Synthesis of antibacterial 1,3-diyne-linked peptoids from an Ugi-4CR/Glaser coupling approach

Martin C. N. Brauer, Ricardo A. W. Neves Filho, Bernhard Westermann, Ramona Heinke and Ludger A. Wessjohann
Beilstein J. Org. Chem. 2015, 11, 25–30. https://doi.org/10.3762/bjoc.11.4

Supporting Information

Supporting Information File 1: Complete experimental procedures, characterization and figures of 1H and 13C NMR spectra.
Format: PDF Size: 2.5 MB Download

Cite the Following Article

Synthesis of antibacterial 1,3-diyne-linked peptoids from an Ugi-4CR/Glaser coupling approach
Martin C. N. Brauer, Ricardo A. W. Neves Filho, Bernhard Westermann, Ramona Heinke and Ludger A. Wessjohann
Beilstein J. Org. Chem. 2015, 11, 25–30. https://doi.org/10.3762/bjoc.11.4

How to Cite

Brauer, M. C. N.; Neves Filho, R. A. W.; Westermann, B.; Heinke, R.; Wessjohann, L. A. Beilstein J. Org. Chem. 2015, 11, 25–30. doi:10.3762/bjoc.11.4

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tamuli, K. J.; Narzary, B.; Saikia, S.; Bordoloi, M. Efficient Ru-Catalyzed Electrochemical Homo- and Heterocoupling Reaction of Terminal Alkynes: Synthesis, In Vitro Anticancer Activity, and Docking Study. ACS omega 2023, 8, 32635–32642. doi:10.1021/acsomega.3c03129
  • Tamuli, K. J.; Bordoloi, M. Metal free synthesis of 1,3-diynes through Csp–Csp homo- and hetero-coupling reaction of terminal alkynes. Sustainable Chemistry and Pharmacy 2022, 28, 100734. doi:10.1016/j.scp.2022.100734
  • Herlan, C. N.; Feser, D.; Schepers, U.; Bräse, S. Bio-instructive materials on-demand – combinatorial chemistry of peptoids, foldamers, and beyond. Chemical communications (Cambridge, England) 2021, 57, 11131–11152. doi:10.1039/d1cc04237h
  • Tandi, M.; Sundriyal, S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. Journal of the Indian Chemical Society 2021, 98, 100106. doi:10.1016/j.jics.2021.100106
  • Zareie, S.; Komeili, G.; Bahadorikhalili, S.; Yahya-Meymandi, A.; Karami-Zarandi, M.; Larijani, B.; Biglar, M.; Ebrahimi, S. E. S.; Mahdavi, M. Design, synthesis and antibacterial activity evaluation of novel 2‐(4‐((1‐aryl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)2‐(2‐oxoazetidin‐1‐yl)acetamide derivatives. Journal of Heterocyclic Chemistry 2020, 57, 4254–4261. doi:10.1002/jhet.4131
  • Akhtar, R.; Zahoor, A. F. Transition metal catalyzed Glaser and Glaser-Hay coupling reactions: Scope, classical/green methodologies and synthetic applications. Synthetic Communications 2020, 50, 3337–3368. doi:10.1080/00397911.2020.1802757
  • Rodríguez, J.; Martínez-Calvo, M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 9792–9813. doi:10.1002/chem.202001287
  • Prent-Peñaloza, L.; de la Torre, A. F.; Velázquez-Libera, J. L.; Gutiérrez, M.; Caballero, J. Synthesis of diN-Substituted Glycyl-Phenylalanine Derivatives by Using Ugi Four Component Reaction and Their Potential as Acetylcholinesterase Inhibitors. Molecules (Basel, Switzerland) 2019, 24, 189. doi:10.3390/molecules24010189
  • Rezvanian, A.; Zadsirjan, V.; Saedi, P.; Heravi, M. M. Iodine‐Catalyzed One‐Pot Four‐Component Synthesis of Spiro[indoline‐3,4′‐pyrano‐pyrazole] Derivatives. Journal of Heterocyclic Chemistry 2018, 55, 2772–2780. doi:10.1002/jhet.3342
  • Ye, X.; Peng, H.; Wei, C.; Yuan, T.; Wojtas, L.; Shi, X. Gold-Catalyzed Oxidative Coupling of Alkynes toward the Synthesis of Cyclic Conjugated Diynes. Chem 2018, 4, 1983–1993. doi:10.1016/j.chempr.2018.07.004
  • Cistrone, P. A.; Silvestri, A. P.; Hintzen, J. C. J.; Dawson, P. E. Rigid Peptide Macrocycles from On-Resin Glaser Stapling. Chembiochem : a European journal of chemical biology 2018, 19, 1031–1035. doi:10.1002/cbic.201800121
  • Webster, A. M.; Cobb, S. L. Recent Advances in the Synthesis of Peptoid Macrocycles. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 7560–7573. doi:10.1002/chem.201705340
  • Nimmo, Z. M.; Halonski, J. F.; Chatkewitz, L. E.; Young, D. D. Development of optimized conditions for Glaser-Hay bioconjugations. Bioorganic chemistry 2017, 76, 326–331. doi:10.1016/j.bioorg.2017.11.020
  • Silvestri, A. P.; Cistrone, P. A.; Dawson, P. E. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angewandte Chemie (International ed. in English) 2017, 56, 10438–10442. doi:10.1002/anie.201705065
  • Silvestri, A. P.; Cistrone, P. A.; Dawson, P. E. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angewandte Chemie 2017, 129, 10574–10578. doi:10.1002/ange.201705065
  • Ganesh, S. D.; Saha, N.; Zandraa, O.; Zuckermann, R. N.; Saha, P. Peptoids and polypeptoids: biomimetic and bioinspired materials for biomedical applications. Polymer Bulletin 2017, 74, 3455–3466. doi:10.1007/s00289-016-1902-1
  • Mirjafary, Z.; Sadighian, H.; Piri, S.; Saeidian, H. Efficient synthesis of novel 1,3-diyne-based sulfonamides using CuCl2/Et3N as a robust catalytic system. Journal of Sulfur Chemistry 2016, 38, 188–194. doi:10.1080/17415993.2016.1263634
  • Ganesh, S. D.; Saha, N.; Kucharczyk, P.; Saha, P. N-[2-(Cyclohexylamino)-2-oxoethyl]-N-(4-octyloxy)phenyl-prop-2-enamide. Molbank 2016, 2016, M921. doi:10.3390/m921
  • Schlüter, T.; Halimehjani, A. Z.; Wachtendorf, D.; Schmidtmann, M.; Martens, J. Four-Component Reaction for the Synthesis of Dithiocarbamates Starting from Cyclic Imines. ACS combinatorial science 2016, 18, 456–460. doi:10.1021/acscombsci.6b00029
  • Shaaban, S.; Negm, A.; Ashmawy, A. M.; Ahmed, D. M.; Wessjohann, L. A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. European journal of medicinal chemistry 2016, 122, 55–71. doi:10.1016/j.ejmech.2016.06.005
Other Beilstein-Institut Open Science Activities