Search results

Search for "2,2′-bipyridine" in Full Text gives 57 result(s) in Beilstein Journal of Organic Chemistry.

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • are redshifted with respect to the open state, demonstrating the porphyrin–porphyrin interactions. Along with Lehn’s and Vives’ work [35][46], this example opens the way for new electroactive systems with a cation-controlled electrochemical behavior. The common bidentate 2,2’-bipyridine ligand [58
  • ). They developed tweezers with carboxamidoindole units connected in 4 and 4’ positions to a 2,2’-bipyridine unit for switchable anion recognition [62]. The uncomplexed open conformation displays a very low affinity for anions such as chloride, acetate, or diphosphate (log K < 2). The coordination of
PDF
Album
Review
Published 01 Mar 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • -halides [115]. Their optimized reaction conditions required a NiII precursor, 2,2’-bipyridine (bpy) as ligand, silver nitrate (AgNO3) as an additive and the combination of a magnesium (Mg) sacrificial anode and a RVC cathode (Scheme 35A). A crucial discovery in advancing this methodology was the in situ
PDF
Album
Perspective
Published 21 Feb 2024

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • demonstrated theoretically and mechanistically the important role of the NHC ligand in the resultant catalyst Rh(NHC) for the hydroarylation of alkenes and alkynes with chelating 2,2-bipyridine and 2,2-biquinoline molecules. The experimental studies revealed that the trans-effect of the NHC ligand in the
PDF
Album
Review
Published 12 Jun 2023

Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor

  • Wei-Hsin Hsu,
  • Susanne Reischauer,
  • Peter H. Seeberger,
  • Bartholomäus Pieber and
  • Dario Cambié

Beilstein J. Org. Chem. 2022, 18, 1123–1130, doi:10.3762/bjoc.18.115

Graphical Abstract
  • (from Vapourtec) [29][30][31][32]. To decrease the optical density of the bed, the column was loaded with a mixture of poly-5,5’-di(9H-carbazol-9-yl)-2,2’-bipyridine (poly-czbpy), glass beads and silica [33]. Once the column was ready, nickel was ligated to the polymerized ligand to afford the
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • powder with imidazopyridine and aryl iodides or alkyl halides in the presence of Na2CO3 (2 equiv) using the NiBr2/2,2-bipyridine system to give aryl or alkyl imidazopyridinyl selenides [24]. In these reactions, aryl iodides, arylboronic acids, and alkyl halides are coupled with Se powder to form diaryl
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • of Fe(acac)3 and a ligand (Scheme 10) [27]. The optimized reaction of phenylacetylene with 1-iodobenzene comprised 10 mol % of Fe(acac)3, 20 mol % of 2,2’-bipyridyl and 2 equiv of Cs2CO3 in toluene at 135 °C for 42 h. By using Fe(acac)3 as catalyst and 2,2’-bipyridine (25) as the ligand the best
  • alkynes with Fe(acac)3/2,2-bipyridine catalyst. Sonogashira cross-coupling of terminal alkynes with aryl iodides in the presence of Fe powder/ PPh3/CuI catalyst. α-Fe2O3 nanoparticles-catalyzed coupling of phenylacetylene with aryl iodides. Sonogashira cross-coupling reaction between phenylacetylene and 4
PDF
Album
Review
Published 03 Mar 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • (sp2)–H bonds of azoles was developed by Zhang [89]. A 2,2’-bipyridine copper coordination compound served as the photoredox catalyst and accomplished the azole C–H arylations. Under irradiation with blue LED, the photoexcited state [LnCuI-benzoxazole]* (C) engages in a double electron-transfer process
PDF
Album
Review
Published 12 Oct 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • catalysis and ketone HAT photocatalyst [66]. Here, the catalytic system composed of the ketone photocatalyst (4-methoxyphenyl)(4-(trifluoromethyl)phenyl)methanone (24), Ni(acac)2, 5,5’-dimethyl-2,2’-bipyridine (5,5’-diMe-bpy), Na2CO3 under visible light (CFL) irradiation was found to be optimal to provide
  • bonds are not limited to tertiary amines/amides. Secondary amides could also be arylated, as reported by Montgomery, Martin and co-workers [72]. The authors discovered that the combination of Ir[dF(CF3)ppy]2(dtbbpy)PF6, NiBr2·diglyme, 5,5’-dimethyl-2,2’-bipyridine (5,5’-diMe-bpy), and K3PO4 in dioxane
  • carbon nitride (mpg-CN) [74][75][76] as a heterogeneous organic semiconductor photocatalyst in combination with nickel catalysis [77]. Here, the catalytic system consisting of NiBr2·glyme, 2,2′-bipyridine, 2,6-lutidine, and mpg-CN under blue light irradiation at ambient temperature was found to be
PDF
Album
Review
Published 31 Aug 2021

