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Identifying diverse metal oxide nanomaterials with lethal
effects on embryonic zebrafish using machine learning
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Abstract
Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by
design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish (Danio Rerio) are recognised as a key human
safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials
causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24–120 hours post-
fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interac-
tions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Differ-
ent modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both
lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well
as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which
could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post
fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet
both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using
multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the
metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxi-
cological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future
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studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not
used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied
herein.
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Introduction
A variety of nanomaterial (NM)-enabled products have already
been marketed [1,2] and there is considerable interest in the de-
velopment of novel engineered nanomaterials (ENMs) for a
variety of applications. Nanomedicine, including ENM-based
therapeutic agents, nanocarriers (i.e., targeted drug delivery
vehicles), diagnostic tools and medical devices, is a key appli-
cation area [2,3]. However, as well as recognising the benefits
associated with nanotechnology, it is also important to address
potential negative impacts upon human health and the environ-
ment. Nanosafety concerns are reflected in international
research efforts, such as the European Union’s NanoSafety
Cluster [4] and associated research projects, such as BIORIMA
[5], which has proposed a risk management framework for
nanomaterials used in advanced therapeutic medicinal products
and medical devices [6]. Indeed, in 2008, an iron oxide ENM-
based magnetic resonance imaging (MRI) contrast agent
(Feridex) was withdrawn from the market, following concerns
regarding its observed side effects [2,7].

In spite of concerns around safety [7-9] and other challenges
[10], there remains interest in developing novel metal oxide
nanomaterials for various biomedical applications [10-12], as
well as applications in other areas, such as in agriculture [13].
Nonetheless, the possibility that novel metal oxide ENMs de-
veloped for applications, such as biomedical applications, could
be harmful to human health [8,9], means that there is a real need
for developers of novel metal oxide ENMs and ENM-enabled
products to introduce safety-by-design approaches. Due to the
opportunity to reduce experimental costs and/or development
timeframes and/or late-stage attrition, as well as the ethical,
societal and regulatory [14-17] pressures towards reduced
animal testing, there is considerable value in developing
computational models that could reliably predict the toxic
hazard of novel metal oxide ENMs, prior to experimental
testing and, ideally, prior to synthesis, based upon synthesis-
controlled, intrinsic characteristics of the ENMs. Indeed, the
last decade has seen a significant number of published studies
present quantitative structure–activity relationships (QSARs)
for predicting the biological effects of ENMs, commonly
known as nano-QSARs, based upon calculated and/or measured
variables (descriptors) related to their intrinsic or extrinsic (i.e.,
depending on the exposure medium) physicochemical charac-
teristics [18-20].

However, concerns have been raised regarding the human
health relevance of the endpoints modelled in many nano-

QSAR studies [21]. There is a need for models that can predict
human safety relevant endpoints. Increasingly, there is interest
in using (embryonic) zebrafish (Danio Rerio) as experimental
test subjects to assess potential human safety concerns of chem-
icals [22] and materials, including nanomaterials [23,24]. It is
argued that embryonic zebrafish provide “the power of whole-
animal investigations […] with the convenience of cell culture”
[25] and that “zebrafish exhibit remarkable similarity to other
high-order vertebrates including humans” [23]. Hence, the
Nanomaterial Biological Interactions (NBI) Knowledgebase
[26], a publicly available database of ENM embryonic zebrafish
test results for various lethal and sub-lethal biological
endpoints, determined at a range of test concentrations, is a
valuable resource for developing human safety relevant nano-
QSAR models. Importantly, all biological data from this data-
base were obtained in the same laboratory (Harper Laboratory,
Oregon State University), with minimal, clearly documented,
variations in experimental conditions, and were linked to
comparable physicochemical characterisation data.

However, the first published modelling studies of NBI Knowl-
edgebase data treated the characterisation data, used as input to
predictive models, in a simple fashion [23,27]. Specifically, in
addition to using other qualitative and quantitative physico-
chemical characteristics (such as average primary particle size),
these studies only used the names of chemical components, that
is, the core, surface functional groups (FGs) or the shell, as
descriptors. This is restrictive, as generalization for nanomateri-
als with similar but non-identical chemical compositions is not
possible. Subsequent studies only developed local models for
ENMs with nominally the same core material, for instance, gold
or zinc oxide, where only the variation in the chemical compo-
sition of surface features was encoded using generalisable
descriptors [28,29]. Most recently, Gousiadou et al. [30] de-
veloped the first models for diverse nanomaterial data from the
NBI Knowledgebase where all chemical composition was
encoded using calculated, numerical descriptors allowing for
greater generalisation. Nonetheless, all of these previous studies
were concerned with regression models for predicting the nu-
merical biological response at a single test concentration. In ad-
dition to these modelling studies, Karcher et al. [31] reported
analyses of trends in NBI Knowledgebase biological effects
data with various ENM characteristics.

In the current work, classification models were developed to
classify coated or uncoated metal oxide nanomaterials as lethal
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or non-lethal, based upon whether statistically significant lowest
observed effect levels (LOELs) [32] for lethality, or excess
lethality, in embryonic zebrafish were detectable at test concen-
trations up to 250 parts per million (ppm). Models were de-
veloped using data measured at 24 and 120 hours post-fertilisa-
tion (hpf) for a diverse set of metal oxide ENMs. Effects at
120 hpf were assessed with respect the embryonic zebrafish
surviving after 24 hpf, that is, LOEL values for excess lethality
at 120 hpf were derived, to reduce the potential mixing of
mortality arising via different exposure routes [31]. The data
and characterisation variables used as the basis for descriptors
were based upon the previously reported analyses of the NBI
Knowledgebase by Karcher and co-workers [31].

In contrast to most previously published modelling studies of
the NBI Knowledgebase (discussed above), we developed tox-
icity models using a variety of particle characteristics and vari-
ables calculated based upon the chemical composition of the
core and organic surface components, which allow for greater
generalisability than simply using the names of the chemical
constituents directly as variables, for a diverse set of coated and
uncoated inorganic nanomaterials. Moreover, in contrast to all
previously published modelling studies of NBI Knowledgebase
data, we developed classification models based upon LOEL
values, taking into account statistical significance of observed
effects vs control values, rather than simply modelling the data
at different test concentrations. (This means we are modelling a
less noisy, more reliable endpoint.) A further novel aspect of
our study is that we explored two data augmentation ap-
proaches which, to the best of our knowledge, have never previ-
ously been applied in published nano-QSAR research, as a
means of addressing the widely known issues with limited
availability of suitable data for nano-QSAR development
[20,33,34]. These approaches were a novel framework that is
analogous to that of Kim et al. [35], as well as an approach
closely linked to Cortes-Ciriano and co-workers [36]. Finally,
we explored whether comparable modelling results could be ob-
tained using a simple single descriptor model, in contrast to the
multi-descriptor models explored in previous studies of NBI
Knowledgebase datasets.

Results and Discussion
Overview of data and modelling studies
A dataset comprising 44 ENMs was derived from the NBI
Knowledgebase to support the development of models for clas-
sifying coated and uncoated metal oxide ENMs as toxic or non-
toxic, according to two distinct categorisations based upon
mortality data determined at 24 or 120 hpf for embryonic
zebrafish continuously exposed to the ENMs via fish water test
medium [31]. (One dataset entry corresponded to an ENM with
a silicon dioxide core. Whilst silicon dioxide is, strictly

speaking, a metalloid oxide, it is considered a metal oxide ac-
cording to the NBI Knowledgebase terminology and seminal
nano-QSAR work [18].) Both endpoints were treated as binary
classification variables, with ENMs considered toxic if a LOEL
value of at most 250 ppm (mass-based concentrations) could be
derived or, otherwise, non-toxic. Any materials not tested at a
maximum concentration of 250 ppm were removed to ensure
consistency.

