Supporting Information

for

Synthesis of nucleotide-amino acid conjugates

designed for photo-CIDNP experiments by a

phosphotriester approach

Tatyana V. Abramova^{*1,2}, Olga B. Morozova^{2,3}, Vladimir N. Silnikov¹ and Alexandra V. Yurkovskaya^{2,3}

Address: ¹Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrent'ev Ave, 8, Novosibirsk 630090, Russia, ²Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia and ³International Tomography Center, SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia

Email: Tatyana V. Abramova^{*} - <u>abramova@niboch.nsc.ru</u>

*Corresponding author

Syntheses and characteristics for selected compounds

Synthesis and physicochemical data for compounds 9, 10, 12, 15,

30 and 32

2-[4'-Benzoylbenzamido(2-ethoxy)]ethanol (9)

4-Benzoylbenzoic acid (0.68 g, 3.0 mmol), N-hydroxysuccinimide (NHS) (0.40 g, 3.5 mmol) and N,N'-dicyclohexylcarbodiimide (DCC) (0.68 g, 3.3 mmol) were dissolved in 1,4-dioxane (10 mL) under stirring. After 2 h, 2(2-aminoethoxy)ethanol (0.37 mL, 3.5 mmol) was added, and stirring was continued for 2 h. After that, reaction mixture was filtrated, precipitate was washed with CH_2CI_2 (2 x 10 mL), and the filtrate was evaporated. The residue was dissolved in CH₂Cl₂ (50 mL), and the solution was washed with water (2 \times 25 mL). Organic layer was dried (Na₂SO₄), filtered, and evaporated. The residue was treated with petroleum ether (30 mL) and dried affording compound 9 as a glass-like residue with quantitative yield (0.94 g, 3.0 mmol). R_f: 0.24 (CH₂Cl₂/EtOH 9.5/0.5); ¹H NMR (CDCl₃): 7.90 (dt, J 8.5, 1.7, 2H, H_{Benzamido}), 7.84 (dt, J 8.5, 1.7, 2H, H_{Benzamido}), 7.80 (dt, J 7.1, 2.1, 2H, H_{benzovl}), 7.62 (tt, J7.4, 1.2, 1H, H_{benzovl}), 7.50 (app.tt, J7.7, 1.7, 2H, H_{benzovl}), 6.81 (br.t, J5.5, 1H, *NH*), 3.81-3.77 (m, 2H, CH₂CH₂OH), 3.73-3.71 (m, 4H, CH₂OCH₂), 3.66-3.63 (m, 2H, NHCH₂ CH₂); MALDI–TOFMS (m/z): [M + H]⁺ calcd for C₁₈H₂₀NO₄, 314.14; found, 314.19; $[M + Na]^+$ calcd for C₁₈H₁₉NNaO₄, 336.12; found, 336.18; $[M + K]^+$ calcd for C₁₈H₁₉KNO₄, 352.10; found, 352.15.

2-[Boc-NH-L-tryptophanamido(2-ethoxy)]ethanol (10)

Boc-*NH*-L-tryptophan pentachlorophenyl ester (1g, 1.8 mmol) was dissolved in 1,4dioxane (10 mL). 2(2-Aminoethoxy)ethanol (0.25 mL, 2.0 mmol) and TEA (0.28 mL, 2 mmol) were added to the solution. After 1 h, reaction mixture was evaporated. The target product **10** was purified by silica gel chromatography. After drying, 0.66 g (1.68 mmol, yield 93%) was obtained. $R_{\rm f}$: 0.50 (CH₂Cl₂/EtOH 9/1); ¹H NMR (CDCl₃): 8.45 (s, 1H, *NH*-Trp), 7.64 (d, *J*7.8, 1H, *H*-Trp), 7.33 (dt, *J* 8.0, 0.9, 1H, *H*-Trp), 7.16 (ddd, *J* 8.2, 7.5, 1.1, 1H, *H*-Trp), 7.09 (ddd, *J* 8.2, 7.5, 1.1, 1H, *H*-Trp), 7.03 (d, *J* 2.2, 1H, *H*-Trp), 6.27 (br.t, *J* 6.4, 1H, *NH*CH₂CH₂), 5.26 (br.s, 1H, Boc-*NH*), 4.43-4.31 (m, 1H, *CH*(NH)CH₂), 3.60-3.51 (m, 2H, CH₂*CH*₂OH), 3.38-3.20 (m, 7H, CH(NH)*CH*₂, *CH*₂O*CH*₂, NH*CH*₂CH₂), 3.17-3.07 (m, 1H, CH(NH)*CH*₂), 1.40 (s, 9H, *H*-Boc); MALDI–TOFMS (*m*/*z*): [M + Na]⁺ calcd for C₂₀H2₉N₃NaO₅, 414.20; found, 414.06; [M + K]⁺ calcd for C₂₀H₂₉KN₃O₅, 430.17; found, 430.04.

