathrm{~g}, 3.35 \mathrm{mmol}$, quantitative yield) was obtained. R_{f} : $0.67\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9 / 1\right)$; ${ }^{19}$ F NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 86.41 (s); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 7.63 (dt, J 8.1, 1.0, 1H, H-Trp), 7.36 (dt, J8.0, 0.9, 1H, H-Trp), 7.12 (ddd, J7.8, 7.5, 1.3, 1H, H-Trp), 7.10 (s, 1H, H-Trp), 7.04 (ddd, J 8.4, 7.4, 1.2, H-Trp), 4.37-4.24 (m, 1H, CH2CH(NH)CH2), 3.75-3.59 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 3.16-3.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right)$.

2-[Trifluoroacetamido-NH-L-tryptophanamido(2-ethoxy)]ethanol (15)

L-Tryptophan was trifluoroacetylated by treatment with ethyl trifluoroacetate according to published procedure [1]. After purification of trifluoroacetylated amino acid by RPC in a linear gradient of acetonitrile ($0-30 \%$) in 0.1% aqueous TFA and drying, compound 14 was obtained with a yield 90%. $R_{\mathrm{f}}: 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} / \mathrm{AcOH}\right.$ 9.5/0.5/0.02); ${ }^{19}$ F NMR (DMSO- d_{6}): $85.50(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): 10.88 (s, 1 H , $\mathrm{COOH}), 9.78\left(\mathrm{~d}, \mathrm{~J} 8.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 7.55(\mathrm{~d}, \mathrm{~J} 8.1,1 \mathrm{H}, \mathrm{H}$-Trp), $7.34(\mathrm{~d}, \mathrm{~J} 8.1$, 1H, H-Trp), 7.14 (d, J2.2, 1H, H-Trp), 7.07 (ddd, J 8.1, 7.1, 1.2, H-Trp), 6.99 (ddd, J 8.1, 7.1, 1.2, H-Trp), 4.55-4.47 (m, 1H, CH(NH)CH2), 3.32 (dd, J $14.84 .2,1 \mathrm{H}$,
$\left.\mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 3.17$ (dd, J 14.8, 10.3, 1H, $\mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}$). Introduction of 2(2aminoethoxy)ethyl linker was performed as for compound 9 . The target product 15 was purified by silica gel chromatography in a gradient of acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0-$ $50 \%)$. Yield 90%. $R_{\mathrm{f}}: 0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} / \mathrm{AcOH} 9.5 / 0.5 / 0.02\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 85.91 (s); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 8.41 (br.s, $1 \mathrm{H}, \mathrm{NH}$-Trp), 7.73 (d, J 8.1 1H, H-Trp), 7.54 (d, J7.2, 1H, CH(NH)CH2), 7.36 (dt, J8.1, 0.9, 1H, H-Trp), 7.20 (ddd, J 8.1, 7.9, 1.2, H-Trp), 7.14 (ddd, J 8.1, 7.8, 1.2, H-Trp), 7.09 (d, J2.3, 1H, H-Trp), 6.06 (t, J 5.0, 1H, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.68-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 3.61-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.413.22 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 3.22-3.15 (m, 1H, CH(NH) CH), 3.11 (dd, J 14.0, 9.7, $\left.\mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right)$.

2-[4'-Methoxytriphenylmethylamino(2-ethoxy)]ethanol (30)

 2(2-Aminoethoxy)ethanol ($0.10 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was dissolved in Py (5 mL). 4Methoxytriphenylmethyl chloride ($0.31 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added by portions in 3 h , and the solution was stirred overnight. After that, reaction was stopped by addition of several drops of aqueous $5 \% \mathrm{NaHCO}_{3}$, diluted tenfold with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water (30 mL). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated. The target product 30 was purified by silica gel chromatography in a gradient of acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0-25 \%)$. After drying, 0.19 g of compound 30 was obtained as a semisolid (0.5 mmol , yield 50%). $R_{\mathrm{f}}: 0.43\left(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9.5 / 0.5\right)\right.$; ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 7.48 (dt J 8.3, 1.4, 4H, H-Ar), 7.40 (dt, J 9.0, 2.3, 2H, H-Ar), 7.27 (tt, J 7.7, 1.7, 4H, H-Ar), 7.17 (tt, J7.4, 1.3, 2H, H-Ar), 6.84 (dt, J9.0, 2.3), 2H, H-Ar), 3.76 (s, 3H, OCH3), 3.62-3.56 (m, 4H, OCH $\mathrm{OH}_{2} \mathrm{OH}$), 3.44 (dd, J5.0, 4.3, 2H, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.78 (br.s $1 \mathrm{H}, N H$), $2.30\left(\mathrm{t}, \mathrm{J} 5.6,2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.
3-O-Acetyl-1,4-anhydro-2-deoxy-D-ribitol (32)

5-O-(4',4"-Dimethoxytrityl)-1,4-anhydro-2-deoxy-D-ribitol (22, $0.12 \mathrm{~g}, 0.3 \mathrm{mmol})$ was dissolved in Py (1 mL), and acetic anhydride ($0.04 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added. After

16 h, the reaction mixture was evaporated several times with water to remove all Py. The residue was dissolved in $\mathrm{AcOH}(4 \mathrm{~mL})$ and water (1 mL). After 2 h , the reaction mixture was diluted fivefold with water and evaporated. Evaporation with water was repeated until traces of AcOH would be removed. The residue was dried by coevaporation with acetonitrile ($3 \times 15 \mathrm{~mL}$) and used without further purification in the coupling reaction with compound 16.

