Search results

Search for "naphthol" in Full Text gives 76 result(s) in Beilstein Journal of Organic Chemistry.

Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins

  • Ke Jiang,
  • Cheng Pan,
  • Limin Wang,
  • Hao-Yang Wang and
  • Jianwei Han

Beilstein J. Org. Chem. 2024, 20, 841–851, doi:10.3762/bjoc.20.76

Graphical Abstract
  • . Keywords: annulation; arylocyclization; 3,4-benzocoumarin; diaryliodonium salts; naphthol; Introduction Diaryliodonium salts as electrophilic reagents have attracted significant attention in the field of organic synthesis owing to their efficiency and selectivity [1][2][3][4][5][6][7]. Particularly, they
  • naphthols and substituted phenols. This method represents an efficient approach to access 3,4-benzocoumarin derivatives (Scheme 1c). Results and Discussion To start the study, we used 2-naphthol (1a) and 1.1 equivalents of ortho-methyl formate-substituted diaryliodonium salt 2a as template substrates. The
  • variety of 3,4-benzocoumarin derivatives. Our investigations commenced with 2-naphthol (1), and the results are presented in Table 2. Various substituted naphthols with a broad range of substituents on the naphthalene unit were well tolerated in the reaction, affording the corresponding products 3aa–aq in
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives

  • Nahed Ketata,
  • Linhao Liu,
  • Ridha Ben Salem and
  • Henri Doucet

Beilstein J. Org. Chem. 2024, 20, 427–435, doi:10.3762/bjoc.20.37

Graphical Abstract
  • %) using again a large excess of DBU base (7 equiv) also allowed to prepare unsubstituted fluoranthene in 87% yield (Scheme 1c) [22]. The reaction of naphthol with aryl bromides followed by nonaflation and intramolecular C–H activation for the access to fluoranthenes has also been reported [23]. Most of
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2024

Synthesis and biological evaluation of Argemone mexicana-inspired antimicrobials

  • Jessica Villegas,
  • Bryce C. Ball,
  • Katelyn M. Shouse,
  • Caleb W. VanArragon,
  • Ashley N. Wasserman,
  • Hannah E. Bhakta,
  • Allen G. Oliver,
  • Danielle A. Orozco-Nunnelly and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2023, 19, 1511–1524, doi:10.3762/bjoc.19.108

Graphical Abstract
  • . Conversion of naphthols to naphthylamines is typically achieved through a three-step sequence whereby the naphthol is first O-alkylated with 2-bromo-2-methylpropionamide and this ether undergoes a Smiles rearrangement to the hydroxyamide, which is hydrolyzed to the free naphthylamine [44][45]. It has
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • -naphthol moiety 193 afforded the highest yield and enantioselectivity. On protecting the hydroxy group in the ligand as methyl ether, the reaction efficiency decreased remarkably. However, on using NHC ligands without oxygen atom, such as analogues of 193, IMes, and SIMes, no conversion occurred. 2.8 C(sp2
PDF
Album
Review
Published 20 Sep 2023
Graphical Abstract
  • 2004. In this methodology, a 1,1’-bi-2-naphthol (BINOL)-derived chiral phosphoric acid P1 was used as the catalytic reagent to couple 2-methoxyfuran (1) and N-Boc-protected aldimines 2 to incorporate an aza-tertiary stereocenter into the 2’ position of the heteroaromatic products 3 (Scheme 1) [24
  • various asymmetric chemical transformations. These compounds play a dual role in the catalytic cycle due to their intrinsic Brønsted acidity and the ability to H-bond formation. Organophosphoric acids can perform as both H-bond acceptors and donors. 1,1’-Bi-2-naphthol (BINOL) and 1,1’-spirobiindane-7,7
  • reaction proceeding through aza-Friedel–Crafts reaction and lactonization steps. Main focus of this article was to demonstrate a racemic process between α-naphthol or phenol derivatives and in situ-generated N-acetyl ketimine from methyl 2-acetamidoacrylate (18) in the course of preparing 3-NHAc
PDF
Album
Review
Published 28 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • benzaldehyde (51) (Scheme 13a). Related to this work, Feringa´s team realized also the conjugate addition to chromone (53) [44]. The enolate was again trapped with benzaldehyde in an aldol reaction (Scheme 13b). Naphthol derivatives 55 bearing an α,β-unsaturated ester group undergo a copper(I)-catalyzed
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • the bicyclic alkene followed by migratory insertion affords intermediate 12 which undergoes β-oxygen elimination to form 13. Rearrangement of 13 via β-hydride elimination and enolization generates a 1-naphthol species which undergoes intramolecular cyclization with the ester to form the final product
PDF
Album
Review
Published 24 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • first example of Al‒O/B‒H exchange in catalysis was reported by Woodward, in the enantioselective catalytic hydroboration of ketones with HBcat as the terminal reductant (Scheme 23) [103]. A mixture of 1,1′-bi-2-naphthol (BINOL), 1,1'-binaphthalene-2,2'-dithiol (DTBH2), or 2-hydroxy-2'-mercapto-1,1
PDF
Album
Review
Published 21 Mar 2023

