Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

  1. ,
  2. ,
  3. ,
  4. and
State Key Laboratory of Urban Water Resource and Environment, the Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P. R. China
  1. Corresponding author email
Associate Editor: C. Stephenson
Beilstein J. Org. Chem. 2015, 11, 524–529. https://doi.org/10.3762/bjoc.11.59
Received 21 Feb 2015, Accepted 08 Apr 2015, Published 22 Apr 2015
Full Research Paper
cc by logo

Abstract

The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an SN2-type ring opening followed by cyclization of the resulting haloalkoxy amine.

Introduction

Morpholines are common structural cores of a broad range of biological and pharmacological natural or synthetically important organic molecules [1]. In particular, a number of 2-substituted and 2,3-disubstituted morpholines are clinically available drugs (Figure 1). For example, the trans-2,3-disubstituted morpholine, phendimetrazine (bontril), is a clinically available appetite suppressant [2], the 2-substituted morpholine, reboxetine, is a clinically active, efficacious, and well-tolerated antidepressant drug [3-5], and the cis-2,3-disubstituted morpholine, aprepitant, is approved for the use in the prevention of chemotherapy-induced nausea and vomiting [6].

[1860-5397-11-59-1]

Figure 1: Pharmaceutically active 2- and 2,3-disubstituted morpholines.

In addition to pharmacological properties, morpholines are also used in organic synthesis as bases, catalysts, and chiral auxiliaries [7-13]. Thus, up to now, numerous strategies toward the synthesis of substituted morpholines have been reported [14-23]. Despite these advances, the synthetic approach to 2-substituted and 2,3-disubstituted morpholines is still scarce. Recently, Ghorai and co-workers disclosed an intriguing strategy for the synthesis of substituted morpholines through Cu(OTf)2-catalyzed ring-opening/closing reactions of aziridines and halogenated alcohols in high yield and enantioselectivity (Scheme 1a) [21]. However, this method suffered from the need for transition metal catalysts and low temperatures in the initial stage. Thus, the discovery of an operationally simple and eco-friendly synthetic approach is a desirable complement to current methodologies.

Recently we have reported the visible light-mediated ring opening of aziridines by a number of nucleophiles, such as LiBr, NaN3 and alcohols [24]. As a part of an ongoing program on the ring opening of aziridines [25-31], we have developed an efficient method for the synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines utilizing a simple and inexpensive ammonium persulfate salt as the oxidant at room temperature (Scheme 1b) [32,33].

[1860-5397-11-59-i1]

Scheme 1: One-pot synthesis of morpholines through ring opening of aziridines with haloalcohols.

Results and Discussion

Our investigation started with the treatment of 2-phenyl-N-tosylaziridine (1a) with 2-chloroethanol in the presence of sodium persulfate at room temperature for 13 h (Table 1). To our delight, NMR studies showed that chloroethoxyamine 2a is observed as the only ring-opening product. After screening different persulfates, in concordance with Zeng [32], we found that ammonium persulfate ((NH4)2S2O8) is superior to Na2S2O8 and K2S2O8 in the transformation, leading to chloroethoxyamine 2a in an excellent yield (93%) in short time.

Table 1: Metal-free ring opening of 2-phenyl-N-tosylaziridine (1a) with 2-chloroethanol using different persulfates as oxidant.a

[Graphic 1]
Entry S2O82− Time (h) Yield (%)b
1 Na2S2O8 13 94
2 K2S2O8 16 96
3 (NH4)2S2O8 0.5 93

aAziridine 1a (0.3 mmol), (NH4)2S2O8 (0.6 mmol, 2 equiv) in 2-chloroethanol (10 equiv) as the solvent; bisolated yield.

Encouraged by the result that treatment of 2a with KOH at room temperature in THF led to morpholine 3a in 90% yield, we performed the reaction by addition of KOH to the mixture of 1a and (NH4)2S2O8 in 2-chloroethanol after the reaction and hoped to prepare 3a in one pot. Gratifyingly the reaction proceeded smoothly to furnish 3a in 93% yield (Scheme 2).

