Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin

Daniel I. Hădărugă, Mustafa Ünlüsayin, Alexandra T. Gruia, Cristina Birău (Mitroi), Gerlinde Rusu and Nicoleta G. Hădărugă
Beilstein J. Org. Chem. 2016, 12, 179–191. https://doi.org/10.3762/bjoc.12.20

Supporting Information

Supporting Information File 1: GC–MS analysis of all raw and degraded ASO, as well as TG, DSC and KFT data for the β-CD/ASO complexes.
Format: PDF Size: 1.9 MB Download

Cite the Following Article

Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin
Daniel I. Hădărugă, Mustafa Ünlüsayin, Alexandra T. Gruia, Cristina Birău (Mitroi), Gerlinde Rusu and Nicoleta G. Hădărugă
Beilstein J. Org. Chem. 2016, 12, 179–191. https://doi.org/10.3762/bjoc.12.20

How to Cite

Hădărugă, D. I.; Ünlüsayin, M.; Gruia, A. T.; Birău (Mitroi), C.; Rusu, G.; Hădărugă, N. G. Beilstein J. Org. Chem. 2016, 12, 179–191. doi:10.3762/bjoc.12.20

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 724.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Szpicer, A.; Binkowska, W.; Wojtasik-Kalinowska, I.; Stelmasiak, A.; Poltorak, A. Hybrid method for predicting protein denaturation and docosahexaenoic acid decomposition in Atlantic salmon (Salmo salar L.) using computational fluid dynamics and response surface methodology. European Food Research and Technology 2024, 250, 1163–1176. doi:10.1007/s00217-023-04453-0
  • Sousa, S.; Carvalho, A. P.; Pinto, C. A.; Amaral, R. A.; Saraiva, J. A.; Pereira, R. N.; Vicente, A. A.; Freitas, A. C.; Gomes, A. M. Combining high pressure and electric fields towards Nannochloropsis oculata eicosapentaenoic acid-rich extracts. Applied microbiology and biotechnology 2023, 107, 5063–5077. doi:10.1007/s00253-023-12626-w
  • Horablaga, A.; Şibu Ciobanu, A.; Megyesi, C. I.; Gligor Pane, D.; Bujancă, G. S.; Velciov, A. B.; Morariu, F. E.; Hădărugă, D. I.; Mişcă, C. D.; Hădărugă, N. G. Estimation of the Controlled Release of Antioxidants from β-Cyclodextrin/Chamomile (Matricaria chamomilla L.) or Milk Thistle (Silybum marianum L.), Asteraceae, Hydrophilic Extract Complexes through the Fast and Cheap Spectrophotometric Technique. Plants (Basel, Switzerland) 2023, 12, 2352. doi:10.3390/plants12122352
  • Hădărugă, N. G.; Popescu, G.; Gligor Pane, D.; Mitroi, C. L.; Stanciu, S. M.; Hădărugă, D. I. Discrimination of β-cyclodextrin/hazelnut (Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis. Beilstein journal of organic chemistry 2023, 19, 380–398. doi:10.3762/bjoc.19.30
  • Hădărugă, N. G.; Chirilă, C. A.; Szakal, R. N.; Gălan, I. M.; Simandi, M. D.; Bujancă, G. S.; David, I.; Riviş, A.; Stanciu, S. M.; Hădărugă, D. I. FTIR-PCA Approach on Raw and Thermally Processed Chicken Lipids Stabilized by Nano-Encapsulation in β-Cyclodextrin. Foods (Basel, Switzerland) 2022, 11, 3632. doi:10.3390/foods11223632
  • Moreno Martínez, P.; Ortiz-Martínez, V.; Sánchez Segado, S.; Salar-García, M.; los Ríos, A. d.; Hernández Fernández, F.; Lozano-Blanco, L.; Godínez, C. Deep eutectic solvents for the extraction of fatty acids from microalgae biomass: Recovery of omega-3 eicosapentaenoic acid. Separation and Purification Technology 2022, 300, 121842. doi:10.1016/j.seppur.2022.121842
  • Awuchi, C. G.; Morya, S.; Dendegh, T. A.; Okpala, C. O. R.; Korzeniowska, M. Nanoencapsulation of food bioactive constituents and its associated processes: A revisit. Bioresource Technology Reports 2022, 19, 101088. doi:10.1016/j.biteb.2022.101088
  • Deshmukh, S. P.; Pawar, K. K.; Dalavi, D. K. doi:10.1002/9781119819011.ch9