Preparation of β-cyclodextrin/polysaccharide foams using saponin

  • Max Petitjean and
  • José Ramón Isasi

Beilstein J. Org. Chem. 2023, 19, 78–88, doi:10.3762/bjoc.19.7

Graphical Abstract
  • sorption capabilities of the matrices has been studied with the corresponding 1-naphthol (1-N) isotherms (Figure 6). When comparing the isotherms of 20Pow, 45spLiq and 45spFoam of single component matrices, a better sorption from the saponin matrices for low 1-naphthol concentrations is detected. Thus, β
  • simple hydrogel scaffold for the sorption of 1-naphthol. An aqueous sorbate mixture of five phenolic compounds has been also tested to assess the differences in the sorption behaviours of the different matrices. The absorbed amount changes as a function of the cyclodextrin/polysaccharide ratio, and the
  • . Phenolphthalein and 1-naphthol (≥99%) were obtained from Merck (Germany). Methods Synthesis procedures: Firstly, citric acid (1.3 g) is dissolved into 100 mL of deionized water (acidic pH is required for chitosan) with 1.5 g of polysaccharide (either xanthan, or locust bean gum, or chitosan) and/or β-cyclodextrin
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2023

Formal total synthesis of macarpine via a Au(I)-catalyzed 6-endo-dig cycloisomerization strategy

  • Jiayue Fu,
  • Bingbing Li,
  • Zefang Zhou,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2022, 18, 1589–1595, doi:10.3762/bjoc.18.169

Graphical Abstract
  • 110016, P. R. China Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China 10.3762/bjoc.18.169 Abstract The formal total synthesis of macarpine was accomplished by the construction of a naphthol intermediate in Ishikawa’s synthetic route with two different synthetic routes
  • total synthesis of macarpine [12] is proposed via a Au(I)-catalyzed cycloisomerization reaction. Retrosynthetically, the target molecule macarpine (1) could be disconnected into naphthol 12 (Scheme 3), a key intermediate reported by Ishikawa in the total synthesis of macarpine. This intermediate could
  • ) in tetrahydrofuran (THF), resulting in the formation of naphthol 12 [12][13], a key intermediate in the previous total synthesis of macarpine (1) reported by Ishikawa (Scheme 6). To simplify the synthetic procedure, a more straightforward strategy was proposed by using alkynyl ketone 9 [27][28][29
PDF
Album
Supp Info
Letter
Published 23 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • reaction to explore the generality of this method. Initially, we performed the reaction with a small excess of 1-naphthol (3b, 1.05 equiv) relative to halothane (1.0 equiv), and used the same procedure as for Table 1, entry 6. The reaction proceeded smoothly to give 1-fluoro-2-bromo-2-chloroethenyl ether
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides

  • Arisu Koyanagi,
  • Yuki Murata,
  • Shiori Hayakawa,
  • Mio Matsumura and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 1479–1487, doi:10.3762/bjoc.18.155

Graphical Abstract
  • , 2-aminophenols with methyl groups at the 3-, 4-, and 5-positions provided satisfactory yields of the products 8o, 8s, and 8t, respectively. On the other hand, an aminophenol with a methyl group at the 6-position provided the product 8u in a low yield. The reaction of 3-amino-2-naphthol with 2a
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using N-halosuccinimides

  • Dharmendra Das,
  • Akhil A. Bhosle,
  • Amrita Chatterjee and
  • Mainak Banerjee

Beilstein J. Org. Chem. 2022, 18, 999–1008, doi:10.3762/bjoc.18.100

Graphical Abstract
  • bromination of 2'-hydroxyacetophenone (product 2m, Scheme 3). Notably, easily oxidizable groups like –CHO remained unaffected under the reaction conditions (product 2k and 2l, Scheme 3). It is worthy to mention that the bromination on 2-naphthol and coumarin was extremely fast affording >95% yields within
  • the usefulness of the current protocol for quick access to these halo derivatives. Encouraged by this, we attempted monochlorination with selected phenols and anilines. The first attempt with 2-naphthol afforded the desired chloro derivative 2ah in high yield within 2 min. However, unlike in the case
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2022

