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Abstract

Atomic force microscopy (AFM) is an important tool for measuring a variety of nanoscale surface properties, such as topography,
viscoelasticity, electrical potential and conductivity. Some of these properties are measured using contact methods (static contact or
intermittent contact), while others are measured using noncontact methods. Some properties can be measured using different ap-
proaches. Conductivity, in particular, is mapped using the contact-mode method. However, this modality can be destructive to deli-
cate samples, since it involves continuously dragging the cantilever tip on the surface during the raster scan, while a constant
tip—sample force is applied. In this paper we discuss a possible approach to develop an intermittent-contact conductive AFM mode
based on Fourier analysis, whereby the measured current response consists of higher harmonics of the cantilever oscillation fre-
quency. Such an approach may enable the characterization of soft samples with less damage than contact-mode imaging. To
explore its feasibility, we derive the analytical form of the tip—sample current that would be obtained for attractive (noncontact) and
repulsive (intermittent-contact) dynamic AFM characterization, and compare it with results obtained from numerical simulations.
Although significant instrumentation challenges are anticipated, the modelling results are promising and suggest that Fourier-based

higher-harmonics current measurement may enable the development of a reliable intermittent-contact conductive AFM method.

Introduction

Conductive atomic force microscopy (C-AFM), a contact-mode  has been used to characterize local charge transport characteris-
technique, has been extensively utilized to investigate local tics [4,6] and to obtain detailed information about local charge
electrical properties of nanoscale systems, such as organic solar  mobility [5,7]. However, contact-mode AFM techniques, where

cells [1-7], semiconductors [8-10], and metals [11-13]. C-AFM the probe continuously interacts with the surface in a repulsive
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manner, can be destructive to soft samples [14-16]. In fact,
C-AFM has been deliberately used as an imprinting tool in the
past [17,18]. For the cases where the sample is rather delicate,
intermittent-contact mode (ICM) imaging, where the tip and the
sample interact briefly at the bottom of each cantilever oscilla-
tion, can be a less destructive technique [16,19,20], and this
could be advantageous also for performing current measure-
ments on such samples. Additionally, scanning tunnelling
microscopy (STM) applications may also benefit from current
measurements during which the tip oscillates above the surface,
although in the noncontact regime. Specifically, STM measure-
ments are modulated based on the observed tunnelling current,
which has an exponential dependence on the tip—sample dis-
tance [21]. Therefore, any unexpected contact with the surface
may lead to a current spike and severely perturb the controller
for a period of time, during which the tip apex structure could
be damaged further due to additional tip—sample impacts. How-
ever, if a noncontact oscillatory current measurement mode is
used, where the control variable is not the instantaneous value
of the current, these unexpected tip—sample impacts may be
more benign and may not perturb the measurement as drastical-

ly as in traditional STM approaches.

Intermittent-contact current measurement within AFM has
already been discussed in the literature. A notable example is
the work by Fein et al. where injected voltage pulses were in-
vestigated using a custom-made, low-frequency, high-stiffness
cantilever [22]. Another example is the work of Vecchiola et al.
where a “pulsed force” microscopy approach was implemented,
rather than traditional ICM-AFM [23]. Although the end result
was intermittent-contact characterization, due to the nature of
the force pulses the probe jumped from contact point to contact
point rather than exhibiting a constant, nearly resonant intermit-
tent-contact oscillation (the oscillation frequencies used were
much smaller than the resonance frequency of the cantilever).

In this paper, we propose the use of Fourier analysis to imple-
ment ICM current measurements. Fourier analysis is common-
ly used in ICM-AFM experiments due to the periodic nature of
the cantilever excitation and response. For example, in ampli-
tude-modulation AFM (AM-AFM), the most common ICM-
AFM method, a lock-in amplifier is used to track the cantilever
response near the fundamental frequency [20]. Similarly,
bimodal AFM, which involves the excitation of the cantilever at
two frequencies, also uses lock-in amplifiers or phase-locked
loops to control or observe each frequency response [24,25].
More elaborate Fourier analysis techniques have also been
implemented [26], such as in the work of Stark et al. where
time-resolved transient forces between the AFM probe and the
sample were obtained from the experimental data [27]. This ap-

proach was enhanced by Sahin et al. through a “torsional
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harmonic cantilever” [28], which combined flexural and
torsional oscillations in a way that reduced cross-contamination
of the signals used to reconstruct the tip-sample force. We have
also reported numerical simulations of this method, providing
analysis software that enables estimations of the accuracy of the
method under different conditions [29]. Fourier analysis has
also been implemented for AFM force reconstructions within
the so-called intermodulation AFM method, developed by
Haviland and co-workers, where the cantilever is typically
excited simultaneously at two different frequencies, while
various intermodulation products are recorded with a collection
of lock-in amplifiers [30,31]. More recently, Borgani et al. used
Fourier analysis to investigate non-linear conductance in
C-AFM measurements, acquiring current—voltage responses at

every scan point without sacrificing scanning speed [32].

In order to explore the various phenomena involved in dynamic
current measurements, this manuscript discusses three different
cases: (i) a noncontact dynamic current measurement where the
cantilever follows an ideal sinusoidal trajectory, (ii) a similar
case, but considering a more realistic trajectory where the tip
oscillation is perturbed by the presence of the sample, and (iii)
an intermittent-contact case where a Hertzian contact interac-
tion is established with the sample and interrupted again during
each cantilever oscillation. In the Results section, these three
cases are simulated and the results are compared with the equa-
tions derived later in the current section. Practical and instru-
mentation challenges for the proposed methods in the context
of real SPM experiments are summarised in the Discussion
section, such as data acquisition difficulties when multiple weak
signals at high frequencies are measured. Possible solutions are
also discussed in some cases, although some of these chal-
lenges are significant and have not yet been overcome. In the
remainder of this section we will derive Fourier space expres-

sions for the measured current for each case analysed.

Case 1: Dynamic noncontact current
measurement with ideal sinusoidal tip
trajectory

Consider an AFM tip oscillating over a surface with a perfect
cosine trajectory, without impacting the surface (Figure 1). In
this case the distance between the AFM tip and the surface can
be written as

d =h+ Acos(2nf1), 1)

where d is the instantaneous tip—sample distance, / is the equi-
librium tip position, A is the oscillation amplitude, f is the oscil-

lation frequency and T is time. Since there is no tip—surface con-
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tact, we consider a tunnelling current between the tip and the
surface, which we approximate with an exponential function of
the distance [21],

J=ce K )

where 0 is a linear scaling parameter and K provides the rate of

exponential decay.

Figure 1: lllustration of a tip trajectory with a perfect sinusoidal shape
in the noncontact dynamic AFM mode. The blue line represents the tip
motion about the equilibrium position of the cantilever, while the solid
black line represents the surface position, fixed at reference point zero.
h is the cantilever rest position and d is the instantaneous tip—sample
distance.

Inserting Equation 1 into Equation 2 we obtain an expression

for the tunnelling current with respect to time:

J= Ge—K[h+A cos(r)]

_ Ge_Khe_KA cos(21tft) 3)

_ GetheKA cos(2mfT+m) -

We expect to have maximum tunnelling current at the bottom of
the oscillation, where the cosine is at its minimum (this is where
the tip and sample are closest). Likewise, the lowest value of
the current occurs when the cosine reaches its maximum value.
Since the oscillation phase reference is arbitrary, it is conve-
nient to replace the time variable as follows:

2nft+m=2nft, 4)

J= Ge—KheKAcos(Znﬂ)‘ 5)

Note that the left-hand side of Equation 4 depends on the vari-
able 1, whereas the right-hand side depends on ¢. Expressions
such as the right-hand side of Equation 5 can be expanded with

a Fourier cosine series using the modified Bessel functions of
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the first kind (of different orders) as the Fourier coefficients
[33]:

ezcos(e) =1, (Z)+ 22 I (z)cos(e). (6)
k=1

We apply this expansion to our current equation and obtain:

J=oe M 1 (AK)+2 I (AK )cos(2nfhke) | (7)
k=1

In order to be able to more intuitively analyse the result, we

take the Fourier transform of the series in Equation 7:

F{J}=e IO(AK)S(w)+ilk(AK)[S(wikf)] L®)

We will return to this expression in order to analyse and visu-

alize it in the Results section.

Case 2: Dynamic noncontact current

measurement with realistic tip trajectory
A real AFM tip trajectory exhibits perturbations due to the
tip—sample forces, which have been treated analytically by
Diirig [34-36] and investigated further by several other re-
searchers [37-39]. The perturbed tip trajectory can be expressed

as a Fourier cosine series:

v =) a,cos(2nnft). ©)

n=l

Here the cantilever response consists of the principal frequency
oscillation plus its higher harmonics, with the a,, values repre-
senting the amplitudes of those harmonics. For instance, a; cor-
responds to the fundamental frequency of the cantilever
response, which is typically tracked using a lock-in amplifier
and modulated during a standard dynamic AFM experiment. As
outlined in the work of Hembacher and co-workers [37], the a,,
values correspond to higher harmonics of the cantilever oscilla-
tion, as indicated in Equation 10, where the tip—sample interac-

tion force exhibits short range compared to the full cantilever

oscillation:

201 A" L d"F(z+Au n—0.5
a,=—- I ( ) ( —u? ) du.

k 1 2 n dz" (10)
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The a,, values decrease rapidly with increasing n in conven-
tional dynamic mode applications [note that in Equation 10 the
a,, values are proportional to the inverse of (1 — n%)]. The analy-
sis of the cantilever trajectory and its higher harmonic responses
are discussed in detail in [34-39]. The higher harmonics (i.e.,
a, as,...) have also been measured in dynamic AFM experi-
ments [40,41].

For our cantilever trajectory we will use Equation 9, since a
tip—sample force perturbation is present. Since we are still
considering a noncontact case, we will use the tunnelling cur-
rent model from Equation 3. The tip—sample distance is:

d=h+y=h+) a,cos(2nnft) (11)

n=l1

We treat this expression in a similar manner as for the previ-
ously analysed ideal case and obtain the following current
expression in the time domain:

J =cekVeKh

< 2
=G€7KhH|:e a, cos( nfnt)jl

n=1 (12)

0 0
=ce | 1y (a,K)+2 I (Ka, )cos(2nfnt) |
n=1 k=1

We can again easily apply the Fourier transform to find the fre-
quency-domain representation of the tunnelling current. In this
case, however, although it is trivial to obtain the Fourier trans-
form of the Fourier series, we have an infinite number of differ-
ent Fourier series multiplied with one another. These multipli-
cations in the time domain correspond to convolutions in the

frequency domain:

F(J)=oc X {10 (@K)5(w)+23 Iy (K)5(wk f)}

k=1

9{10 (azK)S(w)+2i I (azK)S(wiZkf)}*... (13)

k=1

*{IO(anK)S(w)-s-Zilk(anK)S(winkf)}*...

k=1

This infinite number of convolutions between infinite series
may look intimidating at first glance. However, we note that the
infinite series in Equation 13 consist of delta functions at differ-
ent frequencies, multiplied by their respective coefficients.

Convolution of a given function with a delta function yields
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only a time shift in the convolved function, without changing

the original shape of the function. For instance,

cos()*8(t—a)= T F(€)8(t—a—-¢)dE =cos(t—a).

—00

Furthermore, we know that the coefficients of the aforemen-
tioned delta functions correspond to modified Bessel functions
of the first kind, which increase in order with every consecu-
tive term in the infinite series. The zeroth-order modified Bessel
function of the first kind approaches unity when its argument
approaches zero. Higher-order modified Bessel functions of the
first kind approach zero when their argument approaches zero
(see Figure 2). Combining this knowledge with the knowledge
of rapidly decreasing values of a,, we can conclude that the
higher harmonics of the current will approach a delta function
with a coefficient equal to unity at 0 Hz, which has no effect on
convolution operations:

lim 7o (z)=1 hence lim Iy (a,)=1,

z—0 n—»0

lim I;.9(z)=0 hence lim I 4(a,)=0, (14
n—»0

z—0

f(x)*S(w)=f(x) and f(x)*0=0.

Thus, we can conclude that only the first few harmonics will
contribute significantly. Intuitively, it is also expected that the
higher harmonics should not contribute significantly to the final
convolution based on their a,, values approaching zero with in-
creasing 7.

Modified Bessel Functions of the First Kind

Figure 2: Modified Bessel functions of the first kind of different orders.
While the zeroth-order function approaches unity at the origin, higher-
order functions approach zero quite steeply. Higher-order functions
converge to zero more quickly than their lower-order counterparts as
the origin is approached from the right.
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Case 3: Dynamic intermittent-contact
current measurement with realistic tip
trajectory

Here we consider a tip trajectory such that intermittent tip—sam-
ple repulsive contact occurs, for which a much larger current is
expected from the conduction (contact) sections of the trajec-
tory than from the tunnelling (noncontact) sections of the trajec-
tory. During the conduction phase, we will treat the current as
being proportional to the contact area, as a first approximation,
as in an Ohmic contact, and will neglect the small tunnelling
current for simplicity. Using the Hertzian contact model [42]
for the repulsive interaction and considering surface indenta-
tion, we can write the current as:

0, d>0
C-4, d<0,where 4=|d|R_’

1(d)

(15)

where d is the tip—sample distance, C is a conduction propor-
tionality constant, and R is the AFM tip radius. The overall
setting we have described is represented in Figure 3.

Although frequency-domain analysis has provided useful
insight and mathematical convenience for the previous two
cases considered, it is more challenging to perform here due to
the piecewise expression for the current. We can address this
issue using the square wave function (sq) to represent the inden-
tation, In, as follows:

In=-d-sq(t,T)=—(h+vy)-sq(z,T), (16)

M

(ar8(wxkf))

N | —

{—hS(w) -

k

Il
—

o0

{rffi(w)+§l -

0

{—hS(w)* TfS(w)+ Y.

n=1

—%a@(wif)* rfS(w)+ i
n=l1

rf5(w)+ 3

(wikf)*

n=1

2

n=l1

{_%azé(wi 21)*| tf3(w)+ i
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Figure 3: lllustration of the intermittent-contact interaction case. The
blue line represents y, the trajectory of the tip about the equilibrium
position of the cantilever, while the solid black line represents the sur-
face position, fixed at reference point zero. h is the cantilever rest posi-
tion, T is the fundamental period of the tip trajectory, d is the indenta-
tion, and 7 is the contact time.

where y is the tip trajectory, and sq(t,7) is the square wave
function with period T and duty cycle T, ranging from zero to
unity and with a duty cycle centred around zero time [43]. It is
clear that T, the duty cycle of the square wave function, corre-
sponds to the effective interaction time between the tip and the
sample. Upon introduction of sq(t,7), which has a well-defined
Fourier transform, our indentation will automatically be zero
whenever there is a positive tip—sample distance (see Figure 4).
We can now define the current as

1
IHIn=In-C-R-—
(n)=In-C-R-—

a7

and take its Fourier transform:

(isin(nfnt)S(winf)J

[’:—nsin(nfnr)é‘)(win f)j

(1

. (18)
—sin
nm

(nfm)s(winf)]

[Lnsin(nfm)a(winf)j

(ﬁsin(nfnt)S(winf)j
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In the above equation, two terms (in brackets) are being convo-
luted. The first term corresponds to the tip trajectory and the
second term comes from the introduction of the square pulse.
One can see that the contribution coming from the square pulse
function has a sinc-shaped envelope on the coefficients of the
delta functions, (1/nm)-sin(nfnt). Examination of the term
coming from the trajectory reveals that it can be separated into
two components: a zero frequency (DC) contribution and a
harmonics contribution. The DC contribution corresponds to the
term containing 8(w) and the harmonics contribution corre-
sponds to the terms containing d(w + nf) inside the summation.
Due to the additive property of the convolution, this operation
can be performed one component at a time. This means that
individual components of the motion can be convolved with the
term originating from the square wave function and summed up
afterwards. The zero-frequency contribution will yield a comb
of delta functions with a sinc envelope on their coefficients,
coming from the square wave function, while each of the delta
functions deriving from the harmonics of the motion will lead
to a shifted comb of delta functions with rescaled coefficients
governed by a sinc envelope. This is demonstrated in
Equation 19 and Equation 20. Equation 19 shows the expan-
sion of the term coming from the DC contribution in the trajec-
tory. As the equation shows, convolving the contribution of the
rectangular pulse with the 0 Hz part of the trajectory only
rescales the former. Equation 20 illustrates the convolution of
the square pulse contribution with the first harmonic coming
from the trajectory. This operation both rescales and shifts the
square pulse contribution by the frequency of the first

harmonic.
—hS(w)* rfﬁ(w)+i(isin(nfnr)S(winf)j
nm
} n=1 (19)
:_htfs(w)_hz(ism(nfm)a(winf)}
o\nT
1 (1. .
_2alé(w+f)*{rf8(w)+Z[Msm(nfnt)fi(winf)ﬂ
n=l (20)

n=1

L {rfa(w+f)+i1Sin(ﬂfnf)5(Wi”f+f)}'
T

Based on the above, we conclude that the current will consist of
a linear combination of shifted combs of delta functions with a
sinc envelope governing the coefficients of each comb. With
rapidly decreasing a, values, higher-frequency harmonics will
become negligible quite rapidly. However, unlike in the
noncontact (tunnelling) case, the a,, values are directly involved

in the current expression, without being “processed” inside of a
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modified Bessel function (in this case they are coefficients of
delta functions). Therefore, the contribution of the higher

harmonics is expected to be more significant in this case.

N

Figure 4: lllustration of the derivation of the indentation. The upper
blue line represents the tip—sample distance. Multiplying that function
with a square pulse function (black line) with duty cycle equal to the
contact time, and changing sign, yields the indentation, represented by
the lower blue line.

NN NN

One can see from Equation 18 that the effective interaction time
between the tip and the sample, T, has a significant effect on the
current profile. The consideration of the role of T in Equation 18
leads to the conclusion that increasing T increases the current
magnitude and narrows the sinc envelope. Narrowing of the
sinc envelope suggests more quickly decaying harmonics. This
is reasonable, since increases in the contact time should lead to
smoother variations in the current, which would reduce the need
for very high frequency components in its Fourier transform.
More quickly decaying harmonics suggest that it would be more
difficult to measure a large number of them accurately, but due
to the above reasons, fewer harmonics should be necessary for a
proper reconstruction of the current. One can also conclude that
knowledge of the tip—sample contact time would be useful in
the characterization of the current profile, while, similarly,
knowledge of the current as a function of time would aid in
understanding the effective tip—sample contact time, which may
also provide useful information regarding the mechanics of the

interaction [44].

Results

In order to visualise the analytical results derived for the first
case considered, we evaluate Equation 8 for a cantilever fre-
quency of 70 kHz and an amplitude of 100 nm, with the lowest
point of the trajectory being 1 nm above the surface. A
tunnelling current in the form of Equation 2 is considered, with
1000-fold decay between a distance of 0 and 1 nm from the sur-
face. As can be seen from Figure 5, the calculated frequency
peaks on the power spectrum (calculated using the derived
equation) match those calculated by taking the Fourier trans-

form of the current.

458



Power Spectrum of the Current

0.8 J
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Figure 5: Normalised power spectrum of the current obtained for the
noncontact, ideal-trajectory case. The blue lines indicate the power
spectrum obtained via Fourier transform of the current, while the
orange dots correspond to the predicted peaks from Equation 8. The
first 50 elements of the infinite sum in Equation 8 were used for evalu-
ating the equation. The results are in agreement with each other. Both
the power spectrum and the predicted peaks are normalized. The
figure also shows that the first harmonic (70 kHz), is the strongest peak
in the spectrum, although the decay of the higher harmonic values is
not rapid. Our calculations show that the peaks diminish to ca. 20% of
the maximum peak value at a frequency of approximately 3.2 MHz,
which roughly corresponds to the 46th harmonic.

In order to demonstrate the second case, we performed a numer-
ical simulation for a dynamic AFM experiment that operates in
the attractive tip—sample interaction regime. For this we have
integrated the equation of motion of a spring—mass—dashpot
model (Equation 21), customarily used to model dynamic AFM
[45], where mg is the effective mass of the cantilever, f its

natural frequency, k its stiffness and Q its quality factor:

Mege X + 0 x+hke=F excitation + £5

interaction *

€2y

Fexcitation 18 the sinusoidal driving force and the tip—sample
interaction force, Fipteraction, 1S based on the Hamaker equation
[42]. The simulation parameters are provided in Table 1.
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In the power spectrum of the cantilever response (Figure 6), one
can observe that the a,, values decrease rather rapidly, such that
only the first peak contributes significantly. Therefore, the fre-
quency representation of the tunnelling current obtained for the
numerical simulation is very close to the representation based
on including only one cosine term in Equation 12 (Figure 7).

a) Power Spectrum of Tip Trajectory
100 - ' ‘ ‘
80|
'g 60 |
R
T
40|
20|
0!
0 0.1 0.2 0.3 0.4 0.5
Frequency (MHz)
b) Power Spectrum of Tip Trajectory
10° 1
B
e
[N
10°°
0 0.2 0.4 0.6 0.8 1
Frequency (MHz)

Figure 6: a) Power spectrum of the cantilever trajectory. The higher
harmonic amplitudes are very small compared to the first harmonic
amplitude, and their peaks are not visible in the spectrum with linear
vertical axis. However, they are ever present and can be seenin a
logarithmic plot (b), where the second harmonic is almost 1000 times
smaller than the first harmonic.

Table 1: Simulation parameters for the spring—mass—dashpot AFM model in the attractive imaging regime (i.e., without tip—sample contact). The
tip—sample interaction forces are modelled using the Hamaker equation for the case of a sphere interacting with a flat surface [42]. The imaging pa-
rameters are selected to resemble day-to-day large-amplitude experiments. The cantilever properties are similar to those of commercial cantilevers
(e.g., BudgetSensors, ElectriMulti75-G conductively coated KPFM cantilevers). The Hamaker constant is chosen within the range appropriate for ma-

terials used in AFM experiments [46].

quality factor spring constant  natural tip radius
frequency
100 3 N/m 70 kHz 90 nm

Hamaker free oscillation resting tip
constant amplitude distance
60 x 10720 100 nm 98 nm
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A calculation based on including two cosine terms in
Equation 12 (that is, considering the first two harmonics of the
cantilever response), also predicts the power spectrum of the
current accurately, and the result is only negligibly different
from the single-cosine calculation, due to the rapid decrease of
the higher harmonics in the tip trajectory (also plotted in
Figure 7). In contrast, the magnitude of the higher harmonics of
the current does not decrease rapidly. Figure 7 shows that the
magnitude of the first few harmonics is very close to the magni-
tude of the fundamental harmonic. This suggests that a signifi-
cant number of harmonics should be detectable in an experi-
mental setting (provided that the fundamental harmonic is
detectable), and that they need to be included in order to have a

valid reconstruction of the current.

Power Spectrum of The Current

10 X)()()()(xxxx ‘ ]
x)()()(
| )()()()( |
0.8 )(xx
0.6F 1
_ p ¢
o x
04 r b
021 ——Current 1
X Single Cosine
0 ¢ Two Cosine

0 0.5 1 1.5 2
Frequency (MHz)

Figure 7: Power spectrum of the current from analytical calculations
and numerical cantilever simulations for a noncontact case with attrac-
tive tip—sample forces. The blue lines correspond to the calculated
power spectrum from the numerical simulation and the orange crosses
correspond to the prediction from Equation 13, for the case where only
one cosine term is included in Equation 12. The agreement between
the two results is very good, as expected, since the higher harmonics
of the tip trajectory decrease very rapidly. Pink dots are used to repre-
sent the two-cosine analytical prediction. Due to the rapid decrease of
the higher harmonic amplitudes of the tip trajectory, the single- and
two-cosine results fall aimost on top of each other and are visually
indistinguishable. The average difference between the single- and two-
cosine calculations for the first 50 harmonics is 0.18%. Both calcula-
tions are normalised.
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The numerical simulation for case 3 is similar to that of case 2,
except that only repulsive forces are considered, which are
based on the Hertzian contact model (for simplicity, the attrac-
tive forces are not included). The simulation parameters can be
found in Table 2. Here we first consider (i) an unperturbed can-
tilever trajectory, whereby the cantilever indents the surface
without experiencing any tip—sample forces, and (ii) a more
realistic oscillation based on the spring—mass—dashpot model of
Equation 21. For a proper comparison we use the same oscilla-
tion amplitude in both cases. Figure 8 depicts the power spec-
trum of the realistic cantilever trajectory (Figure 8a), along with
a comparison of the power spectrum of the current for the two
oscillation trajectories (Figure 8b). As explained in the Intro-
duction section, unlike the first two cases considered, here the
higher harmonics of the cantilever trajectory play a more promi-
nent role, and there are clear differences in the current calcu-
lated for the ideal and for the more realistic case. Additionally,
as expected, a sinc-shaped envelope can be observed in the
power spectrum of the current, whereby the amplitude of the
harmonics does not follow a monotonic trend.

Reconstruction of the tip—sample current should be possible if
one can record its power spectrum. It is of course desirable to
be able to record as many harmonics as possible, although this
may not always be possible, in part due to signal-to-noise ratio
limitations for very high frequencies or for frequencies near the
nodes in the power spectrum (see Figure 8), and in part due to
the fact that recording additional harmonics also requires addi-
tional instrumentation (i.e., lock-in amplifiers). Figure 9 illus-
trates the reconstruction of the current for the intermittent-con-
tact simulation for one tip—sample impact, for different numbers
of harmonics included in the reconstruction. As expected, in-
cluding a larger number of harmonics leads to a current trace
that is closer to the actual current. As can be seen in the figure,
inclusion of 25 harmonics, whereby the 25th harmonic would
still be within the range of frequencies that can be typically ob-
served in AFM with relatively standard instrumentation (for
sufficiently strong signals), already provides a very good recon-
structed current (for reference, consider that the 4th eigenmode
of a rectangular cantilever, which has been included in previous
multifrequency AFM experiments [47], falls in the same range
as the 30th harmonic). Furthermore, improvements in the recon-

Table 2: Simulation parameters for the spring-mass—dashpot AFM model in the intermittent-contact imaging regime. For simplicity, no attractive
forces are considered. The repulsive interaction is modelled using the Hertzian contact model. The simulation parameters are selected to resemble
those of day-to-day intermittent contact AFM experiments. The cantilever parameters are the same as given in Table 1.

quality factor spring constant  natural tip radius
frequency
100 3 N/m 70 kHz 90 nm

effective elastic  free oscillation resting tip
modulus amplitude distance
10 GPa 100 nm 80 nm
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Figure 8: a) Power spectrum of the tip trajectory for the realistic simulation with the Hertzian repulsive interaction (the simulation parameters are pro-
vided in Table 2). The higher harmonic amplitudes of the tip oscillation are much smaller than the first harmonic amplitude but do nonetheless influ-
ence the current response. b) Comparison of the power spectrum of the current for the realistic numerical simulation with the power spectrum of the
unperturbed, single-cosine trajectory. The single-cosine trajectory is designed to have the same frequency and maximum indentation as the realistic
trajectory. Although the higher-harmonic amplitudes in the realistic tip trajectory are quite small compared to the first harmonic amplitude (a), the
spectra of the current differ for the two trajectories considered. Both spectra exhibit the expected sinc envelope shape, with the envelope being wider

when the realistic tip trajectory is considered.
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Figure 9: Current output obtained from the intermittent-contact simula-
tion (black trace) and reconstruction of the current from different
numbers of harmonics. As expected, inclusion of a larger number of
harmonics in the reconstruction yields more accurate results. In this
particular example, inclusion of 25 harmonics already leads to a very
good reconstruction of the current. Since the behaviour of the
harmonics coefficients as a function of frequency is not arbitrary, but
rather expected to exhibit a sinc-shaped envelope, it may be possible
to estimate a large number of higher harmonic amplitudes from a
sparse collection of harmonics measured over a wide frequency range,
such that a more accurate reconstruction is achieved.

struction may be possible due to the fact that the shape of the
power spectrum envelope may be known, as is the case for
Equation 13 and Equation 18, or could be approximated from

the experimental data. Specifically, during an experiment it may

be possible to approximate the shape of the envelope if one has
knowledge of the amplitude of a sparse collection of harmonics
over a wide frequency range. With this information, one could
predict the amplitude of the harmonics that have not been re-
corded and carry out a more accurate reconstruction of the cur-
rent. It should be noted that this is possible due to the fact that
all Fourier coefficients in the reconstructions discussed are real,
such that if the fundamental harmonic is assigned a phase of
zero, then all other harmonics should have a phase of either

zero or 7 (see Equation 18).

Discussion

In the previous sections we have presented a Fourier descrip-
tion of tunnelling and conduction current in noncontact and
intermittent-contact dynamic AFM scenarios, in the context of
the development of an intermittent-contact conductive AFM
technique. For the noncontact case, the exponential dependence
of the current with respect to the tip—sample distance led to a
power spectrum for the current which contained a collection of
increasing orders of modified Bessel functions of the first kind.
When a repulsive interaction was considered, we again ob-
tained a collection of harmonics in the power spectrum, al-
though this time their coefficients were characterized by a sinc-
shaped envelope, which emerges from the intermittent-contact
nature of the interaction, whereby only the conductive current
was considered to be significant and the tunnelling current was
neglected. In all cases we obtained good agreement between the
analytical expressions derived and the numerical simulations

conducted, which suggests that a Fourier-based reconstruction
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of the current may be feasible. Nevertheless, it is important to
point out anticipated challenges in the experimental implemen-
tation of the proposed method, which can be significant. We
expect these challenges to arise from probe-related phenomena,
data acquisition limitations, noise, the electrical nature of the
sample, or some combination of all these factors.

With regards to probe challenges, it is well known that conduc-
tive tips can wear out rather easily, especially at the very apex
and most especially in the case where coated tips are used, as
opposed to solid conductive tips. In conventional C-AFM, small
wear of the tip coating may not be as detrimental as it would be
in an intermittent-contact experiment, because in the former
case electrical tip—sample contact may also be established on
the sides of the tip apex, particularly if indentation is signifi-
cant during the experiment. However, indentation during an
ICM-AFM experiment may be smaller and thus the tip contact
region may be much smaller, especially under low-impact
conditions. For example, in our Hertzian model simulation, the
indentation is only around 0.6 nm, which limits the tip—sample
contact area. In the noncontact case, the contrast is governed by
the very apex of the tip, such that damage in that region may be
even more problematic. Of course, the use of solid metallic tips
is an alternative, although they may be more costly and the
variety of parameters and geometries for which they are avail-
able is not as wide as for coated tips. In fact, coated tips can be

easily fabricated starting with any non-conductive tip.

Electrical noise is anticipated to also introduce challenges. Al-
though classical C-AFM can be affected by noise as well, the
expected current magnitude in this mode of imaging should be
larger than for ICM-AFM for the reasons described above, such
that the current signal-to-noise ratio for the latter may be
smaller. Furthermore, the current oscillations in C-AFM are of
very low frequency. In contrast, ICM-AFM would involve the
measurement of small currents at much higher frequencies,
which would require an amplifier suitable for those conditions.
Suitable instruments for experiments with relatively high
conductance materials do exist (e.g., FEMTO DHPCA-100,
trans-impedance amplifier [48]), which could, for example,
record currents in the nanoampere regime at frequencies near
1 MHz. For experiments conducted on materials with signifi-
cantly lower conductivity, different approaches need to be
taken. It is possible that the use of several amplifier stages, in
contrast to the use of a single trans-impedance amplifier in most
conventional C-AFM setups, could improve time resolution
[49]. Since the current spectrum is not expected to exhibit arbi-
trary frequencies, additional lock-in amplifiers can also be used.
Previous researchers have provided creative examples of mea-
surements performed on very small currents at high frequencies.

For example, radio-frequency systems have been used in STM
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applications, such as in the work of Manassen et al. who report
measurements of ca. 0.25 nA tunnelling currents at 500 MHz
[50]. Such RF-STM measurements are described in detail in the
work of Kemiktarak and co-workers [49]. Generally speaking,
the above examples suggest that the proposed measurements
could be feasible, although the equipment requirements may be
considerable, since the systems would need to be replicated for

each Fourier component measured simultaneously.

Creative signal processing strategies may also be necessary. For
example, one possible partial solution may be the use of comb-
filtering approaches similar to the implementation used by
Legleiter et al. in their scanning probe acceleration microscopy
(SPAM) method [51], although this would only be beneficial
for harmonics that rise significantly above the noise floor, and
not for those that are near the nodes of the sinc envelope.
Another possible solution is the use of time averaging of the
peak magnitudes at the expected harmonic frequencies, as is
done in some spectroscopy procedures, for random noise to
cancel itself out while physical peaks persist. Additional algo-
rithms and smoothing could also be implemented here [52-54].
As can be seen in Figure 8b, the maximum signal intensity
decreases to around 20% of the highest harmonic amplitude at
close to 2 MHz in our intermittent-contact realistic example,
which corresponds to the 30th harmonic. Therefore, even with a
20% noise floor, a significant number of frequency peaks may
still be available for a reasonable signal reconstruction (see
Figure 9). Furthermore, since the overall shape of the power
spectrum is not expected to be arbitrary, it may be possible to
approximate its envelope shape from a sparse collection of
harmonics, as described in the Results section.

An interesting source of electrical noise, which we have ob-
served during our initial experiments, is shaker-piezo noise. In
most AFM setups, the shaker piezo is located in very close
proximity to the AFM cantilever, in order to be able to perform
its duties and provide the required excitation to drive the canti-
lever. However, a shaker piezo with a relatively high voltage
amplitude (up to 10 V in our case) acts like an antenna and
creates a clear peak at the oscillation frequency in the measured
current. This noise is not trivial to filter out due to its location
being right at the principal frequency, where we also expect our
strongest current peak. This noise may also cause high-gain cur-
rent amplifiers to overload and may dominate all other current
signals, and this issue would be ever present regardless of the
application and regardless of the type of tip used. This might be
eliminated through alternate cantilever excitation methods, such
as laser-based thermal excitation, although existing commercial
devices with this type of excitation cannot always provide reli-
able and sufficiently strong excitation suitable for all types of

AFM probes. This has, in fact, been the case when we have
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attempted to drive solid platinum probes in our laboratory, for
which our thermal excitation did not impart a sufficiently large
oscillation amplitude for a proper application of intermittent-
contact AFM methods. Addressing this challenge may require
either developments in excitation systems or probe develop-
ments. Other excitation approaches, such as magnetic excita-
tion, may also be problematic due to the use of alternating cur-
rent to drive the cantilever, which would also lead to antenna

effects.

The electrical properties of the sample may play an important
role in the feasibility of the proposed method. For example, in
this introductory theoretical work we have treated the conduc-
tive properties of the sample as those of an Ohmic material,
where the carrier response to the electric field is “immediate”.
However, many materials exhibit responses that depend on the
timescales of the application of the electrical interactions (e.g.,
on the timescale of the contact time in our case). The characteri-
zation of such materials may lead to additional challenges,
where for some frequencies the carriers may not be able to
respond fast enough to the intermittent interaction. Examples of
such materials, which are often characterized with C-AFM,
are those used in photovoltaics, which have very particular
capacitive, dielectric, and impedance properties, such that the
timescale of the applied bias voltage can strongly influence the
result [55,56]. One additional material-related challenge, is that
in some materials the measured current is already very small
(this is also the case in tunnelling experiments, regardless of the
material). For example, in our experiments with conductive
polymers we often observe current magnitudes on the order of
tens of picoamperes in C-AFM measurements. Frequency-
based, amplified data acquisition systems for measurements in-
volving a large number of harmonics have already been de-
veloped, such as for the intermodulation AFM method, which
uses a battery of lock-in amplifiers [30,31], but the amplifica-
tion in that case is much smaller than what would be required
for ICM-AFM.

In addition to the above challenges, which may not represent an
exhaustive list, there are challenges that stem from the dynam-
ics and mechanics of an intermittent-contact operation. Besides
the fact that electrical contacts would be intermittent, the nature
of the contact would also be time-dependent within the contact
time. This is because the indentation is constantly varying.
Furthermore, the approximation of the contact area (in order to
be able to make estimates of conductivity) can be very chal-
lenging for hard materials, where constant evolution of the
probe geometry may occur, as well as for soft (e.g., viscoelastic
[57,58]) materials, for which the indentation depends very
strongly not only on the tip—sample force, but also on the rate of

application of that force.
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Clearly the challenges are numerous and addressing them
requires significant developments and investigations, but never-
theless, we believe this is an important and potentially fruitful
area of research that we have begun to explore experimentally
and for which we expect to report relevant results in the near
future. We also encourage related developments by other re-
searchers.

Conclusion

We have presented a possible method to obtain electrical prop-
erty information from a sample surface using the intermittent-
contact mode of AFM and Fourier analysis, considering also
noncontact dynamic AFM cases. We have derived the expected
current response in the frequency domain, which is in the form
of harmonics of the principal frequency and discussed its shape
and the significance of the various contributing terms. With the
proposed models, non-measured spectral components may also
be approximated. This may enable parameter-based estimation
rather than model-free current reconstruction. The results
suggest that reconstruction of the tip—sample current from such
harmonics response is in principle feasible. However, we have
also pointed out important anticipated experimental challenges
that need to be addressed before realising the proposed goal.

Acknowledgements
The authors wish to thank Mr. Orhun Caner Eren for fruitful

discussions.

Funding

The authors gratefully acknowledge support from the US
Department of Energy, Office of Science, Basic Energy
Sciences, under Award No. DE-SC0018041.

ORCID® iDs

Berkin Uluutku - https://orcid.org/0000-0002-7286-8787
Santiago D. Solares - https://orcid.org/0000-0003-0895-8160

References

1. Noh, H.; Diaz, A. J.; Solares, S. D. Beilstein J. Nanotechnol. 2017, 8,
579-589. doi:10.3762/bjnano.8.62

2. ODea, J. R.; Brown, L. M.; Hoepker, N.; Marohn, J. A.; Sadewasser, S.
MRS Bull. 2012, 37, 642—-650. doi:10.1557/mrs.2012.143

3. Pingree, L. S. C.; Reid, O. G.; Ginger, D. S.
Adv. Mater. (Weinheim, Ger.) 2009, 21, 19-28.
doi:10.1002/adma.200801466

4. Pingree, L. S. C.; Reid, O. G.; Ginger, D. S. Nano Lett. 2009, 9,
2946-2952. doi:10.1021/n1901358v

5. Reid, O. G.; Munechika, K.; Ginger, D. S. Nano Lett. 2008, 8,
1602-1609. doi:10.1021/nl080155I

6. Kamkar, D. A.; Wang, M.; Wudl, F.; Nguyen, T.-Q. ACS Nano 2012, 6,
1149-1157. doi:10.1021/nn204565h

7. Dante, M.; Peet, J.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112,
7241-7249. doi:10.1021/jp712086q

463


https://orcid.org/0000-0002-7286-8787
https://orcid.org/0000-0003-0895-8160
https://doi.org/10.3762%2Fbjnano.8.62
https://doi.org/10.1557%2Fmrs.2012.143
https://doi.org/10.1002%2Fadma.200801466
https://doi.org/10.1021%2Fnl901358v
https://doi.org/10.1021%2Fnl080155l
https://doi.org/10.1021%2Fnn204565h
https://doi.org/10.1021%2Fjp712086q

8. Chen, Y. J.; Chan, S. C,; Liu, R.; Toh, S. L.; Ji, R. Nano-electric studies
on advanced semiconductor devices by conductive AFM. In 2017 IEEE
24th International Symposium on the Physical and Failure Analysis of
Integrated Circuits (IPFA), |IEEE, 2017; pp 1-4.
doi:10.1109/ipfa.2017.8060085

9. Trenkler, T.

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., M
eas., Phenom. 1998, 16, 367. doi:10.1116/1.589812

10. Olbrich, A.; Ebersberger, B.; Boit, C. Appl. Phys. Lett. 1998, 73,
3114-3116. doi:10.1063/1.122690

11.Farha Al-Said, S. A.; Hassanien, R.; Hannant, J.; Galindo, M. A.;
Pruneanu, S.; Pike, A. R.; Houlton, A.; Horrocks, B. R.