Figure 1 summarizes the laboratory protocol used to derive the
raw data reported in the NBI Knowledgebase regarding the oc-
currence frequency of lethality and sub-lethal effects at each of
the tested ENM concentrations and the zero-dose control group
[25,28,31]. Figure 2 summarizes the procedure used in the cur-
rent study to convert the raw observations at either 24 or
120 hpf into binary classification labels, meaning toxic (= 1) vs
non-toxic (= 0) for observations of lethality, for each combina-
tion of endpoint and ENM.

Modelled effects at 120 hpf were assessed with respect the
embryonic zebrafish surviving after 24 hpf, to reduce the poten-
tial mixing of mortality arising via different exposure routes, as
the oral exposure route becomes possible between 24 and
120 hpf [31]. This means that the modelled lethality data at
120 hpf refers to fish embryos that were alive at 24 hpf but that
were dead at 120 hpf. (More generally, all effects, both lethal
and sub-lethal, at 120 hpf were evaluated relative to the zero-
dose control group based upon the embryos that survived at
24 hpf in both the control and dosed groups.) Hence, the
modelled lethality data reported at 120 hpf, derived from the
raw counts data, may be considered “excess lethality”.

Two different machine learning algorithms were applied to try
and learn relationships between either the 24 hpf lethality or
120 hpf excess lethality data, converted to a binary response,
and input variables characterizing the chemical composition and
particle characteristics of the ENMs. As noted above, these
binary responses were toxic (a LOEL for the modelled lethal
effect was detected) vs non-toxic (a LOEL for the modelled
lethal effect was not detected). The input variables are termed
“descriptors” in keeping with standard nano-QSAR termi-
nology [19]. The relationships between the biological response
data and the descriptors are learnt by applying the models to the
available experimental data, or a subset of it, linking the binary
response variable to be modelled and the descriptors, known as
a “training set” [19].

The algorithms used were the SciKit-Learn [37] adaptations of
Random Forest [38-40] and logistic regression [41,42]. The
models built using both algorithms generate a score between
zero and one for an ENM, which represents the confidence of
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Figure 1: The laboratory method used to obtain the raw counts data for the lethal and sub-lethal endpoints evaluated for each tested engineered
nanomaterial (ENM) for which data are reported in the Nanomaterial Biological-Interactions (NBI) Knowledgebase. At the start of the experiment, at
around 7–8 hpf, a fixed number of embryos are exposed to a fixed dose of ENM. At 24 hpf, for each tested dose, including the zero-dose control, the
endpoint is observed (“yes”) or not observed (“no”) for a certain number of those embryos. At 120 hpf, observations are made for the embryos that
survived up to 24 hpf, that is, these raw counts data correspond to excess effects occurring in the period of 24–120 hpf.

Figure 2: The transformation of the raw biological counts data, illustrated here for excess lethality at 120 hpf, and ENM core and surface chemical
composition data, along with other reported physicochemical characteristics, into the modelled categorical endpoint data and the descriptors used to
model them respectively. (a) This process is illustrated for the ENM corresponding to NBI Material Identifier 96 (coated zinc oxide with benzoic acid
outermost surface functional groups). (b) A subset of the resultant model development dataset is shown, including three of the modelled ENMs and a
subset of the descriptors used to model excess lethality at 120 hpf. Dummy values were assigned for the shell and/or outermost surface functional
group descriptors if no shell and/or outermost surface functional groups were present.
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the model that it belongs to the toxic category, with a score
greater than 0.5 resulting in a “toxic” prediction and lower
scores resulting in a “non-toxic” prediction. Whereas logistic
regression builds a parametric model, which assumes each
descriptor contributes independently to the prediction, Random
Forest builds a non-parametric model, comprising a set of deci-
sion trees constructed via randomly sampling the available
training data, which makes no such assumptions.

The different machine learning modelling approaches (meaning
combinations of learning algorithm, descriptors and data
augmentation approaches), were evaluated via a fivefold cross-
validation (5-CV) framework on folds that were consistent
across both endpoints and modelling approaches. By fivefold
cross-validation, we mean the available model development
data were randomly partitioned into five sets, or “folds”, of
roughly equal numbers of ENMs, and a model built using four
out of the five folds was evaluated on the remaining fold, with
performance statistics averaged across all folds.

All of the individual cross-validation results presented herein
were generated using a nested cross-validation framework,
sometimes even referred to as “external cross-validation”, such
that any selection of model parameters was carried out indepen-
dently for each cross-validation split, using the cross-validation
training set alone, to minimise the risk of optimistic bias in the
model performance statistics [43,44]. (The one exception to this
was the use of the entire model development set to select
dummy values for surface component descriptors, but this is not
expected to have any influence on the results with Random
Forest [38], and the weak importance assigned to these descrip-
tors indicates this was not a cause of significant optimistic bias
for any method.) However, it should be acknowledged that the
exploration of different modelling approaches, especially the
final selection of a single descriptor model based upon
descriptor importance analysis performed using all 44 ENMs,
might have resulted in optimistic bias.

The descriptors (Figure 2) used to model these endpoints corre-
sponded to a variety of particle characteristics and variables
calculated based upon the chemical composition of the core
and, where applicable, organic surface components, including
shell and outermost surface functional groups [31]. (All calcula-
tions treated the core material and surface components indepen-
dently, that is, the descriptors were calculated for the surface
components treated as free molecules.) Since shell and/or sur-
face functional groups were not present for all ENMs (i.e., the
ENM could be uncoated), it was necessary to assign dummy
values for the molecular descriptors where the corresponding
components did not exist (i.e., where the descriptors were not
applicable). However, the dataset was selected such that, in

contrast to non-applicable dummy values [45], there were no
missing values for numeric variables. Unless mentioned other-
wise, all numeric descriptors were mean centred and scaled to
unit variance, based upon the training set distributions. Non-
numeric particle characteristics (e.g., core shape) were one-hot-
key encoded, that is, each value encountered in the training set
(e.g., “cylindrical”, “unknown”) was treated as a unique
descriptor, with values of one and zero assigned if the ENM had
and did not have the specified value for that characteristic re-
spectively.

A summary of all modelling carried out in the current work is
presented in Figure 3. In addition to the exploration of different
machine learning algorithms, data augmentation approaches and
the construction of simple models based upon the most signifi-
cant descriptor were investigated.

Two data augmentation paradigms were investigated here (see
below in Figures 4–6). To the best of our knowledge, neither
paradigm has previously been investigated in nano-QSAR. Both
relied upon supplementing the training sets with pseudo-addi-
tional data for the modelled lethality endpoints.

The first paradigm (“noised training set replication”, Figure 4)
was to add multiple copies of the original training set, with
descriptor values for each new copy being randomly perturbed.
This was successfully applied by Cortes-Ciriano and Bender to
improve predictive performance for regression QSAR model-
ling of molecular bioactivity [36]. The effectiveness of this ap-
proach relies upon the similarity principle, that is, the assump-
tion that a small perturbation in structure, corresponding to a
small perturbation in descriptors, will lead to a small change in
biological activity [36]. In the current context, it is assumed that
the toxicity classes would be unchanged for these small pertur-
bations. Descriptors corresponding to qualitative particle char-
acteristics, such as particle shape, or the presence or absence of
a shell or surface functional groups, were not randomly
perturbed, as these cannot vary by small amounts.

The second paradigm (“weighted alternative samples”) was to
add data for some other endpoint to the training set and assign
the weight of the new samples, that is, their importance during
training, based upon the (estimated) similarity of the new
endpoint to the original endpoint actually being modelled. This
novel paradigm may be considered analogous to the data
augmentation approach previously applied by Kim et al. [35] to
model synthesis routes for inorganic materials.