[1860-5397-11-59-i2]

Scheme 2: Metal-free one-pot synthesis of morpholine 3a from aziridine 1a.

To investigate the scope of this methodology, various substituted aziridines were prepared from the corresponding alkenes and submitted them to the reaction conditions. As shown in Table 2, both electron-deficient and electron-rich 2-aryl-substituted aziridines 1aj were well tolerated and the desired morpholines 3aj were obtained in good yields (Table 2, entries 1–10). N-Tosylaziridine 1k was also a viable substrate for the reaction leading to the corresponding bicyclic morpholine 3k in 95% yield (Table 2, entry 11). In addition, the reaction of 2,3-disubstituted aziridines (acyclic and/or cyclic ones), separable mixtures of regioisomers 3l,m and 4l,m were obtained arising from isomeric ring opening (Table 2, entries 12 and 13). We speculated that the observed regioselectivity might depend on the combined action of electronic effects and the position of substitution [31]. Under identical reaction conditions, the separable 2-butylmorpholine 3n and 3-butylmorpholine 4n could be easily prepared from aziridine 1n (Table 2, entry 14).

Table 2: Metal-free one-pot synthesis of morpholines from aziridines.a

[Graphic 2]
Entry Substrate Morpholine
Yield (%)b
  [Graphic 3] [Graphic 4]
1 1a, R = H 3a, 93
2 1b, R = 3-OMe 3b, 90
3 1c, R = 4-Me 3c, 88
4 1d, R = 4-t-Bu 3d, 84
5 1e, R = 4-F 3e, 84
6 1f, R = 4-Cl 3f, 80
7 1g, R = 2-Cl 3g, 87
8 1h, R = 4-CF3 3h, 78
9 1i, R = 4-NO2 3i, 83
10 [Graphic 5]
1j
[Graphic 6]
3j, 82
11 [Graphic 7]
1k
[Graphic 8]
3k, 95
12 [Graphic 9]
1l
[Graphic 10]
3l, 75
[Graphic 11]
4l, 16
13 [Graphic 12]
1m
[Graphic 13]
3m, 40
[Graphic 14]
4m, 47
14 [Graphic 15]
1n
[Graphic 16]
3n, 45
[Graphic 17]
4n, 30

aIn all cases 2-chloroethanol served as the solvent; bisolated yield.

To further investigate the applicability of this strategy in organic synthesis, we next performed a series of experiments to determine the potential of the straightforward synthesis of optically pure morpholines from chiral aziridines. The initial investigation was carried out by the replacement of racemic 2-phenyl-N-tosylaziridine (1a) with optically pure (S)-2-phenyl-1-tosylaziridine under the standard reaction conditions. To our delight, (R)-3a was obtained in 93% yield and 70% ee (Scheme 3). For optically pure (S)-2-alkyl-substituted aziridines 1p,q, separable (R)-2-alkylmorpholines 3p,q and (S)-3-alkylmorpholines 4p,q were prepared in pure forms (95–99% ee) and low to moderate overall yields. Furthermore, the enantiospecific synthesis of seven and eight-membered homologues of morpholine was also conducted to extend the potential application of the strategy. For example, when 2-chloroethanol was replaced by 3-bromopropanol, the seven-membered product (R)-3ab was obtained in 72% yield and 84% ee. Similarly, reaction of (R)-2-phenyl-N-tosylazetidine (1o) with 2-bromoethanol and/or 3-bromopropanol under the one-pot reaction conditions, afforded the seven-membered product (S)-3o and the eight-membered compound (S)-3ob in 65% and 60% yield with 52% and 67% ee, respectively.

[1860-5397-11-59-i3]

Scheme 3: Metal-free one-pot synthesis of optically pure morpholine derivatives from chiral aziridines.

Based on the above results, a viable mechanism was proposed as shown in Scheme 4. Initially, aziridine 1a might participate in single-electron transfer (SET) with the persulfate anion to render the radical cation A [32,34]. Concerted ring opening and nucleophilic addition leads to amino radical intermediate B, which is converted to the haloalkoxy amine intermediate 2a after abstraction of one hydrogen atom from alcohol. Finally, an intramolecular ring closure affords the morpholine product 3a in the presence of KOH [21].

