Search results

Search for "Knoevenagel" in Full Text gives 89 result(s) in Beilstein Journal of Organic Chemistry.

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • variety of reactions; that are, phosphite- or Lawesson’s reagent-mediated olefination reactions (to introduce DTF motifs), Ramirez/Corey–Fuchs dibromo-olefinations followed by Sonogashira couplings (to introduce enediynes motifs), and Knoevenagel condensations (to introduce the vinylic diester motif). By
  • as a mixture of E and Z isomers (ca. 4:1). Further functionalization of the IF-DTF ketone 11 was obtained by Ramirez/Corey–Fuchs dibromo-olefination and Knoevenagel condensation to yield vinylic dibromide 14 and diester 15, respectively, as illustrated in Scheme 2. We noted that the dibromo
  • -olefinations, and Knoevenagel condensations. In particular, the acetylenic scaffolds presented in this work may be useful precursors for even more elaborate, conjugated and carbon-rich structures in future work. Experimental Anhydrous MeOH was obtained by distillation from activated Mg and stored over 3 Å
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent

  • Stéphanie Hesse

Beilstein J. Org. Chem. 2023, 19, 1537–1544, doi:10.3762/bjoc.19.110

Graphical Abstract
  • scaffolds is the introduction of a benzylidene moiety on C5 via a Knoevenagel reaction. Here, a facile synthesis of 5-arylidenerhodanines via a Knoevenagel reaction in an ʟ-proline-based deep eutectic solvent (DES) is reported. This method is fast (1 h at 60 °C), easy, catalyst-free and sustainable as no
  • compounds are the more active ones. Keywords: antioxidant; deep eutectic solvent; Knoevenagel; ʟ-proline DES; rhodanine; Introduction Rhodanines and related five-membered heterocycles with multiple heteroatoms (i.e., thiazolidinediones, thiazolidinones, hydantoins, thiohydantoins) are very interesting
  • Knoevenagel condensation of rhodanine with different aldehydes [3]. The reactions were performed in ChCl/urea (1:2) at 90 °C, without needing a catalyst and the products were obtained in low to good yields (10–78%). On another hand, ʟ-proline is well known as an organocatalyst and its use in aldol and
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2023

Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones

  • Ksenia Malkova,
  • Andrey Bubyrev,
  • Stanislav Kalinin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2023, 19, 800–807, doi:10.3762/bjoc.19.60

Graphical Abstract
  • have developed a new convenient protocol for the synthesis of 3-sulfonyl-substituted quinolines (sulfonamides and sulfones). The approach is based on a Knoevenagel condensation/aza-Wittig reaction cascade involving o-azidobenzaldehydes and ketosulfonamides or ketosulfones as key building blocks. The
  • , the method for the synthesis of 3-acyl-substituted quinolines from o-azidobenzaldehydes and 1,3-dicarbonyl compounds was reported [70][71] (Figure 2a). A combination of Knoevenagel condensation and aza-Wittig reaction allowed to build up target products in high yields. In case of [70], the procedure
  • quinolines (sulfonamides and sulfones) (Figure 2b). Herein, we report the successful implementation of this approach. Results and Discussion The Knoevenagel condensation/aza-Wittig reaction cascade was used for the preparation of 3-sulfonyl-substituted quinolines. The process proceeds in a domino fashion
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • reaction [33]. Thus, Knoevenagel condensation using the diaryl ether 29 and malonic acid gave the corresponding α,β-unsaturated compound 30, which was submitted to a concomitant hydrogenation of the double bond and the nitro group to give compound 31. Sequential diazotization/halogenation and
PDF
Album
Review
Published 29 Mar 2023

Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2E,4E)-dienones

  • Benedikt Kolb,
  • Daniela Silva dos Santos,
  • Sanja Krause,
  • Anna Zens and
  • Sabine Laschat

Beilstein J. Org. Chem. 2023, 19, 176–185, doi:10.3762/bjoc.19.17

Graphical Abstract
  • from a haliclona marine sponge [4], and vertinolide (5) from Verticillium intertextum [5] (Scheme 1). As outlined in Scheme 2, a variety of methods has been reported for the synthesis of conjugated dienones, mostly via addition/elimination reactions such as Knoevenagel condensation or Claisen–Schmidt
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2023

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • as ligands in organometallic catalysts [9] and as versatile organocatalysts [10] in a very wide range of organic reactions such as classical benzoin condensation, transesterification, acylation, Knoevenagel reaction, Claisen condensation etc. The electrochemical generation of carbenes from ILs avoids
PDF
Album
Full Research Paper
Published 05 Aug 2022

Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles

  • Shao-Cong Zhan,
  • Ren-Jie Fang,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 796–808, doi:10.3762/bjoc.18.80

Graphical Abstract
  • different kinds of aromatic aldehydes and 5-arylidene-1,3-dimethylbarbituric acids. 5-Arylidene-1,3-dimethylbarbituric acids could be easily generated through Knoevenagel condensation of aromatic aldehydes and 1,3-dimethylbarbituric acid under the catalysis of Lewis acid. We envisioned whether the desired
  • 3-substituted indole, which undergoes dehydration to form the key intermediate indole-based ortho-quinodimethanes (o-QDMs, A). In the meantime, the cyclic 1,3-diones and aromatic aldehyde undergo Knoevenagel condensation to afford the different kinds of dienophiles. Subsequently, the Diels–Alder
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Heteroleptic metallosupramolecular aggregates/complexation for supramolecular catalysis

  • Prodip Howlader and
  • Michael Schmittel

Beilstein J. Org. Chem. 2022, 18, 597–630, doi:10.3762/bjoc.18.62

Graphical Abstract
  • molecules through π–π stacking with the hydrophobic aromatic wall of the host. Finally, the boat was investigated as a catalyst for the Knoevenagel condensation reaction (Figure 2) of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid and Meldrum’s acid in aqueous media. One of the primary
  • ]. Notably, the dissipative conditions were realized by addition of a fuel acid [113][114] that surprisingly ignited a base-catalyzed Knoevenagel addition reaction (Figure 25). As DABCO is a stronger binding ligand (log β = 7.20) [115] towards zinc porphyrin (ZnPor) than pyridine (log K = 4.45) [90] the
  • 115 reclaims the proton back (Figure 25, top). As a result, State-II may be afforded under dissipative conditions. A surprising facet of this State-I/State-II interconversion (Figure 24) [112] was the finding that the protonated DABCO (60-H+) was a rather efficient base catalyst for a Knoevenagel
PDF
Album
Review
Published 27 May 2022

Preparation of mono-substituted malonic acid half oxyesters (SMAHOs)

  • Tania Xavier,
  • Sylvie Condon,
  • Christophe Pichon,
  • Erwan Le Gall and
  • Marc Presset

Beilstein J. Org. Chem. 2021, 17, 2085–2094, doi:10.3762/bjoc.17.135

Graphical Abstract
  • usually achieved by a nucleophilic substitution of an alkyl halide by the deprotonated malonate [12][13][14][15][16][17][18][19], but other strategies could be envisioned: Cu-catalyzed arylation reactions for aryl-substituted MAHOs [20][21][22][23]; Knoevenagel/reduction sequences for benzyl-substituted
  • compound 5 is commercially available or easily accessible on a relatively large scale (Scheme 3) [56]. Therefore, we first achieved an alkylation step of 5 using a Knoevenagel reaction with benzaldehyde, followed by an in situ reduction of the resulting alkylidene [57][58]. Even if the reaction worked well
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2021

Icilio Guareschi and his amazing “1897 reaction”

  • Gian Cesare Tron,
  • Alberto Minassi,
  • Giovanni Sorba,
  • Mara Fausone and
  • Giovanni Appendino

Beilstein J. Org. Chem. 2021, 17, 1335–1351, doi:10.3762/bjoc.17.93

Graphical Abstract
  • to name type-I Guareschi pyridone synthesis the two-component reaction between a β-aminocarbonyl and a cyanoacetic ester, a reaction first reported in 1893 [34]. It is a classic combination of a Knoevenagel condensation and ester aminolysis typical for many heterocyclic syntheses. The type-II
PDF
Album
Supp Info
Review
Published 25 May 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
  • to fragrance chemists. This section investigates the aldol reaction as this is a vital C–C and C=C bond forming tool within this class of reactions. Other sequences such as the Knoevenagel and Darzens condensation, however, will also be considered as part of the evaluation. The condensation of
  • of 1,2-aminoalcohol 110 (90% yield, anti/syn 7:3, 78% ee). At the end of the Henry reaction an in-line plug of silica gel removes the catalyst before the second reduction step to prevent issues of chelation and palladium deactivation. Knoevenagel condensations are also of considerable interest to the
  • processing volumes and short reaction times make the reactions quite suitable for continuous production via a flow system. Needless to say, the first example of Knoevenagel condensations in flow comes from Venturello et al. back in 1989 [154]. The authors exploited a glass column filled with 10 grams of
PDF
Album
Review
Published 18 May 2021

Application of the Meerwein reaction of 1,4-benzoquinone to a metal-free synthesis of benzofuropyridine analogues

  • Rashmi Singh,
  • Tomas Horsten,
  • Rashmi Prakash,
  • Swapan Dey and
  • Wim Dehaen