Trifluoroacetamido-NH-L-tryptophanol (12)

L-Tryptophanol (0.64 g, 3.35 mmol) was dissolved in MeOH, TEA (0.7 mL, 5.0 mmol), and ethyl trifluoroacetate (0.6 mL, 5 mmol) were added in the solution. After 3 h, reaction mixture was evaporated. After drying, *N*-trifluoroacetamido-L-tryptophanol 10 (0.94g, 3.35 mmol, quantitative yield) was obtained. $R_{\rm f}$: 0.67 (CH₂Cl₂/EtOH 9/1); ¹⁹F NMR (CD₃OD): 86.41 (s); ¹H NMR (CD₃OD): 7.63 (dt, *J* 8.1, 1.0, 1H, *H*-Trp), 7.36 (dt, *J* 8.0, 0.9, 1H, *H*-Trp), 7.12 (ddd, *J* 7.8, 7.5, 1.3, 1H, *H*-Trp), 7.10 (s, 1H, *H*-Trp), 7.04 (ddd, *J* 8.4, 7.4, 1.2, *H*-Trp), 4.37-4.24 (m, 1H, CH₂CH(NH)CH₂), 3.75-3.59 (m, 2H, *CH*₂CH(NH)CH₂), 3.16-3.05 (m, 1H, CH₂CH(NH)*CH*₂), 3.04-2.94 (m, 1H, CH₂CH(NH)*CH*₂).

2-[Trifluoroacetamido-NH-L-tryptophanamido(2-ethoxy)]ethanol (15)

L-Tryptophan was trifluoroacetylated by treatment with ethyl trifluoroacetate according to published procedure [1]. After purification of trifluoroacetylated amino acid by RPC in a linear gradient of acetonitrile (0–30%) in 0.1% aqueous TFA and drying, compound **14** was obtained with a yield 90%. $R_{\rm f}$: 0.50 (CH₂Cl₂/EtOH/AcOH 9.5/0.5/0.02); ¹⁹F NMR (DMSO- d_6): 85.50 (s); ¹H NMR (DMSO- d_6): 10.88 (s, 1H, COO*H*), 9.78 (d, *J* 8.3, 1H, *C*H(*NH*)CH₂), 7.55 (d, *J* 8.1, 1H, *H*-Trp), 7.34 (d, *J* 8.1, 1H, *H*-Trp), 7.14 (d, *J* 2.2, 1H, *H*-Trp), 7.07 (ddd, *J* 8.1, 7.1, 1.2, *H*-Trp), 6.99 (ddd, *J* 8.1, 7.1, 1.2, *H*-Trp), 4.55-4.47 (m, 1H, *CH*(NH)CH₂), 3.32 (dd, *J* 14.8 4.2, 1H,

S3

CH(NH)*CH*₂), 3.17 (dd, *J* 14.8, 10.3, 1H, *C*H(NH)*CH*₂). Introduction of 2(2aminoethoxy)ethyl linker was performed as for compound **9**. The target product **15** was purified by silica gel chromatography in a gradient of acetone in CH₂Cl₂ (0– 50%). Yield 90%. *R*_f: 0.23 (CH₂Cl₂/EtOH/AcOH 9.5/0.5/0.02); ¹⁹F NMR (CDCl₃): 85.91 (s); ¹H NMR (CDCl₃): 8.41 (br.s, 1H, *NH*-Trp), 7.73 (d, *J* 8.1 1H, *H*-Trp), 7.54 (d, *J* 7.2, 1H, *C*H(*NH*)CH₂), 7.36 (dt, *J* 8.1, 0.9, 1H, *H*-Trp), 7.20 (ddd, *J* 8.1, 7.9, 1.2, *H*-Trp), 7.14 (ddd, *J* 8.1, 7.8, 1.2, *H*-Trp), 7.09 (d, *J* 2.3, 1H, *H*-Trp), 6.06 (t, *J* 5.0, 1H, *NH*CH₂CH₂O), 4.68-4.60 (m, 1H, *CH*(NH)CH₂), 3.61-3.51 (m, 2H, CH₂*CH*₂OH), 3.41-3.22 (m, 6H, *CH*₂O*CH*₂, NH*CH*₂CH₂), 3.22-3.15 (m, 1H, CH(NH)*CH*₂), 3.11 (dd, *J* 14.0, 9.7, CH(NH)*CH*₂).

