Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths

Ping He, Stephen J. Haswell, Paul D. I. Fletcher, Stephen M. Kelly and Andrew Mansfield
Beilstein J. Org. Chem. 2011, 7, 1150–1157. https://doi.org/10.3762/bjoc.7.133

Supporting Information

The Supporting Information File contains six parts, Figure S1: SEM image of Pd-monolith; Figure S2: BET characterization; Figure S3: GC–MS chromatogram for Suzuki–Miyaura reaction of bromobenzene and phenylboronic acid; Figure S4: GC–MS chromatogram for Suzuki–Miyaura reaction of 4-bromobenzaldehyde and phenylboronic acid; Figure S5: GC–MS chromatogram for Suzuki–Miyaura reaction of 4-bromobenzonitrile and phenylboronic acid; Figure S6: Schematic diagram of the setup for continuous-flow, microwave-assisted Suzuki–Miyaura reactions.

Supporting Information File 1: Additional material.
Format: PDF Size: 246.3 KB Download

Cite the Following Article

Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths
Ping He, Stephen J. Haswell, Paul D. I. Fletcher, Stephen M. Kelly and Andrew Mansfield
Beilstein J. Org. Chem. 2011, 7, 1150–1157. https://doi.org/10.3762/bjoc.7.133

How to Cite

He, P.; Haswell, S. J.; Fletcher, P. D. I.; Kelly, S. M.; Mansfield, A. Beilstein J. Org. Chem. 2011, 7, 1150–1157. doi:10.3762/bjoc.7.133