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • of various similar molecules. Similarly, Shi controlled a conversion between helicates and a tetrahedral cage by varying the radius of the metal ion (Hg2+ vs Fe2+) [55]. They reported on the self-assembly of the monomer 20, encompassing the quadruple DDAA hydrogen-bonding arrays and 2,2’-bipyridine
  • four-component sandwich complex [Cu2(16)(17)(18)]2+. a) Chemical structure of the monomer 20 with its quadruple hydrogen-bonding array and a metal-affine 2,2’-bipyridine unit. b) Conversion of the helicate [Hg2(20)6]4+ to the S4-cage [Fe4(20)12]8+ and [Hg2(20)2]4+ based on double self-sorting
PDF
Album
Review
Published 20 Nov 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • aliphatic amine ligands (N,N,N′,N′-tetramethylethylenediamine and 1,1,4,7,10,10-hexamethyltriethylenetetramine) showed moderate results and aromatic nitrogen-containing ligands (2,2’-bipyridine and phenanthroline) were even less efficient for the synthesis of target the isoxazolines. Both aromatic (products
PDF
Album
Review
Published 05 Jun 2020

Development of fluorinated benzils and bisbenzils as room-temperature phosphorescent molecules

  • Shigeyuki Yamada,
  • Takuya Higashida,
  • Yizhou Wang,
  • Masato Morita,
  • Takuya Hosokai,
  • Kaveendra Maduwantha,
  • Kaveenga Rasika Koswattage and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2020, 16, 1154–1162, doi:10.3762/bjoc.16.102

Graphical Abstract
  • assist the development of environmentally benign, pure organic phosphorescent materials. (A) Transition-metal-containing and (B) pure organic phosphorescent materials reported thus far (bpy: 2,2'-bipyridine, ppy: 2-phenylpyridine, OEP: octaethylporphyrin). (A) Chemical structures of fluorescent bistolane
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2020

Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: the copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridine with selenium

  • Mio Matsumura,
  • Tsutomu Takahashi,
  • Hikari Yamauchi,
  • Shunsuke Sakuma,
  • Yukako Hayashi,
  • Tadashi Hyodo,
  • Tohru Obata,
  • Kentaro Yamaguchi,
  • Yasuyuki Fujiwara and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2020, 16, 1075–1083, doi:10.3762/bjoc.16.94

Graphical Abstract
  • , and aryl halides in the presence of Na2CO3 (2 equiv) using a NiBr2/2,2-bipyridine system [31]. We also developed reactions of imidazopyridines, Se powder, and triarylbismuthanes using a CuI/1,10-phenanthroline catalytic system that did not require a base or an additive [32]. On the other hand, the
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Architecture and synthesis of P,N-heterocyclic phosphine ligands

  • Wisdom A. Munzeiwa,
  • Bernard Omondi and
  • Vincent O. Nyamori

Beilstein J. Org. Chem. 2020, 16, 362–383, doi:10.3762/bjoc.16.35

Graphical Abstract
  • a Zn-oxazole complex 148. Finally, ligand exchange with 2,2-bipyridine generated the desired 2-(diphenylphosphine)oxazole 149. Metallocenes have been used as ligand building blocks for many catalytic transformations. Especially, ferrocene has been used due to its high electron-donating capability
PDF
Album
Review
Published 12 Mar 2020