[1860-5397-11-59-i4]

Scheme 4: Proposed mechanism.

Conclusion

In conclusion, we have developed a simple and practicable metal-free protocol for the synthesis of 2-substituted and 2,3-disubstituted morpholines. Compared with the previous procedure, this reaction is conducted with a simple and inexpensive ammonium persulfate salt as the oxidant to realize the ring opening of aziridines for the reaction with haloalcohols through a radical cation intermediate pathway. Furthermore, a range of optically pure morpholines could be achieved by the use of chiral aziridines.

Experimental

General procedure for the one-pot synthesis of morpholines: A 10 mL round bottom flask equipped with a magnetic stirring bar was charged with aziridine/azetidine 1 (0.3 mmol, 1 equiv), (NH4)2S2O8 (137 mg, 0.6 mmol, 2 equiv) and haloalcohol (10 equiv). The mixture was stirred at rt for the appropriate time until the starting material disappeared completely (monitored by TLC). Then, 5.0 mL THF and excess KOH (12 equiv) were added to the reaction mixture and the mixture was stirred at rt. After the reaction was completed, the resulting suspension was quenched with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layers were combined, washed with brine and dried over anhydrous sodium sulfate. Solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate/hexane mixtures to afford the pure products.

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data and copies of 1H and 13C NMR spectra for products.
Format: PDF Size: 2.6 MB Download

Acknowledgements

We are grateful for the financial supports from China NSFC (Nos. 21002018, 21072038 and 21472030), SKLUWRE (No. 2015DX01), the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETIV.201310) and HLJNSF (B201406).