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Marelli, M.; Zaccheria, F.; Ravasio, N.; Pitzalis, E.; Didi, Y.; Galarneau, A.; Scotti, N.; Evangelisti, C. Copper Oxide Nanoparticles over Hierarchical Silica Monoliths for Continuous-Flow Selective Alcoholysis of Styrene Oxide. Catalysts 2023, 13, 341. doi:10.3390/catal13020341
  • Chen, T.-Y.; Hsiao, Y. W.; Baker-Fales, M.; Cameli, F.; Dimitrakellis, P.; Vlachos, D. G. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical science 2022, 13, 10644–10685. doi:10.1039/d2sc01684b
  • Lebl, R.; Zhu, Y.; Ng, D.; Hornung, C. H.; Cantillo, D.; Kappe, C. O. Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catalysis Today 2022, 383, 55–63. doi:10.1016/j.cattod.2020.07.046
  • Lanjekar, K. J.; Rathod, V. K. Microwave catalysis in organic synthesis. Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2021; pp 1–50. doi:10.1016/b978-0-12-819848-3.00001-3
  • Yamada, T.; Jiang, J.; Ito, N.; Park, K.; Masuda, H.; Furugen, C.; Ishida, M.; Ōtori, S.; Sajiki, H. Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free Continuous-Flow Suzuki–Miyaura Coupling. Catalysts 2020, 10, 1209. doi:10.3390/catal10101209
  • Matsumoto, H.; Hoshino, Y.; Iwai, T.; Sawamura, M.; Miura, Y. Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith : Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Industrial & Engineering Chemistry Research 2020, 59, 15179–15187. doi:10.1021/acs.iecr.0c02404
  • Ghobadi, S.; Burkholder, M.; Smith, S. E.; Gupton, B. F.; Castano, C. E. Catalytically sustainable, palladium-decorated graphene oxide monoliths for synthesis in flow. Chemical Engineering Journal 2020, 381, 122598. doi:10.1016/j.cej.2019.122598
  • Mandoli, A. Catalyst Immobilization; Wiley, 2019; pp 257–306. doi:10.1002/9783527817290.ch8
  • Palao, E.; Alcazar, J. Chapter 3:Organometallic Chemistry in Flow in the Pharmaceutical Industry. Flow Chemistry; The Royal Society of Chemistry, 2019; pp 86–128. doi:10.1039/9781788016094-00086
  • Nosova, G. I.; Litvinova, L. S.; Berezin, I. A.; Zhukova, E. V.; Smyslov, R. Y.; Yakimansky, A. V. Microwave Synthesis of Polyfluorenes and Copolyfluorenes and Their Optical Properties. Polymer Science, Series B 2019, 61, 8–19. doi:10.1134/s1560090419010081
  • Nagaki, A.; Hirose, K.; Moriwaki, Y.; Takumi, M.; Takahashi, Y.; Mitamura, K.; Matsukawa, K.; Ishizuka, N.; Yoshida, J.-i. Suzuki–Miyaura Coupling Using Monolithic Pd Reactors and Scaling-Up by Series Connection of the Reactors. Catalysts 2019, 9, 300. doi:10.3390/catal9030300
  • Koyama, E.; Ito, N.; Sugiyama, J.-i.; Barham, J. P.; Norikane, Y.; Azumi, R.; Ohneda, N.; Ohno, Y.; Yoshimura, T.; Odajima, H.; Okamoto, T. A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. Journal of Flow Chemistry 2018, 8, 147–156. doi:10.1007/s41981-018-0021-6
  • Moreno-Marrodan, C.; Barbaro, P.; Caporali, S.; Bossola, F. Low-Temperature Continuous-Flow Dehydration of Xylose Over Water-Tolerant Niobia-Titania Heterogeneous Catalysts. ChemSusChem 2018, 11, 3649–3660. doi:10.1002/cssc.201801414
  • Monguchi, Y.; Ichikawa, T.; Yamada, T.; Sawama, Y.; Sajiki, H. Continuous-Flow Suzuki-Miyaura and Mizoroki-Heck Reactions under Microwave Heating Conditions. Chemical record (New York, N.Y.) 2018, 19, 3–14. doi:10.1002/tcr.201800063
  • Masuda, K.; Ichitsuka, T.; Koumura, N.; Sato, K.; Kobayashi, S. Flow fine synthesis with heterogeneous catalysts. Tetrahedron 2018, 74, 1705–1730. doi:10.1016/j.tet.2018.02.006
  • Nguyen, X.; Carafa, A.; Hornung, C. H. Hydrogenation of vinyl acetate using a continuous flow tubular reactor with catalytic static mixers. Chemical Engineering and Processing - Process Intensification 2018, 124, 215–221. doi:10.1016/j.cep.2017.12.007
  • Liguori, F.; Barbaro, P.; Said, B.; Galarneau, A.; Dal Santo, V.; Passaglia, E.; Feis, A. Unconventional Pd@Sulfonated Silica Monoliths Catalysts for Selective Partial Hydrogenation Reactions under Continuous Flow. ChemCatChem 2017, 9, 3245–3258. doi:10.1002/cctc.201700381
  • Hornung, C. H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A. J.; Fraser, D.; Horne, M. D.; Gunasegaram, D. R.; Tsanaktsidis, J. Use of Catalytic Static Mixers for Continuous Flow Gas–Liquid and Transfer Hydrogenations in Organic Synthesis. Organic Process Research & Development 2017, 21, 1311–1319. doi:10.1021/acs.oprd.7b00180
  • Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's Guide to Flow Chemistry. Chemical reviews 2017, 117, 11796–11893. doi:10.1021/acs.chemrev.7b00183
  • He, Y.; Rezaei, F.; Kapila, S.; Rownaghi, A. A. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization. ACS applied materials & interfaces 2017, 9, 16288–16295. doi:10.1021/acsami.7b04092

Patents

  • DUNMAN PAUL M; OLSON PATRICK D; CHILDERS WAYNE. Small molecule RNase inhibitors and methods of use. US 9693999 B2, July 4, 2017.
  • DUNMAN PAUL M; OLSON PATRICK D; CHILDERS WAYNE. Small molecule RNase inhibitors and methods of use. US 9517230 B2, Dec 13, 2016.
  • DUNMAN PAUL M; OLSON PATRICK D; CHILDERS WAYNE. Small molecule RNase inhibitors and methods of use. US 9233095 B2, Jan 12, 2016.
  • DUNMAN PAUL M; OLSON PATRICK D; CHILDERS WAYNE. Small molecule RNase inhibitors and methods of use. US 9089545 B2, July 28, 2015.
Other Beilstein-Institut Open Science Activities