Synthetic scheme and physicochemical data for intermediates in

 the synthesis of compound 17

Scheme S1: Synthesis of protected derivative of 2'-deoxyguanosine 5'-phosphate 17. i) TMSCI, Py, then iBuCl; ii) (Lev) ${ }_{2} \mathrm{O}$, 1-Melm, Py ; iii) $\mathrm{Ph}_{3} \mathrm{P}, 2,2^{\prime}(\mathrm{PyS})_{2}, 1$-Melm, then $4-\mathrm{CIPhOH}, \mathrm{TEA}$.

2-N-Isobutyryl-2'-deoxyguanosine-5'-phosphate (34)

$\mathrm{R}_{\mathrm{f}}: 0.62\left(\mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O} 4 / 1\right) ;{ }^{31} \mathrm{P}$ NMR (DMSO- $\left.d_{6}\right): 0.44(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): 8.14$ (s, 1H, H8-Gua), 7.18 (br.s 0.5H, NHC(O)CH), 6.64 (br.s 0.5H, NHC(O)CH), 6.22 (t, J 7.0, 1H, H1), 4.65-4.59 (m, 1H, H4'), 4.17-4.06 (m, 1H, H5), 3.99-3.92 (m, 1H, H3'),
3.88-3.77 (m, 1H, H5'), 2.82-2.72 (m, 1H, H2'), 2.32 (sep, J 6.8, 1H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.24-2.13 (m, 1H, H2'), $1.12\left(\mathrm{~d}, \mathrm{~J} 6.8,3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.11\left(\mathrm{~d}, \mathrm{~J} 6.8,3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)^{2}$. 2-N-Isobutyry-3'-O-levulinyl-2'-deoxyguanosine-5'-phosphate (35)
$\mathrm{R}_{\mathrm{f}}: 0.33\left(\mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O} 4 / 1\right) ;{ }^{31} \mathrm{P}$ NMR (DMSO- $\left.d_{6}\right): 0.18(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): 8.18$ (s, 1H, H8-Gua), 7.25 (s $0.5 \mathrm{H}, N H C(\mathrm{O}) \mathrm{CH}$), 7.07 (s $0.5 \mathrm{H}, N H C(\mathrm{O}) \mathrm{CH}), 6.24$ (dd, J 9.1, 5.6, 1H, H1), 5.40-5.32 m, 1H, H3'), 4.22-4.16 (m, 1H, H4), 4.13-4.04 (m, 1H, H^{\prime}), 4.01-3.91 (m, 1H, H5'), 3.12-3.00 (m, 2H, OC(O)CH2), 2.84 (sep, J6.8, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.77 (t, J6.6, 2H, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.72-2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 2$ '), 2.43-2.32 (m, $1 \mathrm{H}, \mathrm{H} 2^{\prime}$), $2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, \mathrm{~J} 6.8, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Physicochemical data for compounds 11, 13, 16, 19, 23, 24, 26 and

27

2-[Boc-NH-L-tryptophanamido(2-ethoxy)]ethyl(p-chlorophenyl)phosphate (11) $R_{\mathrm{f}:}: 0.10\left(\mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O} 4 / 1\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{CD}_{3} \mathrm{OD}\right):-4.38(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}+\mathrm{CD}_{3} \mathrm{OD}\right)$: 8.84 (d, J6.5, 1H, H-Py), 8.54 (t, J7.8, 0.5H, H-Py), 8.05 (t, J 7.0, 1H, H-Py), 7.60 (d, J 8.2, 1H, H-Trp), 7.36 (d, J 8.3, 1H, H-Trp), 7.31-7.18 (m, 3H, H-Trp, H-Ar), 7.186.97 (m, 4H, H-Trp, H-Ar), 4.74-4.63 (m, 1H, CH(NH)CH2), 4.39-4.31 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), 4.08-3.96 (m, 1H, CH2CH2OP), 3.85-3.72 (m, $1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 3.54$3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.29-2.94\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 1.41$ (s, 9H, HBoc);); MALDI-TOFMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{CIN}_{3} \mathrm{O}_{8} \mathrm{P}, 580.16$; found, 579.60.