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • decarboxylative trifluoromethylation of various primary and secondary aliphatic carboxylic acids. With AgNO3 as a catalyst, (bpy)Cu(CF3)3 (bpy = 2,2’-bipyridine) as a CF3 source and K2S2O8 as an oxidant, aliphatic carboxylic acids were converted to the corresponding trifluoromethylated products in good yields
PDF
Album
Review
Published 23 Sep 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

Superelectrophilic carbocations: preparation and reactions of a substrate with six ionizable groups

  • Sean H. Kennedy,
  • Makafui Gasonoo and
  • Douglas A. Klumpp

Beilstein J. Org. Chem. 2019, 15, 1515–1520, doi:10.3762/bjoc.15.153

Graphical Abstract
  • were made in reference to NMR solvent signals. Mass spectra were obtained from a commercial analytical laboratory. The synthesis of compound 9 is detailed in Supporting Information File 1. Preparation of 6,6'-bis([1,1'-biphenyl]-4-yl(pyridin-2-yl)methyl)-2,2'-bipyridine (10): In a pressure tube at 25
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2019

Complexation of a guanidinium-modified calixarene with diverse dyes and investigation of the corresponding photophysical response

  • Yu-Ying Wang,
  • Yong Kong,
  • Zhe Zheng,
  • Wen-Chao Geng,
  • Zi-Yi Zhao,
  • Hongwei Sun and
  • Dong-Sheng Guo

Beilstein J. Org. Chem. 2019, 15, 1394–1406, doi:10.3762/bjoc.15.139

Graphical Abstract
  • ± 0.4) × 107 M−1 (Figure 4d, Table 1). The n value was fitted as 3, indicating the formation of a 3:1 host–guest complex. We inferred that each 4,4'-dicarboxylic acid-2,2'-bipyridine ligand interacts with one GC5A through salt bridge interaction between a carboxyl anion and guanidinium cation. The
  • covalent linked calixarene via proton-coupled electron transfer [62]. Kitamura and co-workers reported that the complexation of SC4A could quench the luminescence of tris(2,2'-bipyridine)Ru(II) dichloride (Ru(bpy)3), where SC4A serves as a PET quencher [63]. Shinkai and co-workers reported that the
PDF
Album
Full Research Paper
Published 25 Jun 2019

Synthesis of aryl cyclopropyl sulfides through copper-promoted S-cyclopropylation of thiophenols using cyclopropylboronic acid

  • Emeline Benoit,
  • Ahmed Fnaiche and
  • Alexandre Gagnon

Beilstein J. Org. Chem. 2019, 15, 1162–1171, doi:10.3762/bjoc.15.113

Graphical Abstract
  • procedure for the synthesis of aryl cyclopropyl sulfides A sealed tube equipped with a magnetic stirring bar was charged under ambiant air with cyclopropylboronic acid (25, 0.6 mmol, 1.5 equiv), cesium carbonate (0.4 mmol, 1.0 equiv), Cu(OAc)2 (0.4 mmol, 1.0 equiv), 2,2'-bipyridine (0.4 mmol, 1.0 equiv) and
PDF
Album
Supp Info
Letter
Published 27 May 2019
Graphical Abstract
  • 2,2'-bipyridine 25 using the reaction of chlorosulfonic acid and 2,2'-bipyridine as well as its application for the synthesis of the various xanthene derivatives 24, 27, and 28 [41]. In another study, the sulfonated imidazole 26 was prepared via the dropwise addition of chlorosulfonic acid to a
PDF
Album
Review
Published 01 Nov 2018

Learning from B12 enzymes: biomimetic and bioinspired catalysts for eco-friendly organic synthesis

  • Keishiro Tahara,
  • Ling Pan,
  • Toshikazu Ono and
  • Yoshio Hisaeda

Beilstein J. Org. Chem. 2018, 14, 2553–2567, doi:10.3762/bjoc.14.232

Graphical Abstract
  • reaction of H2bpdc, Ru(bpy)2Cl2, and a zinc source under solvothermal conditions (bpy = 2,2′-bipyridine, Scheme 5) [41]. The molecular photosensitizer [Ru(bpy)3]2+ was incorporated into the MOF through adsorption to form Ru@MOF, accompanied by a color change. Furthermore, 1 was effectively immobilized on
PDF
Album
Review
Published 02 Oct 2018

Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source

  • Tetsuaki Fujihara and
  • Yasushi Tsuji

Beilstein J. Org. Chem. 2018, 14, 2435–2460, doi:10.3762/bjoc.14.221

Graphical Abstract
  • Co catalyst, 2a-Me was not obtained. Moreover, Mn powder proved to be essential for the carboxylation to proceed. Using CoI2(bpy) (bpy = 2,2′-bipyridine) as the catalyst afforded 2a-Me in 76% yield, whereas CoI2(PPh3)2 and CoI2(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane) suppressed the
PDF
Album
Review
Published 19 Sep 2018

Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex

  • Kazuhiko Maeda,
  • Daehyeon An,
  • Ryo Kuriki,
  • Daling Lu and
  • Osamu Ishitani

Beilstein J. Org. Chem. 2018, 14, 1806–1812, doi:10.3762/bjoc.14.153

Graphical Abstract
  • reduction systems using g-C3N4-based materials, in combination with functional metal complexes [8][9][10][11][12][13][14][15][16]. For example, mesoporous g-C3N4 (mpg-C3N4) modified with a mononuclear Ru(II) complex, such as trans-(Cl)-Ru{(PO3H2)2bpy(CO)2Cl2} (bpy: 2,2’-bipyridine), abbreviated as RuP, is
PDF
Album
Full Research Paper
Published 17 Jul 2018

Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies

  • Rakesh Puttreddy,
  • Ngong Kodiah Beyeh,
  • S. Maryamdokht Taimoory,
  • Daniel Meister,
  • John F. Trant and
  • Kari Rissanen

Beilstein J. Org. Chem. 2018, 14, 1723–1733, doi:10.3762/bjoc.14.146

Graphical Abstract
  • -oxide (3), 4-methylpyridine N-oxide (4), 2,6-dimethylpyridine N-oxide (5), 2-methoxypyridine N-oxide (6), 3-methoxypyridine N-oxide (7), 4-methoxypyridine N-oxide (8), 2,6-dimethoxypyridine N-oxide (9), 4-phenylpyridine N-oxide (10), 4,4'-bipyridine N,N'-dioxide (11) and 2,2'-bipyridine N,N'-dioxide (12
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • of the nature of the substituents (Scheme 31) [71]. The transformation has been extended to other cyclic diaryl-λ3-iodanes by using 2,2’-bipyridine as the copper ligand, allowing the preparation of the corresponding thioxanthenes, phenoxathiines and dibenzothiepines in moderate to good yields. A
PDF
Album
Review
Published 21 Jun 2018

Recent advances in phosphorescent platinum complexes for organic light-emitting diodes

  • Cristina Cebrián and
  • Matteo Mauro

Beilstein J. Org. Chem. 2018, 14, 1459–1481, doi:10.3762/bjoc.14.124

Graphical Abstract
  • in the recent past. Early reports were based on 6-phenyl-2,2’-bipyridine, namely C^N^N [49][50]. In spite of the strong ligand field exerted by the cyclometalating moiety, this type of complexes resulted to be rather weakly emissive due to large structural distortion of the emitting triplet excited
  • , platinum(II) complexes bearing symmetrical N^C^N ligands resulted in better emitters than those bearing the corresponding C^N^N motif. For instance, while [Pt(C^N^N)Cl] (C^N^N = 6-phenyl-2,2’-bipyridine) possess a rather low emission (PLQY = 0.025) in degassed CH2Cl2 solution at room temperature [50], [Pt
PDF
Album
Review
Published 18 Jun 2018
Other Beilstein-Institut Open Science Activities