Here, the original endpoint actually being modelled was always
one of the previously described binary response variables (toxic
vs non-toxic) based upon whether a LOEL was identified for
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Figure 3: A summary of all modelling work carried out using the model development dataset reported herein. A schematic of the Random Forest
modelling technique is provided, illustrating how different descriptors (dj, j = 1, 2, 3, …) are selected at each node to best separate toxic from non-toxic
ENMs based upon random subsets of the available training data and, at each node, the available descriptors. In reality, the depth of the trees may be
greater than shown here and several hundred trees were investigated, with the precise number being one of the investigated hyperparameters tuned
using the training data. For logistic regression, each descriptor is assumed to make an independent contribution, according to corresponding weights
(wj), to the probability of the ENM being toxic. Both kinds of model, using either all available descriptors or a single descriptor identified via subse-
quent descriptor importance analysis based upon the entire model development dataset, were evaluated on the model development set using nested
fivefold cross-validation (5-CV) to minimize optimistic bias in the evaluation of model performance – although the estimated performance of the
selected single descriptor model may suffer more from optimistic bias. Unless noted otherwise, data augmentation was not used to enhance the data
used for training the models.

lethality at 24 hpf or, alternatively, excess lethality at 120 hpf.
When the new samples were added to the training set, their
binary response variable corresponding to the new endpoint
(either toxic vs non-toxic or active vs inactive, depending upon
whether the new endpoint corresponded to a lethal or sub-lethal
response) was treated as if it was a new set of values for the
original (excess) lethality endpoint being modelled. This was
hypothesized to be justified since the new and original endpoint
were expected to be related. However, since the new endpoint
values were not actually values for the original endpoint being
modelled, the weight given to the new samples was always set
to a value less than 1.0, whilst the weight assigned to the orig-
inal samples was always set to 1.0. These sample weights deter-
mined the extent to which the different samples were able to in-
fluence the training of the Random Forest models, that is,
assigning sample weights of zero would have been equivalent to
not including the new samples [46].

Two variations on this second paradigm were investigated.
(1) The data augmentation samples were data points for
zebrafish mortality in response to treatment with molecular

compounds at 5 μM at 48 hpf, measured after three days
(Figure 5). These data were obtained from ChEMBL [47,48]
(assay ID = CHEMBL1913666 [49], retrieved on 20th
November 2019). They were treated as pseudo-ENM data sam-
ples, with the modelled toxic and non-toxic classes being
assigned on the basis of whether the data were reported as
“toxic” vs “survival = 100%”, respectively. Molecular descrip-
tors were computed as per the treatment of ENM surface com-
ponents and dummy values were assigned for all other descrip-
tors. The similarity weighting of these samples was treated as a
tunable hyperparameter between 0.1 and 0.9. (2) The new sam-
ples were actually the original samples save for the fact that the
modelled mortality endpoint (toxic vs non-toxic classes) for the
replicated samples was substituted by one of the corresponding
sub-lethal endpoint values (active vs inactive classes), as shown
in Figure 6. If the sub-lethal endpoint corresponded to an effect
measured at 120 hpf and the lethality endpoint being modelled
corresponded to 24 hpf, these samples were not considered for
data augmentation. Here, the weights of the data augmentation
samples were set to the Matthews correlation coefficient (MCC)
between the modelled mortality endpoint and the substituted
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Figure 4: Data augmentation using the “noised training set replication” paradigm. Top: a subset of the available training set ENM samples and the
corresponding descriptors is shown. Bottom: the addition of one or more “noised” replicates of the training set, including the perturbation of numeric
descriptors using Gaussian noise in bold, is shown.

Figure 5: Data augmentation using the “weighted alternative samples” paradigm, where the alternative samples were derived from molecular toxicity
data reported in the ChEMBL database corresponding to whether mortality was (“toxic”) or was not (“survival = 100%”) observed after three days,
when compounds were tested at 5 μM at 48 hpf on zebrafish. Top: a subset of the available training set ENM samples and the corresponding descrip-
tors is shown. The weighting of these true samples during training (Wi) was set to 1.0. Bottom: the addition of some of the available pseudo-ENM
samples is shown, where these pseudo-ENM samples were derived by treating the compounds as outermost surface functional groups from ENM
samples, with all other ENM descriptors set to dummy values assigned to inapplicable descriptors. The weighting of these pseudo-samples during
training ( ) was set to a value less than 1.0.
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Figure 6: Data augmentation using the “weighted alternative samples” paradigm, where the alternative samples were the original ENM samples from
the training set with the binary response values toxic (= 1) vs non-toxic (= 0), corresponding to lethality at 24 hpf or excess lethality at 120 hpf,
replaced with the binary response values active (= 1) vs inactive (= 0), corresponding to one of the measured sub-lethal endpoints. Top: a subset of
the available training set ENM samples and the corresponding descriptors is shown. The weighting of these true samples during training (Wi) was set
to 1.0. Bottom: the addition of some of the alternative ENM samples is shown. The weighting of these samples during training ( ) was set to the
estimated correlation between the modelled lethal endpoint and the sub-lethal endpoint for which the data were treated as additional data for the
lethal endpoint.

endpoint for the data augmentation samples, computed sepa-
rately across each training set, or zero if this was negative.
Whilst it could reasonably be argued that these other endpoint
data would not be available for untested, or hypothetical, ENM
samples for which future predictions are desired, this may be
considered a proof-of-concept of this novel data augmentation
paradigm, removing any complications associated with using
ENMs with dissimilar physicochemical/particle characteristics
as the data augmentation samples.

Here, it is important to emphasize that the sub-lethal endpoints,
or other proxy endpoints considered in the “weighted alterna-
tive samples” paradigm, were not specifically modelled per se.
Rather, they were treated as if they were additional values for
the lethal endpoint being modelled during training and given
lower weight during training to reflect the fact that the sub-
lethal and lethal endpoints do not perfectly correlate. In all
cases, the performance of the models was assessed purely on
their ability to predict the values of the original lethal endpoint
being modelled in the original cross-validation test sets.

Full details of data and modelling studies
Full details regarding dataset selection, estimation of LOELs,
descriptors, dummy values, descriptor scaling, modelling (in-
cluding selection of model hyperparameters and descriptors as
applicable) and analysis methods are provided under the Experi-
mental section of this article. A step-by-step explanation of how
to reproduce our results, using the open source code we have
made available, is provided in Supporting Information File 1.

Random Forest cross-validated classification results
without data augmentation
The overall performance of the Random Forest models for both
endpoints, as assessed on a consistent set of cross-validation
folds, is reported in Table 1 in terms of the balanced accuracy,
Matthews correlation coefficient (MCC) and area under the
receiver operator characteristic curve (AUC). (Recall and preci-
sion statistics, indicating the performance for individual cate-
gories, are reported in an expanded version of this table in Sup-
porting Information File 1, Table S1.) Clearly, the average
predictive performance for lethality (mortality) at 24 hpf
appears notably worse than predictions of excess lethality at
120 hpf. (Indeed, the average performance for modelling of the
24 hpf endpoint appears comparable to what would be expected
from random guessing, with values of 0.50, zero and 0.50 ex-
pected for the balanced accuracy, MCC and AUC, respectively,
in this scenario [50-52].) Similar, albeit marginally better, find-
ings were obtained when the model for the 24 hpf endpoint was
cross-validated using folds identified using stratification based
upon the 24 hpf endpoint (see Supporting Information File 1,
Table S2), rather than the same folds identified using stratifica-
tion based upon the 120 hpf endpoint for consistent comparison
of results, as per Table 1.