  • Ramírez-Santana, M.; Zapata Barra, R.; Ñunque González, M.; Müller, J. M.; Vásquez, J. E.; Ravera, F.; Lago, G.; Cañón, E.; Castañeda, D.; Pradenas, M. Inverse Association between Omega-3 Index and Severity of COVID-19: A Case-Control Study. International journal of environmental research and public health 2022, 19, 6445. doi:10.3390/ijerph19116445
  • Mgbechidinma, C. L.; Zheng, G.; Baguya, E. B.; Zhou, H.; Okon, S. U.; Zhang, C. Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research 2022, 28, 220034–0. doi:10.4491/eer.2022.034
  • Sultana, A.; Yoshii, H. Encapsulation of Lipids. Functionality of Cyclodextrins in Encapsulation for Food Applications; Springer International Publishing, 2021; pp 137–148. doi:10.1007/978-3-030-80056-7_8
  • Jug, M.; Yoon, B. K.; Jackman, J. A. Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. Journal of inclusion phenomena and macrocyclic chemistry 2021, 101, 31–50. doi:10.1007/s10847-021-01097-z
  • B, R. Z.; Müller, J. M.; Vásquez, J.; Ravera, F.; Lago, G.; Cañón, E.; Castañeda, D.; Pradenas, M.; Ramírez-Santana, M. Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study. International journal of environmental research and public health 2021, 18, 7722. doi:10.3390/ijerph18157722
  • Medeleanu, M.; Hădărugă, D. I.; Muntean, C.; Popescu, G.; Rada, M.; Heghes, A.; Zippenfening, S. E.; Lucan, C. A.; Velciov, A.; Bandur, G.; Hădărugă, N. G.; Riviş, M. Structure-property relationships on recrystallized β-cyclodextrin solvates: A focus on X-ray diffractometry, FTIR and thermal analyses. Carbohydrate polymers 2021, 265, 118079. doi:10.1016/j.carbpol.2021.118079
  • Pereira, A. G.; Carpena, M.; Oliveira, P. G.; Mejuto, J. C.; Prieto, M. A.; Gándara, J. S. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. International journal of molecular sciences 2021, 22, 1339. doi:10.3390/ijms22031339
  • Petroman, C.; Popescu, G.; Szakal, R.-N.; Paunescu, V.; Draghia, L. P.; Bujancă, G.; Chirilă, C. A.; Hădărugă, D. I.; Văduva, L.; Hădărugă, N. G.; Petroman, I. Fatty Acid Profile of Lipid Fractions of Mangalitza (Sus scrofa domesticus) from Northern Romania: A GC-MS-PCA Approach. Foods (Basel, Switzerland) 2021, 10, 242. doi:10.3390/foods10020242
  • Burkeev, M.; Fazylov, S. D.; Bakirova, R.; Iskineyeva, A.; Sarsenbekova, A.; Tazhbaev, E. M.; Davrenbekov, S. Thermal decomposition of β-cyclodextrin and its inclusion complex with vitamin E. Mendeleev Communications 2021, 31, 76–78. doi:10.1016/j.mencom.2021.01.023
  • Purnamayati, L.; Kurniasih, R. A. Thermal degradation kinetic study of Pangasius fish oil. IOP Conference Series: Earth and Environmental Science 2020, 530, 012012. doi:10.1088/1755-1315/530/1/012012
  • David, I.; Orboi, M. D.; Simandi, M. D.; Chirilă, C. A.; Megyesi, C. I.; Rădulescu, L.; Draghia, L. P.; Lukinich-Gruia, A. T.; Muntean, C.; Hădărugă, D. I.; Hădărugă, N. G. Fatty acid profile of Romanian's common bean (Phaseolus vulgaris L.) lipid fractions and their complexation ability by β-cyclodextrin. PloS one 2019, 14, e0225474. doi:10.1371/journal.pone.0225474
  • Hădărugă, N. G.; Szakal, R. N.; Chirilă, C. A.; Lukinich-Gruia, A. T.; Paunescu, V.; Muntean, C.; Rusu, G.; Bujancă, G.; Hădărugă, D. I. Complexation of Danube common nase (Chondrostoma nasus L.) oil by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. Food chemistry 2019, 303, 125419. doi:10.1016/j.foodchem.2019.125419

Patents

  • FREEMAN BRUCE A; SCHOPFER FRANCISCO J; SALVATORE SONIA R. STABILIZATION OF COMPOUNDS AS CYCLODEXTRIN COMPLEXES. WO 2021188448 A1, Sept 23, 2021.
  • FUNDA ELGER; KRAINZ ODILE; KÖNIG-GRILLO SIMONE; MISIC ZDRAVKA; NOWOTNY MARKUS; SCHWEIKERT LONI. NOVEL COATING SYSTEM (II). WO 2017144435 A1, Aug 31, 2017.
Other Beilstein-Institut Open Science Activities