References

  1. Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; van Delft, F. L.; Blaauw, R. H.; Rutjes, F. P. J. T. Synthesis 2004, 641–662. doi:10.1055/s-2004-816003
    Return to citation in text: [1]
  2. Rothman, R. B.; Baumann, M. H. Curr. Top. Med. Chem. 2006, 6, 1845–1859. doi:10.2174/156802606778249766
    Return to citation in text: [1]
  3. Hajós, M.; Fleishaker, J. C.; Filipiak-Reisner, J. K.; Brown, M. T.; Wong, E. H. F. CNS Drug Rev. 2004, 10, 23–44. doi:10.1111/j.1527-3458.2004.tb00002.x
    Return to citation in text: [1]
  4. Wong, E. H. F.; Sonders, M. S.; Amara, S. G.; Tinholt, P. M.; Piercey, M. F. P.; Hoffmann, W. P.; Hyslop, D. K.; Franklin, S.; Porsolt, R. D.; Bonsignori, A.; Carfagna, N.; McArthur, R. A. Biol. Psychiatry 2000, 47, 818–829. doi:10.1016/S0006-3223(99)00291-7
    Return to citation in text: [1]
  5. Scates, A. C.; Doraiswamy, P. M. Ann. Pharmacother. 2000, 34, 1302–1312. doi:10.1345/aph.19335
    Return to citation in text: [1]
  6. Pendergrass, K.; Hargreaves, R.; Petty, K. J.; Carides, A. D.; Evans, J. K.; Horgan, K. J. Drugs Today 2004, 40, 853–863. doi:10.1358/dot.2004.40.10.863745
    Return to citation in text: [1]
  7. Takahata, H.; Takahashi, S.; Kouno, S.-i.; Momose, T. J. Org. Chem. 1998, 63, 2224–2231. doi:10.1021/jo971995f
    Return to citation in text: [1]
  8. Betancort, J. M.; Barbas, C. F., III. Org. Lett. 2001, 3, 3737–3740. doi:10.1021/ol0167006
    Return to citation in text: [1]
  9. Dave, R.; Sasaki, N. A. Org. Lett. 2004, 6, 15–18. doi:10.1021/ol035998s
    Return to citation in text: [1]
  10. Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193–4195. doi:10.1002/anie.200600512
    Return to citation in text: [1]
  11. Quin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273–277. doi:10.1002/anie.200503206
    Return to citation in text: [1]
  12. Nelson, S. G.; Wang, K. J. Am. Chem. Soc. 2006, 128, 4232–4233. doi:10.1021/ja058172p
    Return to citation in text: [1]
  13. Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559–2562. doi:10.1021/ol0607490
    Return to citation in text: [1]
  14. Leonard, N. J.; Jann, K. J. Am. Chem. Soc. 1960, 82, 6418–6419. doi:10.1021/ja01509a061
    Return to citation in text: [1]
  15. Lenoard, N. J.; Jann, K. J. Am. Chem. Soc. 1962, 84, 4806–4813. doi:10.1021/ja00883a035
    Return to citation in text: [1]
  16. Kogami, Y.; Okawa, K. Bull. Chem. Soc. Jpn. 1987, 60, 2963–2965. doi:10.1246/bcsj.60.2963
    Return to citation in text: [1]
  17. Pedrosa, R.; Andrés, C.; Mendiguchia, P.; Nieto, J. J. Org. Chem. 2006, 71, 8854–8863. doi:10.1021/jo061547k
    Return to citation in text: [1]
  18. Sladojevich, F.; Trabocchi, A.; Guarna, A. J. Org. Chem. 2007, 72, 4254–4257. doi:10.1021/jo070036a
    Return to citation in text: [1]
  19. Metro, T.-X.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2008, 73, 707–710. doi:10.1021/jo701554h
    Return to citation in text: [1]
  20. Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2008, 47, 3784–3786. doi:10.1002/anie.200800373
    Return to citation in text: [1]
  21. Ghorai, M. K.; Shukla, D.; Das, K. J. Org. Chem. 2009, 74, 7013–7022. doi:10.1021/jo901297d
    Return to citation in text: [1] [2] [3]
  22. Wang, L.; Liu, Q.-B.; Wang, D.-S.; Li, X.; Han, X.-W.; Xiao, W.-J.; Zhou, Y.-G. Org. Lett. 2009, 11, 1119–1122. doi:10.1021/ol802862p
    Return to citation in text: [1]
  23. Sawant, R. T.; Stevenson, J.; Odell, L. R.; Arvidsson, P. I. Tetrahedron: Asymmetry 2013, 24, 134–141. doi:10.1016/j.tetasy.2012.12.004
    Return to citation in text: [1]
  24. Sun, H.; Yang, C.; Lin, R.; Xia, W. Adv. Synth. Catal. 2014, 356, 2775–2780. doi:10.1002/adsc.201400476
    Return to citation in text: [1]
  25. Hu, X. E. Tetrahedron 2004, 60, 2701–2743. doi:10.1016/j.tet.2004.01.042
    Return to citation in text: [1]
  26. Fokin, V. V.; Wu, P. Epoxides and Aziridines in Click Chemisty. In Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006; pp 443–475. doi:10.1002/3527607862.ch12
    Return to citation in text: [1]
  27. Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194–206. doi:10.1021/ar050038m
    Return to citation in text: [1]
  28. Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080–2135. doi:10.1021/cr0680033
    Return to citation in text: [1]
  29. Schneider, C. Angew. Chem., Int. Ed. 2009, 48, 2082–2084. doi:10.1002/anie.200805542
    Return to citation in text: [1]
  30. Lu, P. Tetrahedron 2010, 66, 2549–2560. doi:10.1016/j.tet.2010.01.077
    Return to citation in text: [1]
  31. Stanković, S.; D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Chem. Soc. Rev. 2012, 41, 643–665. doi:10.1039/C1CS15140A
    Return to citation in text: [1] [2]
  32. Wei, Y.; Tang, J.; Cong, X.; Zeng, X. Green Chem. 2013, 15, 3165–3169. doi:10.1039/C3GC41403E
    Return to citation in text: [1] [2] [3]
  33. Xia, W. J.; Sun, H. N.; Yang, C. A method of synthesizing compounds Morpholinium. Chin. Pat. Appl. CN104193695 A, Dec 10, 2014.
    Return to citation in text: [1]
  34. Gaebert, C.; Mattay, J.; Toubartz, M.; Steenken, S.; Müller, B.; Bally, T. Chem. – Eur. J. 2005, 11, 1294–1304. doi:10.1002/chem.200400557
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities