3D printed fluidics with embedded analytic functionality for automated reaction optimisation

Andrew J. Capel, Andrew Wright, Matthew J. Harding, George W. Weaver, Yuqi Li, Russell A. Harris, Steve Edmondson, Ruth D. Goodridge and Steven D. R. Christie
Beilstein J. Org. Chem. 2017, 13, 111–119. https://doi.org/10.3762/bjoc.13.14

Supporting Information

Supporting Information File 1: General considerations, macros and experimental data.
Format: PDF Size: 316.3 KB Download

Cite the Following Article

3D printed fluidics with embedded analytic functionality for automated reaction optimisation
Andrew J. Capel, Andrew Wright, Matthew J. Harding, George W. Weaver, Yuqi Li, Russell A. Harris, Steve Edmondson, Ruth D. Goodridge and Steven D. R. Christie
Beilstein J. Org. Chem. 2017, 13, 111–119. https://doi.org/10.3762/bjoc.13.14

How to Cite

Capel, A. J.; Wright, A.; Harding, M. J.; Weaver, G. W.; Li, Y.; Harris, R. A.; Edmondson, S.; Goodridge, R. D.; Christie, S. D. R. Beilstein J. Org. Chem. 2017, 13, 111–119. doi:10.3762/bjoc.13.14

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 738.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Erokhin, K. S.; Ananikov, V. P. Densely Packed Chemical Synthesis Equipment by 3D Spatial Design and Additive Manufacturing: Acetylene Generation Cartridge. Organic Process Research & Development 2023, 27, 1144–1153. doi:10.1021/acs.oprd.3c00112
  • Pollard, M.; Maugi, R.; Platt, M. Multi-resistive pulse sensor microfluidic device. The Analyst 2022, 147, 1417–1424. doi:10.1039/d2an00128d
  • Erokhin, K. S.; Gordeev, E. G.; Samoylenko, D. E.; Rodygin, K. S.; Ananikov, V. P. 3D Printing to Increase the Flexibility of the Chemical Synthesis of Biologically Active Molecules: Design of On-Demand Gas Generation Reactors. International journal of molecular sciences 2021, 22, 9919. doi:10.3390/ijms22189919
  • Sagandira, C. R.; Siyawamwaya, M.; Watts, P. 3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries. Arabian journal of chemistry 2020, 13, 7886–7908. doi:10.1016/j.arabjc.2020.09.020
  • Penny, M. R.; Hilton, S. T. Design and development of 3D printed catalytically-active stirrers for chemical synthesis. Reaction Chemistry & Engineering 2020, 5, 853–858. doi:10.1039/c9re00492k
  • Harding, M. J.; Brady, S.; O’Connor, H. J.; Lopez-Rodriguez, R.; Edwards, M. D.; Tracy, S. R.; Dowling, D. P.; Gibson, G.; Girard, K. P.; Ferguson, S. 3D printing of PEEK reactors for flow chemistry and continuous chemical processing. Reaction Chemistry & Engineering 2020, 5, 728–735. doi:10.1039/c9re00408d
  • Heard, D. M.; Lennox, A. J. J. Minimal manual input. Nature chemistry 2020, 12, 113–114. doi:10.1038/s41557-019-0416-5
  • Hübner, E. G.; Lederle, F. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. Handbuch Chemische Reaktoren; Springer Berlin Heidelberg, 2020; pp 1361–1389. doi:10.1007/978-3-662-56434-9_48
  • Zentel, K. M.; Fassbender, M.; Pauer, W.; Luinstra, G. A. 3D Printing as Chemical Reaction Engineering Booster. Advances in Polymer Reaction Engineering; Elsevier, 2020; Vol. 56, pp 97–137. doi:10.1016/bs.ache.2020.08.002
  • Erokhin, K. S.; Gordeev, E. G.; Ananikov, V. P. Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. Scientific reports 2019, 9, 20177. doi:10.1038/s41598-019-56350-w
  • Saggiomo, V. Catalyst Immobilization; Wiley, 2019; pp 369–408. doi:10.1002/9783527817290.ch11
  • Bettermann, S.; Kandelhard, F.; Moritz, H.-U.; Pauer, W. Digital and lean development method for 3D-printed reactors based on CAD modeling and CFD simulation. Chemical Engineering Research and Design 2019, 152, 71–84. doi:10.1016/j.cherd.2019.09.024
  • Lee, H. J.; Roberts, R. C.; Im, J.; Yim, J.; Kim, H.; Kim, J. T.; Kim, D.-P. Enhanced Controllability of Fries Rearrangements Using High-Resolution 3D-Printed Metal Microreactor with Circular Channel. Small (Weinheim an der Bergstrasse, Germany) 2019, 15, 1905005. doi:10.1002/smll.201905005
  • Rimington, R. P.; Capel, A. J.; Chaplin, K. F.; Fleming, J. W.; Bandulasena, H. H.; Bibb, R. J.; Christie, S. D. R.; Lewis, M. P. Differentiation of Bioengineered Skeletal Muscle within a 3D Printed Perfusion Bioreactor Reduces Atrophic and Inflammatory Gene Expression. ACS biomaterials science & engineering 2019, 5, 5525–5538. doi:10.1021/acsbiomaterials.9b00975
  • Malasuk, C.; Nakakubo, K.; Ishimatsu, R.; Nakashima, Y.; Yoshioka, H.; Morita, K.; Oki, Y. Compact and on-demand 3D-printed optical device based on silicone optical technology (SOT) for on-site measurement: Application to flow injection analysis. Review of Scientific Instruments 2019, 90, 104103. doi:10.1063/1.5118812
  • Okafor, O.; Goodridge, R. D.; Sans, V. Chapter 13:Additively Manufactured Advanced Flow Reactors for Enhanced Heat and Mass Transfer. Flow Chemistry; The Royal Society of Chemistry, 2019; pp 416–439. doi:10.1039/9781788016094-00416
  • Bornemann, M.; Kern, S.; Jurtz, N.; Thiede, T.; Kraume, M.; Maiwald, M. Design and Validation of an Additively Manufactured Flow Cell–Static Mixer Combination for Inline NMR Spectroscopy. Industrial & Engineering Chemistry Research 2019, 58, 19562–19570. doi:10.1021/acs.iecr.9b03746
  • Penny, M. R.; Rao, Z. X.; Peniche, B. F.; Hilton, S. T. Modular 3D Printed Compressed Air Driven Continuous‐Flow Systems for Chemical Synthesis. European Journal of Organic Chemistry 2019, 2019, 3783–3787. doi:10.1002/ejoc.201900423
  • Neumaier, J. M.; Madani, A.; Klein, T.; Ziegler, T. Low-budget 3D-printed equipment for continuous flow reactions. Beilstein journal of organic chemistry 2019, 15, 558–566. doi:10.3762/bjoc.15.50
  • Maier, M. C.; Lebl, R.; Sulzer, P.; Lechner, J.; Mayr, T.; Zadravec, M.; Slama, E.; Pfanner, S.; Schmölzer, C.; Pöchlauer, P.; Kappe, C. O.; Gruber-Woelfler, H. Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow. Reaction Chemistry & Engineering 2019, 4, 393–401. doi:10.1039/c8re00278a
Other Beilstein-Institut Open Science Activities