The greater difficulty associated with modelling the 24 hpf
endpoint might possibly reflect different systemic exposure
routes and the failure of the descriptors to properly account for
factors affecting dermal penetration. Whilst the experimental
setup involved continuous waterborne exposure of the embry-
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Table 1: Average performance statistics obtained from cross-validation of Random Forest (RF) classification models and logistic regression (LR)
models on consistent folds of the model development dataset. All models were built without data augmentation, using all calculated descriptors,
unless noted otherwise. All results were obtained via tuning hyperparameters separately for each cross-validation training set, that is, the multiple
descriptor results are not expected to suffer from significant optimistic bias. However, the single descriptor (Pauling metal atom electronegativity)
models were developed following descriptor importance analysis using the entire model development dataset. The performance in terms of each
figure of merit is summarised as the arithmetic mean ± standard error [median]. (The standard error of the mean is an underestimate of the uncer-
tainty, as the cross-validation results are not entirely independent.) BA = balanced accuracy, MCC = Matthews correlation coefficient. AUC = area
under the receiver operator characteristic (ROC) curve.

Lethality endpoint Model BA MCC AUC

24 hpf RF 0.44 ± 0.05 [0.50] −0.12 ± 0.10 [0.00] 0.36 ± 0.10 [0.43]
120 hpf (excess
lethality)

RF 0.71 ± 0.08 [0.67] 0.45 ± 0.17 [0.33] 0.76 ± 0.09 [0.71]
LR 0.74 ± 0.11 [0.60] 0.48 ± 0.21 [0.22] 0.70 ± 0.14 [0.67]
RF (single descriptor) 0.74 ± 0.09 [0.75] 0.52 ± 0.20 [0.65] 0.79 ± 0.08 [0.83]
LR (single descriptor) 0.73 ± 0.10 [0.67] 0.43 ± 0.19 [0.33] 0.73 ± 0.11 [0.63]

Figure 7: Nested cross-validated balanced accuracy (BA) obtained with multiple descriptor Random Forest models for the 120 hpf excess lethality
endpoint when the cross-validation training sets were supplemented with multiple noised replications (1–10 replications, with certain numbers skipped
in keeping with literature precedence [36]) of themselves, compared to the results obtained with no data augmentation (“None”). (The results with no
data augmentation were reported in Table 1). The results across all test folds are summarized in terms of a boxplot, with the arithmetic mean result
superimposed. The whiskers extend to data points lying up to 1.5 times the interquartile range above and below the upper and lower quartiles, respec-
tively. The triangles/diamonds represent outlier results, which are higher and lower than the upper and lower whiskers, respectively.

onic zebrafish to the ENMs dispersed in fish water medium and
dermal penetration is typically observed as the main route of
systemic exposure up to 120 hpf, the appearance of swallowing
around 72 hpf allows for toxicity via an oral exposure route to
manifest prior to 120 hpf but not at 24 hpf [31]. However, it is
also possible that the observed difference in modelability at 24
and 120 hpf could reflect differential susceptibility of the em-
bryos to specific toxic modes of action [31].

Based upon the poor modelability of the 24 hpf endpoint ob-
served here, subsequent discussion focuses upon modelling of
the 120 hpf endpoint.

Data augmentation techniques fail to clearly
improve performance
Across all augmentation scenarios, for both the 24 hpf lethality
and 120 hpf excess lethality endpoints, no statistically signifi-
cant increases at the 5% level were observed in the mean cross-

validated overall performance, whether measured in terms of
balanced accuracy, MCC or AUC. Indeed, this was found to be
the case even prior to adjusting the p-values to account for
multiple testing considerations. For illustrative purposes, the
trends observed for the “noised training set replication”
(Figure 7) and “weighted alternative samples” (Figure 8) data
augmentation paradigms are shown for modelling of the
120 hpf excess lethality endpoint with predictive performance
characterised in terms of the balanced accuracy. The corre-
sponding plots for the 24 hpf lethality endpoint and other
overall performance measures (MCC and AUC) are shown in
Supporting Information File 1, Figures S1–S10.

The failure of the “noised training set replication” paradigm to
improve model performance (Figure 7) is surprising, given that
this has been successfully applied in various other scenarios
[36]. It is possible that the presence of activity cliffs may have
contributed to this finding [36]. Another possibility is that the
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Figure 8: Nested cross-validated balanced accuracy (BA) obtained with multiple descriptor Random Forest models for the 120 hpf excess lethality
endpoint when the cross-validation training sets were supplemented with weighted alternative samples, compared to the results obtained with no data
augmentation (“None”). (The results with no data augmentation were reported in Table 1). Other than where molecular zebrafish lethality data from
ChEMBL were treated as pseudo-coated ENM samples, all other alternative samples corresponded to the cross-validation training set with the
modelled endpoint substituted with one of the sub-lethal endpoints. (See section “Endpoint abbreviations” under the Experimental section for an ex-
planation of the 24 and 120 hpf sub-lethal endpoint abbreviations.) The results across all test folds are summarized in terms of a boxplot, with the
arithmetic mean result superimposed. The whiskers extend to data points lying up to 1.5 times the interquartile range above and below the upper and
lower quartiles, respectively. The triangles/diamonds represent outlier results, which are higher and lower than the upper and lower whiskers, respec-
tively.

Figure 9: The change in cross-validated balanced accuracy (BA), with results shown for individual folds, obtained with Random Forest models for the
120 hpf excess lethality endpoint when the cross-validation training sets were supplemented with alternative samples, derived via replacing the
training set sample endpoint values with the endpoint values for sub-lethal endpoints measured for the same materials, plotted against the weight
given to these alternative samples. Here, the weight assigned was either the MCC correlation measure, if this was positive, or zero. The Spearman
rank correlation coefficient is shown, along with the corresponding one-tail p-value for the null hypothesis that this is zero, that is, that there is no
correlation between the change in performance and the relationship between the modelled and sub-lethal endpoint data used for data augmentation.

perturbations were typically too small to make any difference to
the outcome of a Random Forest prediction, for which changes
in descriptor values must shift an instance from one side of a
tree split point to another in order to result in any change in the
outcome. However, the analysis of Cortes-Ciriano and Bender
[36], whilst not identical to the analysis performed here, found
that adding noise, of the same magnitude considered in the cur-
rent study, to the descriptors did allow data augmentation to
improve the performance of Random Forest models.

The failure of the “weighted alternative samples” approach to
improve model performance (Figure 8) possibly reflects insuffi-

cient similarity between the data used for augmentation and the
modelled data. It was typically observed that, across the cross-
validation training sets, the MCC between the modelled lethal
endpoint and the sub-lethal endpoint, used as a proxy when the
training samples were augmented with themselves, was less
than 0.5. However, negligible rank correlation was observed be-
tween the data augmentation weighting (i.e., the MCC between
the modelled and sub-lethal endpoint, for positive values, or
zero otherwise) and the change in model performance. This is
illustrated by Figure 9. The corresponding plots for the 24 hpf
lethality endpoint and other performance measures are shown in
Supporting Information File 1, Figures S11–S15. Indeed, it
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Figure 10: Variable importance estimates for the five most important variables (highest mean importance values) in the original multiple descriptor
models, without data augmentation, of excess lethality at 120 hpf. “X_metal” denotes the Pauling metal atom electronegativity descriptor. See section
“Descriptor calculations” under the Experimental section for detailed explanations of the names of the other descriptors. (a) Original Gini importance
values for a single Random Forest model trained on the entire model development dataset, with hyperparameters tuned via cross-validation. (b) Dis-
tributions of permutation variable importance values (change in balanced accuracy after permutation) across ten random permutations of the
descriptor values in the validation fold and five folds, for Random Forest models cross-validated on the model development set, with descriptor scaling
and hyperparameter tuning repeated for each cross-validation training set. (c) Original coefficient magnitude importance values for a single logistic
regression model trained on the entire model development dataset, with partial hyperparameter tuning via cross-validation. (d) Distributions of permu-
tation variable importance values (change in balanced accuracy after permutation) across ten random permutations of the descriptor values in the
validation fold and five folds, for logistic regression models cross-validated on the model development set, with descriptor scaling and hyperpara-
meter tuning repeated for each cross-validation training set. The mean variable importance measures (black circles) are superimposed upon the
boxplots of the distributions.

should also be noted that the extent to which a correlation
would be expected is unclear, since augmenting the training set
with an exact copy of the original training set would presum-
ably correspond to adding redundant information, yet would
correspond to an MCC of one.