2-[4'-Methoxytriphenylmethylamino(2-ethoxy)]ethanol (30)

2(2-Aminoethoxy)ethanol (0.10 mL, 1.0 mmol) was dissolved in Py (5 mL). 4-Methoxytriphenylmethyl chloride (0.31 g, 1.0 mmol) was added by portions in 3 h, and the solution was stirred overnight. After that, reaction was stopped by addition of several drops of aqueous 5% NaHCO₃, diluted tenfold with CH₂Cl₂ and washed with water (30 mL). The organic layer was dried (Na₂SO₄), filtered, and evaporated. The target product **30** was purified by silica gel chromatography in a gradient of acetone in CH₂Cl₂ (0–25%). After drying, 0.19 g of compound **30** was obtained as a semisolid (0.5 mmol, yield 50%). $R_{\rm f}$: 0.43 ((CH₂Cl₂/EtOH 9.5/0.5); ¹H NMR (acetone- d_6): 7.48 (dt J 8.3, 1.4, 4H, *H*-Ar), 7.40 (dt, J 9.0, 2.3, 2H, *H*-Ar), 7.27 (tt, J 7.7, 1.7, 4H, *H*-Ar), 7.17 (tt, J 7.4, 1.3, 2H, *H*-Ar), 6.84 (dt, J 9.0, 2.3), 2H, *H*-Ar), 3.76 (s, 3H, OCH₃), 3.62-3.56 (m, 4H, OCH₂CH₂OH), 3.44 (dd, J 5.0, 4.3, 2H, NHCH₂CH₂O), 2.78 (br.s, 1H, *NH*), 2.30 (t, J 5.6, 2H, NHCH₂CH₂O).

3-O-Acetyl-1,4-anhydro-2-deoxy-D-ribitol (32)

5-O-(4',4"-Dimethoxytrityl)-1,4-anhydro-2-deoxy-D-ribitol (**22**, 0.12 g, 0.3 mmol) was dissolved in Py (1 mL), and acetic anhydride (0.04 mL, 0.4 mmol) was added. After

16 h, the reaction mixture was evaporated several times with water to remove all Py. The residue was dissolved in AcOH (4 mL) and water (1 mL). After 2 h, the reaction mixture was diluted fivefold with water and evaporated. Evaporation with water was repeated until traces of AcOH would be removed. The residue was dried by coevaporation with acetonitrile (3 x 15 mL) and used without further purification in the coupling reaction with compound **16**.

Synthetic scheme and physicochemical data for intermediates in the synthesis of compound 17

Scheme S1: Synthesis of protected derivative of 2'-deoxyguanosine 5'-phosphate **17**. i) TMSCI, Py, then iBuCI; ii) (Lev)₂O, 1-MeIm, Py; iii) Ph₃P, 2,2'(PyS)₂, 1-MeIm, then 4-CIPhOH, TEA.

2-N-IsobutyryI-2'-deoxyguanosine-5'-phosphate (34)

R_f: 0.62 (iPrOH/H₂O 4/1); ³¹P NMR (DMSO-*d*₆): 0.44 (s); ¹H NMR (DMSO-*d*₆): 8.14 (s, 1H, *H8*-Gua), 7.18 (br.s 0.5H, *NH*C(O)CH), 6.64 (br.s 0.5H, *NH*C(O)CH), 6.22 (t, *J* 7.0, 1H, *H1*'), 4.65-4.59 (m, 1H, *H4*'), 4.17-4.06 (m, 1H, *H5*'), 3.99-3.92 (m, 1H, *H3*'),

3.88-3.77 (m, 1H, *H5*"), 2.82-2.72 (m, 1H, *H2*"), 2.32 (sep, *J* 6.8, 1H, *CH*(CH₃)₂), 2.24-2.13 (m, 1H, *H2*"), 1.12 (d, *J* 6.8, 3H, CH(*CH*₃)₂), 1.11 (d, *J* 6.8, 3H, CH(*CH*₃)₂). **2-N-Isobutyry-3'-O-levulinyl-2'-deoxyguanosine-5'-phosphate (35)** R_f: 0.33 (iPrOH/H₂O 4/1); ³¹P NMR (DMSO-*d*₆): 0.18 (s); ¹H NMR (DMSO-*d*₆): 8.18 (s, 1H, *H8*-Gua), 7.25 (s 0.5H, *NH*C(O)CH), 7.07 (s 0.5H, *NH*C(O)CH), 6.24 (dd, *J* 9.1, 5.6, 1H, *H1*"), 5.40-5.32 m, 1H, *H3*"), 4.22-4.16 (m, 1H, *H4*"), 4.13-4.04 (m, 1H, *H5*"), 4.01-3.91 (m, 1H, *H5*"), 3.12-3.00 (m, 2H, OC(O)*CH*₂), 2.84 (sep, *J* 6.8, *CH*(CH₃)₂), 2.77 (t, *J* 6.6, 2H, *CH*₂C(O)CH₃), 2.72-2.65 (m, 1H, *H2*"), 2.43-2.32 (m, 1H, *H2*"), 2.14 (s, 3H, C(O)*CH*₃), 1.12 (d, *J* 6.8, CH(*CH*₃)₂).

Physicochemical data for compounds 11, 13, 16, 19, 23, 24, 26 and 27

2-[Boc-*NH***-L-tryptophanamido(2-ethoxy)]ethyl(***p***-chlorophenyl)phosphate (11)** R_{f} : 0.10 (iPrOH/H₂O 4/1); ³¹P NMR (D₂O+CD₃OD): -4.38 (s); ¹H NMR (D₂O+CD₃OD): 8.84 (d, J 6.5, 1H, *H*-Py), 8.54 (t, J 7.8, 0.5H, *H*-Py), 8.05 (t, J 7.0, 1H, *H*-Py), 7.60 (d, J 8.2, 1H, *H*-Trp), 7.36 (d, J 8.3, 1H, *H*-Trp), 7.31-7.18 (m, 3H, *H*-Trp, *H*-Ar), 7.18-6.97 (m, 4H, *H*-Trp, *H*-Ar), 4.74-4.63 (m, 1H, *CH*(NH)CH₂), 4.39-4.31 (m, 1H, CH₂*CH*₂OP), 4.08-3.96 (m, 1H, CH₂*CH*₂OP), 3.85-3.72 (m, 1H, NH*CH*₂CH₂), 3.54-3.44 (m, 1H, NH*CH*₂CH₂), 3.29-2.94 (m, 6H, CH(NH)*CH*₂, *CH*₂O*CH*₂), 1.41 (s, 9H, *H*-Boc);); MALDI–TOFMS (*m*/*z*): [M – H][–] calcd for C₂₆H₃₂ClN₃O₈P, 580.16; found, 579.60.

Trifluoroacetamido-*NH*-L-tryptophanolyl(*p*-chlorophenyl)phosphate (13) *R*_f: 0.27 (CH₂Cl₂/EtOH 8/2); ¹⁹F NMR (CD₃CN): 88.16 (s); ³¹P NMR (CD₃CN): -4.70 (s); ¹H NMR (CD₃CN): 9.18 (s, 1H, *NH*-Trp), 8.88 (d, *J* 7.9, 1H, CH₂CH(*NH*)CH₂), 8.59 (d, *J* 4.5, 1H, *H*-Py), 8.40 (t, *J* 7.8, 0.5H, *H*-Py), 7.86 (dd, *J* 7.8, 4.5, 1H, *H*-Py),

7.62 (d, *J* 8.0, 1H, *H*-Trp), 7.40 (dt, *J* 8.2, 1.8, 1H, *H*-Trp), 7.26 (dt, *J* 8.9, 5.0, 2H, *H*-Ar), 7.20-7.01 (m, 5H, *H*-Trp, *H*-Ar), 4.38-4.26 (m, 1H, CH₂CH(NH)CH₂), 4.18-3.98 (m, 2H, *CH*₂CH(NH)CH₂), 3.08-2.94 (m, 2H, CH₂CH(NH)CH₂).

2-[Trifluoroacetamido-NH-L-tryptophanamido(2-ethoxy)]ethyl(p-

chlorophenyl)phosphate (16)

R_f: 0.10 (CH₂Cl₂/EtOH 8/2); ¹⁹F NMR (acetone-d₆): 88.60 (s); ³¹P NMR (acetone-d₆): -

5.41 (s); ¹H NMR (acetone-*d*₆): 8.73 (s, 1H, *NH*-Trp), 8.72 (d, *J* 6.0, 1H, *H*-Py), 8.27

(t, J 7.6, 0.5H, H-Py), 7.87 (br.t, J 6.5, 1H, CH(NH)CH₂), 7.77 (dd, J 7.6, 6.0, 1H, H-

Py), 7.63 (d, J 8.0, 1H, H-Trp), 7.32 (d, J 8.0, 1H, H-Trp), 7.31-7.25 (m, 4H, H-Ar),

7.22 (s, 1H, H-Trp), 7.04 (ddd, J 8.1, 7.1, 1.3, 1H, H-Trp), 6.97 (td, 7.8, 0.9), 4.78-

4.69 (m, 1H, CH(NH)CH₂), 4.18-4.08 (m, 2H, CH₂CH₂OP), 3.62-3.53 (m, 2H,

*CH*₂O*CH*₂), 3.51-3.19 (m, 6H, *CH*₂O*CH*₂, NH*CH*₂CH₂), CH(NH)*CH*₂).

2-N-IsobutyryI-2'-deoxyguanosine 5'-O-{2-[4''-benzoyIbenzamido(2-

ethoxy)]ethyl}(p-chlorophenyl)phosphate (19)

 $R_{\rm f}$: 0.26 (CH₂Cl₂/EtOH 9/1); MALDI-TOFMS (*m*/*z*): [M + H]⁺ calcd for

 $C_{38}H_{41}CIN_6O_{11}P$, 823.23; found, 823.15; $[M + Na]^+$ calcd for $C_{38}H_{40}CIN_6NaO_{11}P$,

845.21; found, 845.14; $[M + K]^+$ calcd for $C_{38}H_{40}CIKN_6O_{11}P$, 861.18; found, 861.11;

 $[M-H]^{-}$ calcd for $C_{38}H_{39}CIN_6O_{11}P$, 821.21; found, 821.31.

1',4'-Anhydro-2'-deoxy-D-ribityl-3'-O-{2-[Boc-NH-L-tryptophanamido(2-

ethoxy)]ethyl(p-chlorophenyl)}phosphate (23)

*R*_f: 0.50 (CH₂Cl₂/EtOH 9/1); ³¹P NMR (CDCl₃): -6.66, 7.08 (2s, two diastereomers).

5'-O-[(p-Chlorophenyl)phospho]-4'-anhydro-2'-deoxy-D-ribityl-3'-O-{2-[Boc-NH-

L-tryptophanamido(2-ethoxy)]ethyl(p-chlorophenyl)}phosphate (24)

*R*_f: 0.07 (CH₂Cl₂/EtOH 9/1); ³¹P NMR (CDCl₃): -6.53 (br.s, 1P), -6.92, -7.36 (2s, 1P, two diastereomers).

1,4-Anhydro-2-deoxy-D-ribityl-3-*O*-[Trifluoroacetamido-*NH*-L-tryptophanolyl(*p*chlorophenyl)]phosphate (26)

 $R_{\rm f}$: 0.12 (CH₂Cl₂/EtOH 9.5/0.5);¹⁹F NMR (CDCl₃): 86.01, 85.99 (2s, two diastereomers); ³¹P NMR (CDCl₃): -6.03, -6.53 (2s, two diastereomers). **5'-O-[(p-Chlorophenyl)phospho]-4'-anhydro-2'-deoxy-D-ribityl-3'-O-[Trifluoroacetamido-***NH*-L-tryptophanolyl(*p*-chlorophenyl)]phosphate (27) $R_{\rm f}$: 0.14 (CH₂Cl₂/EtOHI 9/1); ¹⁹F NMR (CD₃CN): 88.65, 88.64 (2s, two diastereomers); ³¹P NMR (CD₃CN): -5.80 (br.s, 1P), -6.56, -6.76 (2s, 1P, two diastereomers).

References

1. Curphey, T. J. J. Org. Chem. 1979, 44, 2805-2807.