Electroreductive coupling of 2-acylbenzoates with α,β-unsaturated carbonyl compounds: density functional theory study on product selectivity

  • Naoki Kise and
  • Toshihiko Sakurai

Beilstein J. Org. Chem. 2022, 18, 956–962, doi:10.3762/bjoc.18.95

Graphical Abstract
  • 1 M HCl without dehydration in refluxing cat. PPTS/toluene (Table 1, entries 2–4 and 7). From 5,6-dimethoxy substrate 1d, phthalide 4d was also formed together with naphthol 3d (Table 1, entry 4). In contrast, phthalides 4e and 4f were the sole products in the reactions of 6-methoxy and 4,5,6
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2022

Cs2CO3-Promoted reaction of tertiary bromopropargylic alcohols and phenols in DMF: a novel approach to α-phenoxyketones

  • Ol'ga G. Volostnykh,
  • Olesya A. Shemyakina,
  • Anton V. Stepanov and
  • Igor' A. Ushakov

Beilstein J. Org. Chem. 2022, 18, 420–428, doi:10.3762/bjoc.18.44

Graphical Abstract
  • outcome. α-Naphthol (2b) and β-naphthol (2c) reacted with bromopropargylic alcohol 1a in DMF or DMF/H2O to furnish naphthoxyhydroxyketones 4b,c in preparative yields (up to 81%) comparable to those of 4a. The introduction of an electron-withdrawing substituent (p-NO2) at the benzene ring gave a better
  • acidic than phenols 2a–c,f–i (pKa values: 9.99 [25][26] phenol (2a), 9.40 [27] α-naphthol (2b), 9.57 [27] β-naphthol (2c), 7.18 [25][26] p-nitrophenol (2d), 7.23 [25][26] o-nitrophenol (2e), 10.28 [25][26] p-cresol (2f), 10.27 [25][26] p-methoxyphenol (2g), 9.36 [25][26] p-bromophenol (2h), 10.19 eugenol
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2022

Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study

  • Angel Ho,
  • Austin Pounder,
  • Krish Valluru,
  • Leanne D. Chen and
  • William Tam

Beilstein J. Org. Chem. 2022, 18, 251–261, doi:10.3762/bjoc.18.30

Graphical Abstract
  • (EDGs) led to naphthol compounds 9, while electron-withdrawing groups (EWGs) led to the anticipated ring-opened 1,1,2-trisubstituted naphthalene framework 10 [61]. On the other hand, Edmunds and co-workers described a ring-opening reaction of C1-substituted OBDs 5 with arylboronic acids that was
  • to react. Alternative bases (Table 1, entries 7–10) were tested; however, the reaction produced isomerized naphthol derivative 17 rather than the predicted addition product. These results indicate the formation of a phenoxoiridium(I) species assists in the oxidative addition of the C–H bond, as
  • enyliridium(III) alkoxide complex which eventually leads to the formation of isomerized 1-naphthol products [61]. Interestingly, the loading of the iridium precatalyst (Table 1, entries 11–13) also had a substantial effect on the isomerization of 13b, with increased loading producing more byproduct. Other
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2022

Multi-faceted reactivity of N-fluorobenzenesulfonimide (NFSI) under mechanochemical conditions: fluorination, fluorodemethylation, sulfonylation, and amidation reactions

  • José G. Hernández,
  • Karen J. Ardila-Fierro,
  • Dajana Barišić and
  • Hervé Geneste

Beilstein J. Org. Chem. 2022, 18, 182–189, doi:10.3762/bjoc.18.20

Graphical Abstract
  • milling (Figure 1b and Figure S5 in Supporting Information File 1). Other substrates such as naphthalene and N-Boc-aniline proved unreactive under the milling conditions with NFSI. However, the more activated arene 2-naphthol underwent double fluorination affording 1,1-difluoronaphthalen-2(1H)-one as the
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2022

1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis

  • Ruan Carlos B. Ribeiro,
  • Patricia G. Ferreira,
  • Amanda de A. Borges,
  • Luana da S. M. Forezi,
  • Fernando de Carvalho da Silva and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 53–69, doi:10.3762/bjoc.18.5