Since data augmentation did not clearly improve performance
with Random Forest, no further consideration was given to the
use of this modelling strategy.

Logistic regression cross-validated classification
results
Logistic regression [41,42] modelling results were also ob-
tained for the 120 hpf excess lethality endpoint using all
descriptors and the same cross-validation folds as per the nested
cross-validation results reported for Random Forest. As can be
seen from Table 1, the overall performance with logistic regres-
sion is comparable to Random Forest for modelling of excess
lethality at 120 hpf.

Toxicologically significant nanomaterial
characteristics
Analyses of the descriptors that were most related to the
120 hpf excess lethality endpoint are presented in Figure 10.
The Pauling electronegativity of the metal atom corresponding
to the metal cation in the ENM core was amongst the top two
descriptors for both Random Forest and logistic regression.
Indeed, for a permutation importance measure, reflecting the
reduction in cross-validated balanced accuracy upon random
permutation of the descriptor values in the validation folds
[53,54], the Pauling metal atom electronegativity [55] was the
most important descriptor for both modelling methods. Albeit
this finding was more robust with Random Forest.

Here, it should be noted that the Gini importance measure for
Random Forest [56] is known to be biased towards continuous
variables and variables with multiple values, as opposed to
binary variables and permutation-based importance measures
are expected to be more reliable [57,58]. (Typically, the change
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Figure 11: Distributions of conditional variable importance estimates for the five most important variables (highest mean importances) across ten
Cforest multiple descriptor models, built without data augmentation on the original model development dataset, of excess lethality at 120 hpf. The
mean variable importance measures (black circles) are superimposed upon the boxplots of the distributions. The descriptors with names beginning
with “FG” represent descriptors calculated for the neutral molecular structures of the outermost functional groups. “X_metal” denotes the Pauling
metal atom electronegativity descriptor. See section “Descriptor calculations” under the Experimental section for detailed explanations of the names of
the other descriptors.

in accuracy on the out-of-bag samples for the final, fitted
Random Forest is considered [39], but the change in cross-vali-
dated balanced accuracy, including rescaling the descriptors and
retuning the hyperparameters on the training set, was consid-
ered in the current work for consistency with analysis of the
logistic regression model and in keeping with prior work [54].)
It is possible that similar considerations affect the logistic
regression coefficient magnitudes. In the current work, biases
towards continuous variables could result in a failure to iden-
tify the binary variables representing different qualitative char-
acteristic values for core shape, surface charge and purity [31],
or the presence/absence of surface functional groups as impor-
tant. Also, for example, elevated significance could be assigned
to variables such as the Pauling metal atom electronegativity
and the average primary particle size. Nonetheless, the impor-
tance of the Pauling metal atom electronegativity descriptor is
confirmed based upon consideration of a conditional variable
importance estimate (Figure 11) obtained using a variation on
the Random Forest modelling and variable importance protocol,
which can be expected to produce reliable estimates of
descriptor importance [58].

The finding from these analyses (Figure 10 and Figure 11),
taking into account the differential degrees of reliability dis-
cussed above, that core composition characteristics, notably the

metal atom electronegativity, are most significantly related to
excess lethality at 120 hpf, with limited influence of descriptors
representing the primary particle size or surface characteristics
is interesting. The finding that the Pauling metal atom electro-
negativity descriptor was of greatest significance is broadly in
keeping with earlier studies that found that this descriptor could
be used, along with a few other basic variables representing
core composition that were also considered herein, to model the
cytotoxicity of a wide variety of metal oxide ENMs [55,59]. It
has been proposed that the electronegativity of the metal atom
may correlate well with the electronegativity of the cation, such
that a descriptor based upon the metal atom electronegativity
may reflect catalytic activity due to ions release via dissolution,
leading to toxicity via generation of reactive oxygen species
(ROS) [60]. However, metal oxides may also result in toxicity
via a differential ability to bind to the surface of zebrafish em-
bryos or direct inhibition of enzymes by the released cations
[60,61].

Further research is required here into the basis for the impor-
tance of the Pauling metal atom electronegativity in our models.
We note that the fact that different oxidation states of the same
metal were not considered in our dataset may also have resulted
in a variable related purely to the metal atom identity being
assigned elevated significance.
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Our finding that surface characteristics are of negligible impor-
tance, compared to core chemical composition is at odds with
some previous analyses. These analyses suggested that outer-
most surface features were more significant drivers of vari-
ability in biological effects than core chemical composition
[28,31]. However, our finding that primary particle size is of
limited significance is in keeping with earlier analyses. Previous
analyses of NBI Knowledgebase data have suggested that,
whilst primary particle size may not be irrelevant to observed
biological effects, no consistent trends could be observed with
primary particle size and/or that surface chemistry was a more
significant factor driving variability in biological effects
[28,29,31].

It is possible that our results regarding the limited significance
of surface characteristics may be skewed by the manner in
which surface chemical composition was represented using
descriptors and the incomplete availability of surface charge
information. (See the sections “Descriptor calculations”, “Inap-
plicable descriptor dummy values” and “Descriptor pre-process-
ing” under the Experimental section for full details.) First, the
presence or absence of organic surface components was repre-
sented using binary indicator variables. Their negligible signifi-
cance for modelling of the 120 hpf excess lethality data could
reflect biological significance arising from the nature of any
surface coatings, rather than the presence or absence of any
organic coating having general significance. Second, qualita-
tive surface charge information, including “unknown” status,
was represented using binary variables for each value. Their
negligible significance might partly reflect the limited
availability of this information. Finally, the specific chemical
composition of the organic surface coatings was represented
using molecular descriptors designed to capture characteristics
related to intermolecular interactions, which could affect
agglomeration or uptake by cells, and reactivity, which could
trigger toxicity. (Dummy values, lower than the minimum of
observed values, were inserted where the corresponding
coating was absent, in keeping with recommended practice
[45].) Here, molecular descriptors were calculated for the gas
phase, neutral forms of the molecular constituents of the sur-
face components. (This approach is similar to previous
modelling studies of NBI Knowledgebase data, where, in addi-
tion to exploring the identities of the surface functional groups
as variables related to biological effects, surface chemical
composition was encoded using molecular descriptors com-
puted for the gas phase molecules [28,29], with pH value-de-
pendent ionization state reported to have been taken into
account in one study [29].) In reality, these molecules are likely
to be bound to the nanomaterial surface [62-64] and it is
possible this binding could even alter the molecular structure
[64].

Selection of a single descriptor Random Forest
model for external validation
The finding that, out of all descriptors used for all previously
analysed models, only the Pauling metal atom electronegativity
could be reliably considered highly significant prompted inves-
tigation of whether an approximate model of excess lethality at
120 hpf could be based purely upon this descriptor. On prag-
matic grounds, such an approximate model would also be use-
ful as a first-step screening tool, in cases where more detailed
physicochemical characterisation data were missing [65]. Here,
it was found that a Random Forest model based upon this
descriptor gave comparable or better cross-validation statistics
to the original Random Forest and logistic regression models
based upon all descriptors (Table 1). Hence, this approach was
used to train a model on the entire model development dataset
prior to external validation. It was found that, as expected for
tree based models, the cross-validated performance statistics
were unchanged if the descriptor was unscaled, hence the final
model for external validation was built without scaling the
Pauling metal atom electronegativity descriptor. This simplifies
applications to new NMs.