Electrochem. Commun. 2009, 11, 550-553.
doi:10.1016/j.elecom.2008.12.031

12.Li, L. H.; Xing, T.; Chen, Y.; Jones, R. Adv. Mater. (Weinheim, Ger.)
2014, 7, 1300132. doi:10.1002/admi.201300132

13. Beinik, |.; Kratzer, M.; Wachauer, A.; Wang, L.; Piryatinski, Y. P.;
Brauer, G.; Chen, X. Y.; Hsu, Y. F.; Djuri$i¢, A. B.; Teichert, C.
Beilstein J. Nanotechnol. 2013, 4, 208—217. doi:10.3762/bjnano.4.21

14.Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V. B. Surf. Sci. Lett. 1993, 290,
L688-L692. doi:10.1016/0167-2584(93)90906-y

15. Alexeev, A.; Loos, J.; Koetse, M. M. Ultramicroscopy 2006, 106,
191-199. doi:10.1016/j.ultramic.2005.07.003

16. Vuppu, A. K.; Garcia, A. A.; Vernia, C. Biopolymers 1997, 42, 89—100.
doi:10.1002/(sici)1097-0282(199707)42:1<89::aid-bip8>3.0.co;2-y

17.Farina, M.; Ye, T.; Lanzani, G.; di Donato, A.; Venanzoni, G.;
Mencarelli, D.; Pietrangelo, T.; Morini, A.; Keivanidis, P. E.

Nat. Commun. 2013, 4, 2668. doi:10.1038/ncomms3668

18.Jiang, G.; Baba, A.; Advincula, R. Langmuir 2007, 23, 817-825.
doi:10.1021/1a061817u

19.Liu, L.; Xi, N.; Li, G.; Chen, H. Atomic Force Microscope-Based
Nanorobotic System for Nanoassembly. Nano Optoelectronic Sensors
and Devices; Elsevier: Amsterdam, Netherlands, 2012; pp 51-79.
doi:10.1016/b978-1-4377-3471-3.00004-6

20. Moreno-Herrero, F.; Colchero, J.; Gébmez-Herrero, J.; Baré, A. M.
Phys. Rev. E 2004, 69, 031915. doi:10.1103/physreve.69.031915

21.Morita, S., Ed. Roadmap of Scanning Probe Microscopy; NanoScience
and Technology; Springer Berlin: Berlin, Germany, 2007.
doi:10.1007/978-3-540-34315-8

22.Fein, A.; Zhao, Y.; Peterson, C. A.; Jabbour, G. E.; Sarid, D.

Appl. Phys. Lett. 2001, 79, 3935-3937. doi:10.1063/1.1424473

23.Vecchiola, A.; Chrétien, P.; Delprat, S.; Bouzehouane, K.;
Schneegans, O.; Seneor, P.; Mattana, R.; Tatay, S.; Geffroy, B.;
Bonnassieux, Y.; Mencaraglia, D.; Houzé, F. Appl. Phys. Lett. 2016,
108, 243101. doi:10.1063/1.4953870

24.Garcia, R.; Proksch, R. Eur. Polym. J. 2013, 49, 1897-1906.
doi:10.1016/j.eurpolym].2013.03.037

25.Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E.
Phys. Rev. B 2010, 81, 085420. doi:10.1103/physrevb.81.085420

26. Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217-226.
doi:10.1038/nnano.2012.38

27.Stark, M.; Stark, R. W.; Heckl, W. M.; Guckenberger, R.

Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 8473-8478.
doi:10.1073/pnas.122040599

28.Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O.

Nat. Nanotechnol. 2007, 2, 507-514. doi:10.1038/nnano.2007.226

29.Solares, S. D.; Holscher, H. Nanotechnology 2010, 21, 075702.
doi:10.1088/0957-4484/21/7/075702

Beilstein J. Nanotechnol. 2020, 11, 453—465.

30.Tholén, E. A,; Platz, D.; Forchheimer, D.; Schuler, V.; Tholén, M. O.;
Hutter, C.; Haviland, D. B. Rev. Sci. Instrum. 2011, 82, 026109.
doi:10.1063/1.3541791

31.Platz, D.; Tholén, E. A.; Pesen, D.; Haviland, D. B. Appl. Phys. Lett.
2008, 92, 153106. doi:10.1063/1.2909569

32.Borgani, R.; Gilzad Kohan, M.; Vomiero, A.; Haviland, D. B.

Phys. Rev. Appl. 2019, 11, 044062.
doi:10.1103/physrevapplied.11.044062

33. Abramowitz, M.; Stegun, |. A. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables; Dover Publications
Inc., 1965.

34.Durig, U. Appl. Phys. Lett. 1999, 75, 433—435. doi:10.1063/1.124399

35.Durig, U. Surf. Interface Anal. 1999, 27, 467—-473.
doi:10.1002/(sici)1096-9918(199905/06)27:5/6<467::aid-sia519>3.0.co;
2-7

36. Durig, U. New J. Phys. 2000, 2, 5. doi:10.1088/1367-2630/2/1/005

37.Hembacher, S.; Giessibl, F. J.; Mannhart, J. Science 2004, 305,
380-383. doi:10.1126/science.1099730

38. Giessibl, F. J. Surf. Interface Anal. 2006, 38, 1696—1701.
doi:10.1002/sia.2392

39. Wright, C. A.; Solares, S. D. Appl. Phys. Lett. 2012, 100, 163104.
doi:10.1063/1.3703767

40. Santos, S.; Barcons, V.; Font, J.; Verdaguer, A.

Beilstein J. Nanotechnol. 2014, 5, 268—277. doi:10.3762/bjnano.5.29

41. Stark, R. W.; Heckl, W. M. Rev. Sci. Instrum. 2003, 74, 5111-5114.
doi:10.1063/1.1626008

42.Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic
Press, 2011. doi:10.1016/c2009-0-21560-1

43.Smith, S. W. The Scientist & Engineer’s Guide to Digital Signal
Processing, 1st ed.; California Technical Publishing, 1997.

44.Tamayo, J.; Garcia, R. Langmuir 1996, 12, 4430-4435.
doi:10.1021/1a960189I

45.Garcia, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197-301.
doi:10.1016/s0167-5729(02)00077-8

46. Leite, F. L.; Bueno, C. C.; Da Réz, A. L.; Ziemath, E. C.;

Oliveira, O. N., Jr. Int. J. Mol. Sci. 2012, 13, 12773—-12856.
doi:10.3390/ijms131012773

47.Solares, S. D.; An, S.; Long, C. J. Beilstein J. Nanotechnol. 2014, 5,
1637-1648. doi:10.3762/bjnano.5.175

48. FEMTO® Messtechnik GmbH. Variable Gain High Speed Current
Amplifier DHPCA-100.
https://www.femto.de/en/products/current-amplifiers/variable-gain-up-to
-200-mhz-dhpca/34-schneller-stromverstaerker-mit-einstellbarer-versta
erkung-dhpca-100-2 (accessed Feb 20, 2020).