Graphical Abstract
  • naphthoquinones [40][41][42]. β-NQS preparation methods generally employ β-naphthol or 1-amino-β-naphthol as starting materials. The first procedure was developed by Witt [43] in the late 19th century when he prepared 1,2-naphthoquinone-4-sulfonic acid ammonium salt (16) in a 60–75% yield from 1-amino-β-naphthol
  • -naphthoquinone-4-sulfonic acid sodium salt (β-NQSNa, 18) was very effective as a colorimetric indicator of blood amino acids. This compound came to be called Folin's reagent. To achieve 18 with adequate purity to be used in the tests, an elaborate large-scale synthetic route was developed. β-Naphthol (20) was
  • transformed into α-nitroso-β-naphthol (17); then, in a single step, a sulfonic group was added, and the nitrous group was reduced, forming compound 15, which was transformed into β-NQSNa (18) after oxidation with nitric acid. Despite not knowing exactly the structure of the adduct, Folin speculated that the
PDF
Album
Review
Published 05 Jan 2022

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • -naphthol (88) and allene-iminium intermediate I-24 to form axially chiral I-25, followed by rearomatization of the naphthol ring of I-25 and isomerization to I-26. Thereafter, CPA forms two hydrogen bonds with the two OH groups of I-26 to generate a carbocation and facilitates an intramolecular
  • tetrasubstituted allenes with aryl substituents, the asymmetric synthesis of these scaffolds has received much attention. In 2020, Lu and co-workers carried out the enantioselective dehydrative γ-arylation of α-indolyl-α-trifluoromethylpropargyl alcohol 105 and 1-naphthol (106) or 2-naphthol (107) catalyzed by
  • indole ring of the propargyl alcohol, the yield decreases, which could be due to steric effects. Since the chiral phosphoric acid catalysts can interact with these groups via double hydrogen bonds, control studies have shown that the free OH on naphthol/phenol and the NH groups on the α-indolyl-α
PDF
Album
Review
Published 15 Nov 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • of their important biological and fluorescent uses. To summarize the main syntheses of these studies: in particular, transition metal-catalyzed cascade benzylation–cyclization [17], cyclization of polycyclic aryl triflate esters [18], reaction of β-naphthol and aldehydes [19][20] or inter- or
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • synthesize tetrahydrobenzo[a]xanthene-11-ones 184 and diazabenzo[a]anthracene-9,11-dione derivatives 185 in good yields via a multicomponent reaction (Scheme 42) [76]. This methodology was based on the cyclocondensation of aromatic aldehydes 180, β-naphthol (181), and cyclic 1,3-dicarbonyl compounds 182 or
  • -workers [77] provided better results. In a related approach, Estévez-Braun and co-workers synthesized dibenzo[a,h]anthracene-12,13-diones 188 from 2-hydroxy-1,4-naphthoquinone (186), β-naphthol (181), and aromatic aldehydes 187 through a multicomponent reaction that used InCl3 as catalyst under solvent
  • multicomponent reactions employing 2-hydroxy-1,4-naphthoquinone (186), β-naphthol (181), and aromatic aldehydes. Synthesis of substituted anthraquinones catalyzed by an AlCl3/MeSO3H system. Palladium(II)-catalyzed/visible light-mediated synthesis of anthraquinones. [4 + 2] Anionic annulation reaction for the
PDF
Album
Review
Published 10 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • methods include V2O5 and VO(acac)2 used for the alkylation of 2-naphthol and nitrogen-containing heteroaromatic moieties containing N-methylmorpholine-N-oxide, tetrahydroisoquinolines, and N,N-dimethylacetamide [107][108][109][110][111][112][113]. The mechanisms involving oxidation of the amine mediated
PDF
Album
Review
Published 30 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • the phenol hydroxy group in the transition state. This assumption could also explain the high o-selectivity obtained in the fluorinations of naphthol, phenylurethane, and trimethylsilyl ether of phenol, and the exclusive 6-selectivity observed in the fluorination of conjugated enol triisopropylsilyl
PDF
Album
Review
Published 27 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • ] reported the potential of naphthopyrans as non-purine xanthine oxidase inhibitors. They explored a silicated fluoroboric acid-catalyzed three-component cycloaddition involving acyclic 1,3-diketones 54, β-naphthol (55) and aldehyde 5 for the synthesis of substituted naphthopyrans 56 under microwave
PDF
Album
Review
Published 19 Apr 2021
Other Beilstein-Institut Open Science Activities