Applicability domain
As a first approximation [66], the training set range of the
Pauling metal atom electronegativity descriptor (1.12–2.05),
that is, the only descriptor, was used to define an applicability
domain for the selected model.

External validation results
As previously indicated, all of the individual cross-validation
results presented herein were generated using a nested cross-
validation framework, such that any selection of model parame-
ters or descriptors was carried out independently for each cross-
validation split, using the cross-validation training set alone, to
avoid optimistic bias in the model performance statistics
[43,44]. (The one exception to this was the use of the entire
model development set to select dummy values for surface
component descriptors, but this is not expected to have any in-
fluence on the results with Random Forest, and the weak impor-
tance assigned to these descriptors indicates this was not a cause
of significant optimistic bias for any method.) However, it
should be acknowledged that the exploration of different model-
ling approaches, especially the final selection of a single
descriptor model based upon descriptor importance analysis
performed using all 44 ENMs, might have resulted in opti-
mistic bias.

Hence, an assessment of the performance of the single
descriptor model on external data would be of value to assess
this. However, limited data were available from the NBI
Knowledgebase for true external validation. In total, seven
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metal oxide ENMs were identified, by relaxing certain selec-
tion criteria, which led to these not being included in the initial
set of 44 used for model development and cross-validation. This
entailed (i) allowing for the inclusion of minimally doped
ENMs, (ii) allowing for the selection of ENMs with missing nu-
merical characterisation data used as input variables to the orig-
inal, multi-descriptor models, and (iii) allowing for the selec-
tion of materials tested at maximum dosage concentrations of
less than 250 ppm. All of these ENMs were determined to not
have a LOEL up to 250 ppm for excess lethality at 120 hpf, that
is, they were considered non-toxic according to the modelled
endpoint. (Of course, they may exhibit toxic effects for other
endpoints.) However, the four materials tested at maximum
concentrations less than 250 ppm might be false negatives.

All ENMs lay inside the applicability domain of the selected
single descriptor model. All of them were correctly classified as
“non-toxic”. However, given the limitations of this dataset, in-
cluding the absence of toxic examples and the possibility of ex-
perimental false negatives, further studies are required to assess
how predictive the selected one descriptor model is on truly
external data.

Additional analyses were performed on indirectly comparable,
small datasets curated from the literature and the results are re-
ported in Supporting Information File 1. (See section “Selec-
tion of data for external validation of the final single descriptor
model” under the Experimental section for further details.)
However, due to the limitations of these datasets, in terms of
their suitability for assessing the predictive performance of the
selected model, these results are not discussed here.

Key contributions of this research and future
directions
The work presented herein represents the first time that classifi-
cation models of Nanomaterial Biological-Interactions Knowl-
edgebase hazard data, a diverse set of ENM hazard data derived
from experiments in a human safety relevant test system per-
formed in a single laboratory, have been reported. More gener-
ally, it has demonstrated, for the first time, that diverse metal
oxide ENMs, coated and uncoated with different core composi-
tions, with and without LOEL values up to 250 ppm for
lethality with respect to embryonic zebrafish during a specific
time period, may be successfully distinguished using classifica-
tion techniques and calculated descriptors. More specifically, it
was demonstrated that ENMs causing lethality during the time
period from 24 to 120 hpf (i.e., excess lethality at 120 hpf)
could be successfully identified. Interestingly, it was found that
comparable results could be obtained using a model based upon
a single, simple descriptor: the Pauling electronegativity of the
metal atom. This descriptor has previously been used to model

cytotoxicity of metal oxides [55,59], and other electronegativi-
ty-based descriptors have been used to model diverse ENM
data, including LC50 values for some metal oxide ENMs tested
at different time points against embryonic zebrafish [67] and
metal oxide inhibition of the zebrafish hatching enzyme [60].
However, we are unaware of any previous studies demon-
strating that this simple electronegativity descriptor on its own
could be used to discriminate metal oxide ENMs with differen-
tial lethal effects against embryonic zebrafish. Given the
growing interest in the use of embryonic zebrafish as an initial
hazard screening tool for metal oxide ENMs [24], this suggests
that the very simple, single descriptor model we identified
herein could be of value in providing manufacturers of ENM-
enabled products with a rapid initial hazard ranking prior to
synthesis and testing.

Nonetheless, we do not suggest that the toxicity of diverse
ENMs towards embryonic zebrafish is purely related to this
simple descriptor providing limited information about the com-
position of the metal oxide core. Numerous studies have shown
that a variety of intrinsic and extrinsic characteristics may influ-
ence the level of hazard associated with ENMs in general [65]
and for metal oxides applied to embryonic zebrafish in particu-
lar [24].

Future studies should examine whether significantly better clas-
sification of the lethality of metal oxide ENMs applied to
embryonic zebrafish could be obtained if more sophisticated
descriptors of the ENM surfaces were employed. This could
entail calculating the descriptors at biologically relevant pH
values [29], as well as constructing physically realistic repre-
sentations of the surface structures of coated and uncoated
nanomaterials, rather than calculating descriptors for organic
surface components as free molecules and substituting dummy
values in the absence of such components. Of course, approxi-
mate representations of the ENM surface structures would need
to be constructed in the absence of full information, for exam-
ple, surface ligand density. More generally, various recent
publications have proposed sophisticated calculated descriptors
that might be suitable for improved modelling of these data [68-
71]. In addition, the possibility of improving the results by
replacing the Pauling electronegativity values with those from a
very recently published electronegativity scale [72] should be
explored.

This work also found that data augmentation using the “noised
training set replication” approach of Cortes-Ciriano and Bender
[36] or a novel approach (“weighted alternative samples”),
which was analogous to the approach previously applied by
Kim et al. [35], failed to clearly improve performance. To the
best of our knowledge, this represents the first time that these
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data augmentation approaches have been investigated as means
of addressing the recognised problem of modelling the typical-
ly small datasets available for nano-QSAR modelling
[20,33,34]. Indeed, to the best of our knowledge, this repre-
sents one of the few times that any data augmentation strategies
have been investigated in nano-QSAR studies. Yan and
co-workers [73], in a recent study modelling the biological ac-
tivity of ENMs for which image-based representations of their
structural data could be generated, considered the inclusion of
multiple different image-based representations (“screenshot
from multiviews”) of the same ENM structures in the training
set. It would be interesting to see if this approach could be
adapted to model the data reported herein, albeit the representa-
tions of ENM structure they used were generated based upon
the surface ligand density, which is not reported for ENMs in
the NBI Knowledgebase. In addition, Subramanian et al. [74]
recently reported the use of the SMOTE algorithm [75] to
address class imbalance. Whilst not formally described as data
augmentation, the generation of synthetic members of the
minority class by SMOTE [75] is clearly analogous to the
“noised training set replication” paradigm [36] and the possibil-
ity of using this to improve modelling of the dataset reported
herein should be explored in future work. Finally, it is possible
that the poor performance of the “noised training set replica-
tion” paradigm here, in contrast to previous studies [36],
reflects the descriptors involved. Hence, future studies should
investigate whether adding different levels of noise to different
kinds of descriptors, such as the novel descriptors discussed
above, would offer improved performance.

Separately, one particularly interesting finding of this work was
that classifying ENMs according to their LOEL for lethality up
to 24 hpf was not clearly possible, whereas it does appear
possible to build models identifying ENMs exhibiting lethal
effects at 250 ppm or below in the timeframe 24 to 120 hpf (i.e.,
excess lethality at 120 hpf). This represents a notable challenge,
as mortality at 24 hpf indicates a stronger acute toxic response
and, ideally, it would be possible to classify ENMs based upon
their cumulative lethal response at 120 hpf as well as identify
those causing mortality at 24 hpf. (One approach to doing so
would be to combine the models developed here for excess
lethality at 120 hpf and improved models for mortality at
24 hpf.) It is possible that our findings reflect the fact that toxic-
ity up to 24 hpf requires dermal penetration to reach the site of
biological action, since swallowing does not start until around
72 hpf [31]. Hence, descriptors better describing dermal pene-
tration may allow for ENMs exhibiting lethal effects up to
24 hpf to be better identified. Of course, other possible interpre-
tations of our results could be different toxicological modes of
action operating in the period 24 to 120 hpf, as embryonic cells
differentiate, as well as the possibility of delayed mortality in-

duced by the initial exposure prior to 24 hpf. For example, if
toxicity is caused by disrupting the function of hatching en-
zymes [60,61], this could result in embryo mortality via starva-
tion [61]. However, as hatching normally happens within 72 hpf
[76], the significance of disrupting hatching may not manifest
until after 24 hpf.

However, one further factor that may affect the findings herein
is the fact that the LOELs used to define the modelled cate-
gories were assigned based upon mass-based concentrations.
The issue of dosimetry, that is, the most appropriate dose units
to characterise the differential hazard of different ENMs,
remains an area under active consideration in the nanotoxicolo-
gy community [65,77,78]. Whilst applied surface area or parti-
cle number doses might be more appropriate [78], albeit this is
not accepted in all studies [77], computing these requires either
specific surface area measurements, or estimates to be made
based upon additional physicochemical characterization data,
such as particle shape, agglomerate size and/or particle density
[77-79]. However, these physicochemical characterization data
are not reported for all studied ENMs, including for all ENMs
reported in the Nanomaterial Biological-Interactions Knowl-
edgebase. One alternative possibility might be to examine how
the results reported herein would change if the LOEL data were
expressed in terms of pseudo-moles [18,30,67], which could be
estimated, to a first approximation, by dividing the mass-based
dose by the relative mass of the formula unit of the core materi-
al, for example, ZnO.

Whilst care was taken to ensure that all individual cross-valida-
tion results were not optimistically biased, by carrying out the
selection of all hyperparameters independently via internal
cross-validation on each cross-validation training set, the explo-
ration of different modelling results and, in particular, the iden-
tification of the Pauling electronegativity descriptor for the
final, selected model, using all data employed for cross-valida-
tion, may have introduced optimistic bias. A partial external
validation on the limited available data, not considered for the
initial analyses and comparisons of different approaches, sug-
gested the model was correctly able to identify them as not
having a LOEL value (for excess lethality at 120 hpf) up to a
test concentration of 250 ppm. Nonetheless, future experimen-
tal studies would help to confirm the true external predictivity
of the model. These studies should generate comparable data to
those modelled in the current work, including similar tested
doses, exposure and sampling time periods following the appli-
cation of metal oxide ENMs to embryonic zebrafish.

Conclusion
This work demonstrated, for the first time, that structurally
diverse (coated and uncoated with different core compositions)
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metal oxide nanomaterials can potentially be classified accord-
ing to whether they have a lowest observed effect level, up to
250 ppm, for excess lethality against embryonic zebrafish
measured in the period from 24 to 120 hpf. However, the fact
that it was not clearly possible to identify nanomaterials with a
lowest observed effect level, up to 250 ppm, for lethality in the
period from the onset of exposure up to 24 hpf might be related
to the need to consider more appropriate descriptors to repre-
sent different modes of exposure to the site of biological action.

The initial models were developed using a variety of experi-
mental and calculated descriptors related to physicochemical
characteristics, including approximate representations of the
core composition and, where applicable, organic surface
ligands. (Care was taken, using a nested cross-validation
protocol, to minimise optimistic bias in the estimated perfor-
mance of these models.) However, interestingly, it was found
that a predictive model with comparable or better results might
be obtained using a single, simple descriptor related to core
chemical composition: the Pauling electronegativity of the
metal atom.

The selected single descriptor model could be used for an initial
hazard ranking, even prior to synthesis, by manufacturers of
nanomaterial enabled products, as part of a “safe by design”
paradigm. However, the fact that model validation was
primarily performed using cross-validation, on data used to
identify the significance of the selected descriptor, means that
future experimental studies are required to generate additional,
comparable data for robust, truly external validation of this
model.

Since the dataset modelled herein was relatively small
(44 nanomaterials), albeit still larger than the datasets used in
many previous nano-QSAR studies, the possibility of improv-
ing the predictive performance using two data augmentation
techniques was explored. To the best of our knowledge, this is
the first time that the use of either of these techniques to
improve modelling results has been investigated in the nano-
QSAR literature. However, in the current context, no improve-
ment in performance was observed. This issue should be inves-
tigated more widely in the nano-QSAR community, as should
whether the models reported herein could be improved via
using more sophisticated descriptors reported in the recent liter-
ature.

Experimental
Computational details
All code required to reproduce the results herein has been made
available on Zenodo [80] under the terms of the Open Source
GNU Public License (version 3). The code archive is divided

into two sub-folders: (1) \BioRima_calc_UoL.final\ and
(2) \BioRima_MarcheseRobinsonEtAlExtraCalc\. The former
sub-folder corresponds to the scripts used to carry out all calcu-
lations performed to process the data from the Nanomaterial Bi-
ological-Interactions Knowledgebase, to derive the model de-
velopment set, cross-validate the multiple descriptor Random
Forest models with and without data augmentation, and perform
the analysis of those initial results. The latter sub-folder corre-
sponds to the scripts used to perform all additional calculations
reported in this paper. Supporting Information File 1 includes a
step-by-step guide to reproducing all results using these scripts
(“How to Reproduce Our Results”). This includes details of
how to install the exact versions of all software dependencies
employed for all calculations, including by making use of the
environment files, included in the code archive, required to
create the conda environments used to run the calculations per-
formed using different Python 3 and R scripts.

Both sets of calculations were performed on machines running a
Windows operating system (64-bit architecture). The details of
the machine used to perform the first set of calculations were as
follows: Windows 7 Enterprise Service Pack 1 (64-bit).
Processor: Intel(R) Core™ i5-6300U CPU @ 2.40 GHz.
Installed memory (RAM): 8 GB (7.41 GB usable). The details
of the machine used to perform the second set of calculations
were as follows: Windows 10 Home (64-bit). Processor: AMD
Ryzen 5 3500 U with Radeon Vega Mobile Gfx 2.10 GHz.
Installed memory (RAM): 8 GB (5.94 GB usable).

Selection of data for model development
purposes
All data modelled herein were obtained using common experi-
mental protocols, with some differences in the details (e.g.,
small changes in medium composition and temperature for the
biological assay, and different physicochemical characteriza-
tion techniques). All biological data were generated in a single
laboratory (Harper Laboratory, Oregon State University). A
detailed description of the experimental protocol used to
generate the biological data was previously reported [28] and a
summary, including the most relevant details for the current
work, is provided below.

Each nanomaterial was exposed to embryonic zebrafish (Danio
Rerio) at a range of different dosage concentrations. The num-
ber of dosage concentrations and the maximum concentration
varied somewhat between different nanomaterials. Each study
of a given nanomaterial also used a zero-dose control group,
which allowed for an assessment of statistically significant
differences due to different dosage concentrations with respect
to the absence of nanomaterial exposure (see below). For each
dosage concentration, including the zero-dose control, a group
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of between 24 and 48 embryonic zebrafish were exposed via
continuous exposure in fish water medium (commonly reported
as pH 7.1–7.2 and T = 23–27 °C), starting at 7–8 hours post-
fertilization (hpf). At 24 and 120 hpf, non-invasive observa-
tions were made of the number of embryonic zebrafish exhibit-
ing signs of both lethal (mortality) and non-lethal (see below)
abnormalities. Counts of the numbers of embryos exhibiting
and not exhibiting a given abnormality were recorded. For all
endpoints other than mortality at 24 hpf, these counts were
based upon the number of fish that survived at 24 hpf. Hence,
the mortality counts at 120 hpf reflect excess lethality in the
period of 24–120 hpf.