Beilstein J. Org. Chem. 2021, 17, 977–982, doi:10.3762/bjoc.17.79

Graphical Abstract
  • presence of a catalytic amount of piperidine afforded pyridopsoralen 22 in 46% yield. Analogously, pyridopsoralen 23 was prepared from 16 by Knoevenagel condensation with diethyl malonate and subsequent lactonization with 62% yield (Scheme 4) [13]. To the best of our understanding, the scaffolds 21–23 are
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • -MCRs and their mechanistic insights over the past decade and shed light on its advantage over the conventional approach. Keywords: cycloaddition; Knoevenagel condensation; Michael addition; microwave; multicomponent reactions; Introduction Recently, organic chemists are focussed to develop
  • moderate to good yields under catalyst-free conditions (Scheme 1). A rationale of mechanism proposed the transformation via a Knoevenagel condensation between aldehyde and a molecule of 6 affording A. The concurrent condensation of ammonium acetate with another molecule of 6 led to the formation of an
  • the involvement of an elementary formation of Knoevenagel adduct A from the reaction between the aldehyde and 11. This adduct undergoes an intermolecular Michael addition to naphthylamine resulting in the formation of B. A subsequent intramolecular nucleophilic cyclization leads C followed by
PDF
Album
Review
Published 19 Apr 2021

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • activity in a Knoevenagel addition reaction. At the same time, the click reaction remained shut down (ON-1, OFF-2). In sum, the three interdependent states SelfSORT-I to III regulated two different reaction outcomes and an OFF state. In biology, motor proteins carry out essential tasks by walking along
PDF
Album
Review
Published 20 Nov 2020

Synthesis and characterization of S,N-heterotetracenes

  • Astrid Vogt,
  • Florian Henne,
  • Christoph Wetzel,
  • Elena Mena-Osteritz and
  • Peter Bäuerle

Beilstein J. Org. Chem. 2020, 16, 2636–2644, doi:10.3762/bjoc.16.214

Graphical Abstract
  • -thienylcarbaldehyde (23), which was put to reaction with methyl 2-azidoactetate [46] and sodium methanolate in a Knoevenagel condensation to give azide 24 in 81% yield. A solution of the azide 24 was added to boiling toluene and cyclization to thienopyrrole 25 occurred via a nitrene intermediate in nearly
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2020

Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation

  • Kumar Godugu,
  • Venkata Divya Sri Yadala,
  • Mohammad Khaja Mohinuddin Pinjari,
  • Trivikram Reddy Gundala,
  • Lakshmi Reddy Sanapareddy and
  • Chinna Gangi Reddy Nallagondu

Beilstein J. Org. Chem. 2020, 16, 1881–1900, doi:10.3762/bjoc.16.156

Graphical Abstract
  • . Further, dolomite is used as a heterogeneous green catalyst in very few organic transformations, such as Knoevenagel, Michael–Henry, and transesterification reactions [73][74]. To the best of our knowledge, there are no reports on the NDL-catalyzed synthesis of aforesaid N-heterocycles under ultrasonic
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Highly selective Diels–Alder and Heck arylation reactions in a divergent synthesis of isoindolo- and pyrrolo-fused polycyclic indoles from 2-formylpyrrole

  • Carlos H. Escalante,
  • Eder I. Martínez-Mora,
  • Carlos Espinoza-Hicks,
  • Alejandro A. Camacho-Dávila,
  • Fernando R. Ramos-Morales,
  • Francisco Delgado and
  • Joaquín Tamariz

Beilstein J. Org. Chem. 2020, 16, 1320–1334, doi:10.3762/bjoc.16.113

Graphical Abstract
  • with benzyl bromides 14b and 14d, respectively (Scheme 5). Pyrrole 16c was synthesized by Knoevenagel reaction of 13a with dimethyl malonate [42]. The Pd(0)-catalyzed cyclization of 8k and 8l required a temperature of 140 °C, but provided pyrrolo[2,1-a]isoindoles 18d and 18e, respectively, in good
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • improve protein stability, natural hydrocarbon amino acids were replaced with Pff 77a. The effect of enhanced protein stability upon this replacement is referred as to ‘fluoro-stabilization effect’ [56]. 1.7. Knoevenagel condensation of methyl isocyanoacetate Three isomers of fluorinated phenylalanines
  • 53a,b and 81 were synthesized by Knoevenagel condensation of methyl isocyanoacetate (79) and the corresponding fluorinated benzaldehyde derivatives 50a,b, and m-fluorobenzaldehyde (78) as electrophiles in the presence of catalytic amounts of Cu(I) and base. The cinnamate derivatives 80a–c obtained
  • -borono-2-[18F]FPhe. Synthesis of protected 4-[18F]FPhe via arylstannane derivatives. Synthesis of FPhe derivatives via intermediate imine formation. Synthesis of FPhe derivatives via Knoevenagel condensation. Synthesis of FPhe derivatives 88a,b from aspartic acid derivatives. Synthesis of 2-(2
PDF
Album
Review
Published 15 May 2020

Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates

  • Phil M. Pithan,
  • Sören Steup and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2020, 16, 904–916, doi:10.3762/bjoc.16.82

Graphical Abstract
  • Knoevenagel reaction from the readily available 5-formyl-substituted spirooxazine 1b. Due to the introduction of the electron-accepting quinolizinium(ethenyl) substituent, the spirooxazines 3a and 3b were photoinert towards the electrocyclic ring opening, thus constituting one of the rare cases of
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2020

Synthesis of 4-(2-fluorophenyl)-7-methoxycoumarin: experimental and computational evidence for intramolecular and intermolecular C–F···H–C bonds

  • Vuyisa Mzozoyana,
  • Fanie R. van Heerden and
  • Craig Grimmer

Beilstein J. Org. Chem. 2020, 16, 190–199, doi:10.3762/bjoc.16.22

Graphical Abstract
  • , numerous methods for the synthesis of these compounds have been developed, examples are the Pechmann condensation [10][11], Stille coupling reaction [12], Knoevenagel condensation [13], Heck coupling reaction [14], Kostanecki reaction, Baylis–Hillman reaction [15], Michael reaction [16], Suzuki–Miyaura
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2020

Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation

  • Sambasivarao Kotha,
  • Gaddamedi Sreevani,
  • Lilya U. Dzhemileva,
  • Milyausha M. Yunusbaeva,
  • Usein M. Dzhemilev and
  • Vladimir A. D’yakonov

Beilstein J. Org. Chem. 2019, 15, 2774–2781, doi:10.3762/bjoc.15.269

Graphical Abstract
  • synthesis of thiazolidinedione derivatives is refluxing chloroacetic acid (2) with thiourea (1), followed by a Knoevenagel condensation with an aldehyde (Scheme 1) [25]. Results and Discussion Limited reports are available dealing with the synthesis of spiro derivatives of thiazolidine-2,4-diones [26][27
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2019

Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries

  • Xiao Xie,
  • Michela Zuffo,
  • Marie-Paule Teulade-Fichou and
  • Anton Granzhan

Beilstein J. Org. Chem. 2019, 15, 1872–1889, doi:10.3762/bjoc.15.183

Graphical Abstract
  • Knoevenagel condensation of the corresponding heterocyclic precursors I1–5 and I7–16 with 1.5 molar equivalents (per styryl unit) of aromatic aldehydes ArCHO (Scheme 1A,B). The synthesis of precursors I3–5 and I15 is presented in Scheme 2 and detailed in Supporting Information File 1. Dyes 6a and 19a, which
  • , B) General synthesis of A) distyryl and B) mono-styryl dyes via Knoevenagel condensation route. C) Synthesis of the dye 6a. D) Synthesis of the dye 19a. Synthesis of I3–5 and I15. Positions of maxima and intensity of long-wavelength absorption bands of dyes in MeOH and K-100 aqueous buffer.a Nucleic
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

A golden opportunity: benzofuranone modifications of aurones and their influence on optical properties, toxicity, and potential as dyes

  • Joza Schmitt and
  • Scott T. Handy

Beilstein J. Org. Chem. 2019, 15, 1781–1785, doi:10.3762/bjoc.15.171

Graphical Abstract
  • of new aurones by way of the common Knoevenagel condensation approach, mostly varying in the benzylidene portion. To explore benzofuranone variations using this method, different benzofuranone starting materials are required. Although not likely to be the most colorful, we elected for simplicity’s
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells

  • Quentin Huaulmé,
  • Cyril Aumaitre,
  • Outi Vilhelmiina Kontkanen,
  • David Beljonne,
  • Alexandra Sutter,
  • Gilles Ulrich,
  • Renaud Demadrille and
  • Nicolas Leclerc

Beilstein J. Org. Chem. 2019, 15, 1758–1768, doi:10.3762/bjoc.15.169

Graphical Abstract
  • corresponding dipyrromethenium chloride, which was then converted into its BODIPY analogue 2 through complexation by BF3·OEt2 in basic media. Regioselective introduction of distyryl substituents is achieved via Knoevenagel-type condensation in the presence of piperidine using aldehyde derivatives 3 and 4 whose
  • Supporting Information File 1), whose spectra feature characteristic constant couplings of 16.2 and 16.1 Hz. It is worth mentioning that the fluorine substitution was performed on the boron center after introduction of the styryl residues, introduction prior to the Knoevenagel reaction is known to impede it
  • dehalogenation side-product. Finally, a Knoevenagel condensation in the presence of cyanoacetic acid and piperidine is performed to lead to the targeted compounds BOD-TTPA-alk and BOD-TTPA. 3. Optical properties The optical properties of compounds BOD-TTPA-alk and BOD-TTPA were first evaluated in diluted (≈10−6
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019
Other Beilstein-Institut Open Science Activities