Trifluoroacetamido-NH-L-tryptophanolyl(p-chlorophenyl)phosphate (13) $\left.R_{\mathrm{f}}: 0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 8 / 2\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} \mathrm{CD}_{3} \mathrm{CN}\right): 88.16(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right):-4.70$ (s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 9.18$ (s, $1 \mathrm{H}, N H$-Trp), $8.88\left(\mathrm{~d}, J 7.9,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}(N H) \mathrm{CH}_{2}\right)$, 8.59 (d, J 4.5, 1H, H-Py), 8.40 (t, J7.8, 0.5H, H-Py), 7.86 (dd, J7.8, 4.5, 1H, H-Py),
7.62 (d, J 8.0, 1H, H-Trp), 7.40 (dt, J8.2, 1.8, 1H, H-Trp), 7.26 (dt, J8.9, 5.0, 2H, HAr), 7.20-7.01 (m, 5H, H-Trp, H-Ar), 4.38-4.26 (m, 1H, CH2CH(NH)CH2), 4.18-3.98 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}$), 3.08-2.94 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}$).

2-[Trifluoroacetamido-NH-L-tryptophanamido(2-ethoxy)]ethyl(p-

 chlorophenyl)phosphate (16)$R_{\mathrm{f}}: 0.10\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 8 / 2\right) ;{ }^{19} \mathrm{~F}$ NMR (acetone- d_{6}): $88.60(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR (acetone- $\left.d_{6}\right)$: 5.41 (s); ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 8.73 (s, 1H, NH-Trp), 8.72 (d, J 6.0, 1H, H-Py), 8.27 (t, J7.6, 0.5H, H-Py), 7.87 (br.t, J6.5, 1H, CH(NH) CH_{2}), 7.77 (dd, J7.6, 6.0, 1H, HPy), 7.63 (d, J8.0, 1H, H-Trp), 7.32 (d, J8.0, 1H, H-Trp), 7.31-7.25 (m, 4H, H-Ar), 7.22 (s, 1H, H-Trp), 7.04 (ddd, J8.1, 7.1, 1.3, 1H, H-Trp), 6.97 (td, 7.8, 0.9), 4.78$4.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}\right), 4.18-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.51-3.19 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), \mathrm{CH}(\mathrm{NH}) \mathrm{CH}_{2}$).

2-N-Isobutyryl-2'-deoxyguanosine 5'-O-\{2-[4'-benzoylbenzamido(2-ethoxy)]ethyl\}(p-chlorophenyl)phosphate (19)
$R_{\mathrm{f}}: 0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9 / 1\right)$; MALDI-TOFMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{CIN}_{6} \mathrm{O}_{11} \mathrm{P}, 823.23$; found, 823.15; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{CIN}_{6} \mathrm{NaO}_{11} \mathrm{P}$, 845.21; found, 845.14; $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{CIKN}_{6} \mathrm{O}_{11} \mathrm{P}, 861.18$; found, 861.11; [M-H] calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{CIN}_{6} \mathrm{O}_{11} \mathrm{P}, 821.21$; found, 821.31.

1',4'-Anhydro-2'-deoxy-D-ribityl-3'-O-\{2-[Boc-NH-L-tryptophanamido(2-ethoxy)]ethyl(p-chlorophenyl)\}phosphate (23)
$R_{\mathrm{f}}: 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9 / 1\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right):-6.66,7.08$ (2s, two diastereomers). 5'-O-[(p-Chlorophenyl)phospho]-4'-anhydro-2'-deoxy-D-ribityl-3'-O-\{2-[Boc-NH-L-tryptophanamido(2-ethoxy)]ethyl(p-chlorophenyl)\}phosphate (24)
$R_{\mathrm{f}}: 0.07\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9 / 1\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right):-6.53$ (br.s, 1 P), $-6.92,-7.36(2 \mathrm{~s}, 1 \mathrm{P}$, two diastereomers).

1,4-Anhydro-2-deoxy-D-ribityl-3-O-[Trifluoroacetamido-NH-L-tryptophanolyl(pchlorophenyl)]phosphate (26)
$R_{\mathrm{f}}: 0.12\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH} 9.5 / 0.5\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): 86.01,85.99$ (2s, two diastereomers); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right):-6.03,-6.53(2 \mathrm{~s}$, two diastereomers $)$.

5'-O-[(p-Chlorophenyl)phospho]-4'-anhydro-2'-deoxy-D-ribityl-3'-O-[Trifluoroacetamido-NH-L-tryptophanolyl(p-chlorophenyl)]phosphate (27) $R_{\mathrm{f}}: 0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOHI} 9 / 1\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 88.65,88.64$ (2s, two diastereomers); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): -5.80 (br.s, 1P), -6.56, -6.76 (2s, 1P, two diastereomers).

References

1. Curphey, T. J. J. Org. Chem. 1979, 44, 2805-2807.
