Search results

Search for "dibenzo[b,f]oxepine" in Full Text gives 1 result(s) in Beilstein Journal of Organic Chemistry.

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • frameworks with dibenzo[b,f]azepine derived ligands have also been reported. This review provides a brief overview of the different synthetic strategies to dibenzo[b,f]azepines and other dibenzo[b,f]heteropines. Keywords: dibenzo[b,f]azepine; dibenzo[b,f]heteropine; dibenzo[b,f]oxepine; iminostilbene
  • 24 was reported by Cong et al. [45] as a method for the synthesis of substituted dibenzo[b,f]oxepines 25 (Scheme 6). Treatment of the malonate derivative 24 with Mn(OAc)3 in 90% acetic acid gave C-10 carboxylate derivatives of dibenzo[b,f]oxepine 25. The authors proposed a one-electron oxidation of
  • the enol carboxylate and subsequent 1,2 radical rearrangement and decarboxylation. Moderate to good yields of dibenzo[b,f]oxepine carboxylates 25 were achieved (63–85%). Stopka et al. [46] reported on tandem C–H functionalisation and ring expansion as an alternative to the Wagner–Meerwin rearrangement
PDF
Album
Review
Published 22 May 2023
Other Beilstein-Institut Open Science Activities