49. Kemiktarak, U.; Ndukum, T.; Schwab, K. C.; Ekinci, K. L. Nature 2007,
450, 85-88. doi:10.1038/nature06238

50.Manassen, Y.; Hamers, R. J.; Demuth, J. E.; Castellano, A. J., Jr.
Phys. Rev. Lett. 1989, 62, 2531-2534. doi:10.1103/physrevlett.62.2531

51.Legleiter, J.; Park, M.; Cusick, B.; Kowalewski, T.

Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4813-4818.
doi:10.1073/pnas.0505628103

52.Clupek, M.; Matéjka, P.; Volka, K. J. Raman Spectrosc. 2007, 38,
1174-1179. doi:10.1002/jrs.1747

53.Barton, S. J.; Ward, T. E.; Hennelly, B. M. Anal. Methods 2018, 10,
3759-3769. doi:10.1039/c8ay01089g

54.Chen, H.; Xu, W.; Broderick, N.; Han, J. J. Raman Spectrosc. 2018, 49,
1529-1539. doi:10.1002/jrs.5399

55.Chen, B.; Yang, M.; Priya, S.; Zhu, K. J. Phys. Chem. Lett. 2016, 7,
905-917. doi:10.1021/acs.jpclett.6b00215

464


https://doi.org/10.1109%2Fipfa.2017.8060085
https://doi.org/10.1116%2F1.589812
https://doi.org/10.1063%2F1.122690
https://doi.org/10.1016%2Fj.elecom.2008.12.031
https://doi.org/10.1002%2Fadmi.201300132
https://doi.org/10.3762%2Fbjnano.4.21
https://doi.org/10.1016%2F0167-2584%2893%2990906-y
https://doi.org/10.1016%2Fj.ultramic.2005.07.003
https://doi.org/10.1002%2F%28sici%291097-0282%28199707%2942%3A1%3C89%3A%3Aaid-bip8%3E3.0.co%3B2-y
https://doi.org/10.1038%2Fncomms3668
https://doi.org/10.1021%2Fla061817u
https://doi.org/10.1016%2Fb978-1-4377-3471-3.00004-6
https://doi.org/10.1103%2Fphysreve.69.031915
https://doi.org/10.1007%2F978-3-540-34315-8
https://doi.org/10.1063%2F1.1424473
https://doi.org/10.1063%2F1.4953870
https://doi.org/10.1016%2Fj.eurpolymj.2013.03.037
https://doi.org/10.1103%2Fphysrevb.81.085420
https://doi.org/10.1038%2Fnnano.2012.38
https://doi.org/10.1073%2Fpnas.122040599
https://doi.org/10.1038%2Fnnano.2007.226
https://doi.org/10.1088%2F0957-4484%2F21%2F7%2F075702
https://doi.org/10.1063%2F1.3541791
https://doi.org/10.1063%2F1.2909569
https://doi.org/10.1103%2Fphysrevapplied.11.044062
https://doi.org/10.1063%2F1.124399
https://doi.org/10.1002%2F%28sici%291096-9918%28199905%2F06%2927%3A5%2F6%3C467%3A%3Aaid-sia519%3E3.0.co%3B2-7
https://doi.org/10.1002%2F%28sici%291096-9918%28199905%2F06%2927%3A5%2F6%3C467%3A%3Aaid-sia519%3E3.0.co%3B2-7
https://doi.org/10.1088%2F1367-2630%2F2%2F1%2F005
https://doi.org/10.1126%2Fscience.1099730
https://doi.org/10.1002%2Fsia.2392
https://doi.org/10.1063%2F1.3703767
https://doi.org/10.3762%2Fbjnano.5.29
https://doi.org/10.1063%2F1.1626008
https://doi.org/10.1016%2Fc2009-0-21560-1
https://doi.org/10.1021%2Fla960189l
https://doi.org/10.1016%2Fs0167-5729%2802%2900077-8
https://doi.org/10.3390%2Fijms131012773
https://doi.org/10.3762%2Fbjnano.5.175
https://www.femto.de/en/products/current-amplifiers/variable-gain-up-to-200-mhz-dhpca/34-schneller-stromverstaerker-mit-einstellbarer-verstaerkung-dhpca-100-2
https://www.femto.de/en/products/current-amplifiers/variable-gain-up-to-200-mhz-dhpca/34-schneller-stromverstaerker-mit-einstellbarer-verstaerkung-dhpca-100-2
https://www.femto.de/en/products/current-amplifiers/variable-gain-up-to-200-mhz-dhpca/34-schneller-stromverstaerker-mit-einstellbarer-verstaerkung-dhpca-100-2
https://doi.org/10.1038%2Fnature06238
https://doi.org/10.1103%2Fphysrevlett.62.2531
https://doi.org/10.1073%2Fpnas.0505628103
https://doi.org/10.1002%2Fjrs.1747
https://doi.org/10.1039%2Fc8ay01089g
https://doi.org/10.1002%2Fjrs.5399
https://doi.org/10.1021%2Facs.jpclett.6b00215

Beilstein J. Nanotechnol. 2020, 11, 453—465.

56.Yang, K. J.; Hu, C. IEEE Trans. Electron Devices 1999, 46,
1500-1501. doi:10.1109/16.772500

57.Lépez-Guerra, E. A.; Eslami, B.; Solares, S. D.
J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 804-813.
doi:10.1002/polb.24327

58.Lépez-Guerra, E. A.; Solares, S. D. Beilstein J. Nanotechnol. 2017, 8,
2230-2244. doi:10.3762/bjnano.8.223

License and Terms

This is an Open Access article under the terms of the
Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0). Please note

that the reuse, redistribution and reproduction in particular

requires that the authors and source are credited.

The license is subject to the Beilstein Journal of
Nanotechnology terms and conditions:

(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one
which can be found at:
doi:10.3762/bjnano.11.37

465


https://doi.org/10.1109%2F16.772500
https://doi.org/10.1002%2Fpolb.24327
https://doi.org/10.3762%2Fbjnano.8.223
https://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.11.37

	Abstract
	Introduction
	Case 1: Dynamic noncontact current measurement with ideal sinusoidal tip trajectory
	Case 2: Dynamic noncontact current measurement with realistic tip trajectory
	Case 3: Dynamic intermittent-contact current measurement with realistic tip trajectory
	Results
	Discussion
	Conclusion
	Acknowledgements
	Funding
	ORCID iDs
	References

