Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation

Willem K. Offermans, Claudia Bizzarri, Walter Leitner and Thomas E. Müller
Beilstein J. Org. Chem. 2015, 11, 1340–1351. https://doi.org/10.3762/bjoc.11.144

Supporting Information

Supporting Information File 1: Atomic coordinates, calculated bond lengths and bond angles as well as calculated Mulliken charges for the reactant state, the precursor state, the transition state and the product state.
Format: PDF Size: 254.9 KB Download

Cite the Following Article

Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation
Willem K. Offermans, Claudia Bizzarri, Walter Leitner and Thomas E. Müller
Beilstein J. Org. Chem. 2015, 11, 1340–1351. https://doi.org/10.3762/bjoc.11.144

How to Cite

Offermans, W. K.; Bizzarri, C.; Leitner, W.; Müller, T. E. Beilstein J. Org. Chem. 2015, 11, 1340–1351. doi:10.3762/bjoc.11.144

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Dahy, A. A.; Koga, N. Theoretical Study on the Formation of 2-Pyrone Derivatives from the Reaction of Alkynes with Carbon Dioxide in the Presence of Nickel Catalyst. Organometallics 2023, 42, 197–210. doi:10.1021/acs.organomet.2c00522
  • Chai, Y. H.; Rashidi, N. A.; Mohamed, M.; Chin, B. L. F.; Yusup, S. Basic principles of CO2 capture and conversion technologies. Nanomaterials for Carbon Dioxide Capture and Conversion Technologies; Elsevier, 2023; pp 25–61. doi:10.1016/b978-0-323-89851-5.00006-8
  • De Carvalho Pinto, P. C.; Batista, T. V.; De Rezende Ferreira, G.; Voga, G. P.; Oliveira, L. C. A.; Oliveira, H. S.; De Souza, L. A.; Belchior, J. C. Chemical Absorption of CO2 Enhanced by Solutions of Alkali Hydroxides and Alkoxides at Room Temperature. ChemistrySelect 2022, 7. doi:10.1002/slct.202202731
  • Takeuchi, K.; Matsumoto, K.; Fukaya, N.; Osakada, K.; Sato, K.; Choi, J.-C. Synthesis of organic carbamates as polyurethane raw materials from CO2: the quest for metal alkoxides as regenerable reagents. Dalton transactions (Cambridge, England : 2003) 2022, 51, 15631–15643. doi:10.1039/d2dt02509d
  • Deacy, A. C.; Phanopoulos, A.; Lindeboom, W.; Buchard, A.; Williams, C. K. Insights into the Mechanism of Carbon Dioxide and Propylene Oxide Ring-Opening Copolymerization Using a Co(III)/K(I) Heterodinuclear Catalyst. Journal of the American Chemical Society 2022, 144, 17929–17938. doi:10.1021/jacs.2c06921
  • Rehman, A.; Eze, V. C.; Resul, M. G.; Harvey, A. Kinetics and mechanistic investigation of epoxide/CO2 cycloaddition by a synergistic catalytic effect of pyrrolidinopyridinium iodide and zinc halides. Journal of Energy Chemistry 2019, 37, 35–42. doi:10.1016/j.jechem.2018.11.017
  • Ambrose, K.; Robertson, K. N.; Kozak, C. M. Cobalt amino-bis(phenolate) complexes for coupling and copolymerization of epoxides with carbon dioxide. Dalton transactions (Cambridge, England : 2003) 2019, 48, 6248–6260. doi:10.1039/c9dt00996e
  • Elman, A. R.; Zharkov, S. A.; Ovsyannikova, L. V. Unusual Regularities of Propylene Carbonate Obtained by Propylene Oxide Carboxylation in the Presence of ZnBr2/Et4N+Br− System. ChemEngineering 2019, 3, 46. doi:10.3390/chemengineering3020046
  • Ullah, H.; Mousavi, B.; Younus, H. A.; Khattak, Z. A. K.; Chaemchuen, S.; Suleman, S.; Verpoort, F. Chemical fixation of carbon dioxide catalyzed via cobalt (III) ONO pincer ligated complexes. Communications Chemistry 2019, 2, 1–9. doi:10.1038/s42004-019-0139-y
  • Mori, S. Recent Advances for Reaction Mechanisms of Metal-Catalyzed Activations of Carbon-Containing Bonds with the Aid of Density Functional Calculations. Bulletin of Japan Society of Coordination Chemistry 2018, 72, 15–29. doi:10.4019/bjscc.72.15
  • Paparo, A.; Silvia, J. S.; Spaniol, T. P.; Okuda, J.; Cummins, C. C. Countercation Effect on CO2 Binding to Oxo Titanate with Bulky Anilide Ligands. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 17072–17079. doi:10.1002/chem.201803265
  • Babamohammadi, S.; Shamiri, A.; Borhani, T. N.; Shafeeyan, M. S.; Aroua, M. K.; Yusoff, R. Solubility of CO2 in aqueous solutions of glycerol and monoethanolamine. Journal of Molecular Liquids 2018, 249, 40–52. doi:10.1016/j.molliq.2017.10.151
  • Artz, J.; Müller, T.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A. D.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical reviews 2017, 118, 434–504. doi:10.1021/acs.chemrev.7b00435
  • Song, D.; Rochelle, G. T. Reaction kinetics of carbon dioxide and hydroxide in aqueous glycerol. Chemical Engineering Science 2017, 161, 151–158. doi:10.1016/j.ces.2016.11.048
  • Vummaleti, S. V. C.; Talarico, G.; Nolan, S. P.; Cavallo, L.; Poater, A. How easy is CO2 fixation by M–C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?. Organic Chemistry Frontiers 2016, 3, 19–23. doi:10.1039/c5qo00281h
Other Beilstein-Institut Open Science Activities