Supporting Information for Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of ¹³C chemical shifts

Simone Di Micco¹, Angela Zampella², Maria Valeria D'Auria², Carmen Festa², Simona De

Marino², Raffaele Riccio¹, Craig P. Butts³* and Giuseppe Bifulco¹*

¹Dipartimento di Farmacia, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA),

Italy, ²Dipartimento di Farmacia, Università di Napoli "Federico II", via D. Montesano 49, 80131

Napoli, Italy and ³Department of Chemistry, University of Bristol, Cantocks Close, BS8 1TS

Bristol, United Kingdom

Email: Craig P. Butts - craig.butts@bristol.ac.uk; Giuseppe Bifulco - bifulco@unisa.it

Analytical data

Contents

Figure S1. ¹H NMR spectrum (500 MHz, CD₃OD) of plakilactone G (1).
Figure S2. COSY spectrum (500 MHz, CD₃OD) of plakilactone G (1).
Figure S3. HSQC spectrum (500 MHz, CD₃OD) of plakilactone G (1).
Figure S4. HMBC spectrum (500 MHz, CD₃OD) of plakilactone G (1).
Figure S5. ¹H NMR spectrum (500 MHz, CD₃OD) of plakilactone H (2).
Figure S6. COSY spectrum (500 MHz, CD₃OD) of plakilactone H (2).
Figure S7. HSQC spectrum (500 MHz, CD₃OD) of plakilactone H (2).
Figure S8. HMBC spectrum (500 MHz, CD₃OD) of plakilactone H (2).
Figure S8. HMBC spectrum (500 MHz, CD₃OD) of plakilactone H (2).
Figure S9. ¹H NMR plata of plakilactones G (1, 500 MHz, CDCl₃) and H (2, 600 MHz, CDCl₃)
Figure S10. COSY spectrum (500 MHz, CDCl₃) of plakilactone G (1).
Figure S11. HSQC spectrum (500 MHz, CDCl₃) of plakilactone G (1).
Figure S12. HMBC spectrum (500 MHz, CDCl₃) of plakilactone G (1).

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃) of plakilactone H (2). Figure S14. COSY spectrum (600 MHz, CDCl₃) of plakilactone H (2). Figure S15. HSQC spectrum (600 MHz, CDCl₃) of plakilactone H (2). Figure S16. HMBC spectrum (600 MHz, CDCl₃) of plakilactone H (2). Figure S17. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of Me16 of plakilactone H (2). Figure S18. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of Me12 of plakilactone H (2). Figure S19. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H15a of plakilactone H (2). Figure S20. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H15b of plakilactone H (2). Figure S21. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H9 of plakilactone H (2). Figure S22. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H13a of plakilactone H (2). Figure S23. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H5b of plakilactone H (2). Figure S24. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H11 of plakilactone H (2). Figure S25. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H7 of plakilactone H (2). Figure S26. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H8 of plakilactone H (2). Figure S27. Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H3 of plakilactone H (2). **Table S2.** Experimental and calculated ¹³C chemical shifts values for **2a,b,e,f**. **Table S3.** Experimental and calculated 13 C chemical shifts values for **1a-d**. Figure S28. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of Me14 of plakilactone G (1). Figure S29. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of Me16 of plakilactone G (1). Figure S30. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H9b of plakilactone G (1). Figure S31. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H13b of plakilactone G (1). Figure S32. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H5b of plakilactone G (1). Figure S33. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H11 of plakilactone G (1). Figure S34. Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H3 of plakilactone G (1). Table S4. Comparison of calculated and experimental inter-proton distances for plakilactone G (1).

Figure S2: COSY spectrum (500 MHz, CD₃OD) of plakilactone G (1).

Figure S3: HSQC spectrum (500 MHz, CD₃OD) of plakilactone G (1).

Figure S4: HMBC spectrum (500 MHz, CD₃OD) of plakilactone G (1).

Figure S5: ¹H NMR spectrum (500 MHz, CD₃OD) of plakilactone H (2).

Figure S6: COSY spectrum (500 MHz, CD₃OD) of plakilactone H (2).

Figure S7: HSQC spectrum (500 MHz, CD₃OD) of plakilactone H (2).

Figure S8: HMBC spectrum (500 MHz, CD₃OD) of plakilactone H (2).

	_	1	2	
position	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$
1	-	173.1	-	173.6
2	-	135.5	-	136.1
3	6.87	151.0	6.86	150.2
4	-		-	89.1
5	1.71	36.2	1.87	39.1
	2.05		1.97	
6	1.37	35.6	0.84	38.2
7	3.46	75.5	2.43	62.1
8	3.49	73.6	2.62	60.9
9	1.38	24.0	1.54	24.9
	1.52			
10	0.99	10.1	0.98	9.7
11	2.32	18.5	1.14	18.3
12	1.15	12.1	2.29	11.8
13	1.72	30.9	1.76	31.2
	1.86		1.86	
14	0.81	7.9	0.83	7.73
15	1.35	25.3	1.34	25.8
			1.46	
16	0.89	10.8	0.88	11.4

Table S1: NMR Data of	plakilactones G (1,	500 MHz,	CDCl3) and H (2,	, 600 MHz, CDCl3).
-----------------------	---------------------	----------	------------------	--------------------

Figure S9: ¹H NMR spectrum (500 MHz, CDCl3) of plakilactone G (1).

Figure S11: HSQC spectrum (500 MHz, CDCl₃) of plakilactone G (1).

Figure S12: HMBC spectrum (500 MHz, CDCl₃) of plakilactone G (1).

Figure S17: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of Me16 of plakilactone H (2).

Figure S19: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H15a of plakilactone H (2).

Figure S20: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H15b of plakilactone H (2).

Figure S21: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H9 of plakilactone H (2).

Figure S22: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H13a of plakilactone H (2).

Figure S23: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H5b of plakilactone H (2).

Figure S24: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H11 of plakilactone H (2).

Figure S25: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H7 of plakilactone H (2).

Figure S26: Selective 1D-NOESY spectrum (600 MHz, CDCl₃) of H8 of plakilactone H (2).

Table S2: Experimental (in $CDCl_3$) and calculated (in vacuo) ^{13}C chemical shifts of diastereoisomers 2a,b,e,f.

		2a	2a 2b		2f	
carbon	δ_{exp}	δ_{calc}	δ_{calc}	δ_{calc}	δ_{calc}	
10	9.7	10.8	9.6	9.6	10.8	
9	24.9	25.7	25.6	26.0	25.1	
8	60.9	58.5	61.0	59.1	62.1	
7	62.1	59.5	60.6	60.5	61.1	
6	38.3	36.1	37.9	38.8	36.4	
5	39.2	36.7	40.3	40.6	39.3	
4	89.2	86.7	87.5	86.6	87.4	
1	173.6	169.3	169.9	169.2	170.5	
2	136.1	138.8	139.8	137.3	140.4	
3	150.2	151.0	150.7	153.5	150.0	
11	18.3	20.3	20.5	20.4	20.6	
12	11.8	10.0	10.6	10.4	10.5	
13	31.2	30.7	32.2	29.1	32.6	
14	7.7	7.9	6.9	7.4	6.8	
15	25.8	28.2	27.1	27.1	26.1	
16	11.4	10.0	11.4	10.1	8.9	

		1 a	1b	1c	1d	
carbon	δ_{exp}	δ_{calc}	δ_{calc}	δ_{calc}	δ_{calc}	
10	10.1	10.0	10.3	10.6	10.2	
9	24.0	21.6	26.2	27.5	22.1	
8	73.6	72.4	74.5	73.1	70.7	
7	75.6	76.1	71.8	79.3	76.5	
6	35.6	36.0	37.2	34.2	34.0	
5	36.2	39.2	37.0	37.5	37.0	
4	89.6	87.1	87.2	88.8	87.5	
1	173.4	169.0	169.5	172.1	169.2	
2	135.7	137.8	137.5	140.7	140.4	
3	151.2	153.2	153.7	151.4	151.5	
11	18.5	20.8	20.9	20.6	20.7	
12	12.0	11.1	11.3	11.4	11.0	
13	30.9	30.3	28.2	32.2	32.6	
14	7.8	7.3	7.3	7.2	7.4	
15	25.3	24.2	22.2	20.4	24.5	
16	10.7	9.6	11.2	11.8	10.4	

Table S3: Experimental (in CDCl₃) and calculated (in vacuo) 13 C chemical shifts of diastereoisomers **1a–d**.

Figure S28: Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of Me14 of plakilactone G (1).

Figure S29: Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of Me16 of plakilactone G (1).

S22

H13b -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 H3 H8 H7 Me14 -0.5 H6, H15 H5b WWWWW -0.0 -0.5 -1.0 ~1.5 -2.0 74 H 1000.00 -85.76 -2.07 -2.5 -9.43 6.65 -2.09 76.6--5.91 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 f1 (ppm) Figure S32: Selective 1D-NOESY spectrum (500 MHz, CDCl₃) of H5b of plakilactone G (1).

			-	1a 1b			<u>1c</u>			1d			
Pro	oton	exp R _{NOE} (Å)	R _{calcd} (Å)	ABS % error ^a	exp R _{NOE} (Å)	R _{calcd} (Å)	ABS % error ^a	exp R _{NOE} (Å)	R _{calcd} (Å)	ABS % error ^a	exp R _{NOE} (Å)	R _{calcd} (Å)	ABS % error ^a
H5b	H5a	1.69	1.76	4%	1.73	1.76	0%	1.64	1.76	7%	1.68	1.76	5%
H5b	H3	2.99	2.94	1%	3.06	3.13	2%	2.90	2.77	5%	2.97	3.84	26%
H5b	H7	2.59	2.53	2%	2.65	3.01	13%	2.51	2.50	1%	2.57	2.55	1%
H5b	H13b	2.64	2.76	4%	2.70	2.70	0%	2.56	2.79	9%	2.62	2.68	2%
H5b	H15	2.42	2.75	13%	2.48	2.81	13%	2.35	2.85	19%	2.40	2.75	13%
H3	H11	3.11	3.23	4%	3.18	3.19	0%	3.02	3.25	8%	3.09	3.28	6%
H3	Me12	3.16	3.14	1%	3.24	3.22	1%	3.07	3.14	2%	3.15	3.08	2%
H3	Me14	3.16	3.31	5%	3.23	3.22	0%	3.06	3.35	9%	3.14	3.29	5%
H11	Me12	3.00	2.62	13%	3.07	2.62	16%	2.91	2.63	10%	2.98	2.63	13%
H13b	H6	2.55	2.88	12%	2.61	2.74	5%	2.47	4.56	59%	2.53	4.38	54%
H13b	Me14	2.84	2.62	8%	2.91	2.62	10%	2.75	2.63	5%	2.82	2.62	7%
H9b	H8	2.80	3.03	8%	2.87	2.85	1%	2.72	3.04	11%	2.78	3.06	9%
H9b	H9a	1.87	1.76	6%	2.06	1.76	8%	1.81	1.76	3%	2.00	1.76	5%
H9b	Me10	3.15	2.62	18%	3.22	2.63	20%	3.05	2.63	15%	3.13	2.62	18%
Me16	H7	3.02	3.01	0%	3.09	4.25	32%	2.93	4.61	44%	3.00	3.12	4%
MAE				6.8%			8.1%			13.8%			11.3%
STD				8.8%			12.5%			19.9%			17.0%

Table S4: Comparison of inter-proton distances determined by NOEs for plakilactone G (1) in $CDCl_3$ with DFT-calculated value for **1a–d**. The value in bold was used to calibrate the NOEs.

 $||||_{a} error| = ||R_{calcd} - R_{NOE}|/[(R_{calcd} + R_{NOE})/2]$, absolute differences for calculated versus NOE-derived distances/calculated distances.

^bMAE = Σ [%error]/n.