In addition to these biological data, qualitative and quantitative
characterization data were reported for various intrinsic and
extrinsic physicochemical characteristics. These characteriza-
tion data were reported to varying extents for different nanoma-
terials. All data and experimental metadata were extracted
from the data records, exported from the Nanomaterial
Biological-Interactions (NBI) Knowledgebase [26], and
reported in the NanoHub online repository [81] as supplemen-
tary material for Karcher and co-workers [31]. Each set of data
on a given nanomaterial (including provenance and synthesis
metadata, along with physicochemical characterisation and bio-
logical data plus metadata) corresponded to a distinct data file,
associated with a unique NBI Material Identifier.

These data files were processed using an automated workflow,
implemented using Python 3 code, to select a subset of data that
were compliant with the following selection criteria: (1) the
nanomaterial was described as “metal oxide”; (2) the “Core
Atomic Composition” and “Particle Descriptor” fields did not
indicate the presence of multiple metal or, in one case, metal-
loid (silicon) cations (i.e., doped or mixed oxidation state metal
oxides were rejected); (3) the material was tested at a maximum
dose of 250 ppm (i.e., any materials tested at lower or higher
maximum doses were rejected); (4) the following fields,
reporting qualitative and quantitative physicochemical charac-
terization data for which relationships with biological data were
previously explored by Karcher et al. [31], were not empty (i.e.,
“Surface Charge: (positive, negative, neutral)”, ”Primary Parti-
cle Size: Avg. (nm)”, ”Outermost Surface Functional Groups”,
”Core Atomic Composition”, ”Shell Composition”, “Purity”,
”Core Shape”, ”Core Structure”).

In addition, prior to filtering the nanomaterial data records, pro-
cessing of each nanomaterial data record included the deriva-
tion of statistically significant lowest observed effect level
(LOEL) values for lethality at 24 hpf and excess lethality in the
period from 24 to 120 hpf based upon mortality observations at
24 and 120 hpf, respectively. Additional updates were per-

formed prior to the filtering steps described above: (a) in
keeping with Karcher et al. [31], missing “Primary Particle
Size: Avg. (nm)” entries were replaced with the corresponding
“Primary Particle Size: Max (nm)” values, if the corresponding
“Primary Particle Size: Min. (nm)” entry was also blank, which
could reflect inconsistent population of the data fields;
(b) inconsistently populated fields, where they were identified,
were normalized (e.g., "Exposure Organism Average Weight
(mg)" values of “1 mg” were replaced with 1.0 and “na” values
were replaced with “none”); (c) prior to computing the LOEL
values, any nanomaterial IDs that were not associated with a
zero-dose control group were removed.

Dataset files derived from the NBI Knowledgebase data files, at
various stages of processing and filtering, are made available in
Supporting Information File 2.

Determination of statistically significant LOEL
values
Lowest observed effect level (LOEL) values [32] were indepen-
dently assigned for each endpoint. They were derived from data
showing the number of tested embryonic zebrafish at different
exposure concentrations, that is, dose levels, including zero-
dose control groups, for which the relevant biological effect, for
example, mortality, was observed and not observed. For all
endpoints other than mortality at 24 hpf, the numbers of embry-
onic zebrafish for which the effect was observed or not ob-
served in the zero-dose control group or at a specific exposure
concentration were evaluated with respect to the total number of
embryonic zebrafish left alive after 24 hpf. This means that the
mortality data reported at 120 hpf actually corresponds to
excess lethality, that is, lethality occurring between 24 and
120 hpf, in excess of any lethality that occurred up to 24 hpf.
By modelling excess lethality at 120 hpf, rather than the total
lethality at 120 hpf, this reduced the potential mixing of
mortality occurring due to different exposure routes prior to and
following 24 hpf [31].

Fisher’s exact test [82], as implemented in the Python module
scipy.stats [83], was used to assess the statistical significance, at
the 5% level, of an increase in the effect, compared to the zero-
dose control group, at a given dose. After each dose was
assessed for statistical significance, the tested concentrations
were then ranked from highest to lowest. This list was
descended and the highest tested concentration was checked for
a statistically significant positive association with the endpoint.
If this was detected, the LOEL value was initially assigned to
this highest tested concentration. If the next highest concentra-
tion was also associated with a statistically significant finding,
the LOEL was reassigned to this concentration. This down-
wards adjustment of the LOEL was continued until a concentra-
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tion was encountered that was not associated with a statistically
significant result. If the highest tested concentration was not as-
sociated with a statistically significant result, no LOEL was
assigned, irrespective of whether lower dose levels were deter-
mined to be individually statistically significantly associated
with the effect.

This protocol was designed to ensure that LOEL values were
only assigned where a statistically valid dose response curve
was observed, showing an increase in biological response with
increasing dose as would generally be expected, and reducing
the chance of spurious LOELs being detected due to a statis-
tical fluke, in keeping with common practice in toxicology [32].
However, this procedure would still detect a LOEL at the
highest dose if the highest dose was associated with a statisti-
cally significant response, even if a statistically significant
response was observed at a lower dose and not at intermediate
higher doses, or no significant responses were observed at other
doses. Moreover, if a statistically valid dose response curve for
excess lethality at 120 hpf occurred at lower doses but mortality
at 24 hpf was sufficient to kill all embryos at higher doses, this
protocol could fail to detect a valid LOEL for excess lethality at
120 hpf, that is, there would be no surviving embryos left to die
in the period from 24 to 120 hpf at the higher doses. In practice,
only one such apparent “false negative”, that is, an ENM
wrongly considered “non-toxic” due to the absence of a LOEL
being detected up to the maximum tested concentration (see
below), was present in the model development dataset used in
the current study (NBI Material Identifier = 214). In addition,
there were only two other ENMs in the model development
dataset for which a LOEL for excess lethality at 120 hpf was
not detected because statistically significant responses were ob-
served at lower doses but not at higher doses and this was not
due to no embryos surviving beyond 24 hpf (NBI Material Iden-
tifiers = 195 and 136). Whilst it might be argued that the latter
could represent cases of non-monotonic dose response, which
might arise with certain toxicological mechanisms [84], this
would not generally be expected and could represent statistical
flukes. Indeed, applying the Benjamini and Yekutieli multiple
testing correction [85], treating the p-values for excess lethality
at 120 hpf at each tested concentration of a specific ENM as a
separate family, results in the corrected p-values for these latter
ENMs (NBI Material Identifiers = 195 and 136) no longer being
statistically significant at the 5% level.

Meaning of “inactive vs active” and “non-toxic
vs toxic” classifications
Since the data were selected such that the highest tested dose
concentration was 250 ppm (mass-based concentration units),
this means that any nanomaterials without a LOEL value less
than or equal to 250 ppm, for the endpoint under consideration,

were considered inactive, in the case of sub-lethal endpoints, or
non-toxic, in the case of the unambiguously adverse endpoints
of lethality (mortality) or excess lethality at 24 and 120 hpf re-
spectively [32]. Otherwise, the nanomaterials were considered
active or toxic respectively. However, since only the embryos
that survived beyond 24 hpf, for either the non-exposed (zero
dose) or exposed groups, were used to determine the LOEL
values for the other endpoints, this means that the labels
assigned for the 120 hpf mortality endpoint do not account for
biological activity observed up to 24 hpf. Hence, the binary
classification endpoint values at 120 hpf should be interpreted
as excess lethality for the mortality endpoint.

Endpoint abbreviations
The abbreviations are explained in Table 2. Further details
regarding these endpoints are provided in Harper and
co-workers [28].

Descriptor calculations
A variety of numerical descriptors were derived from a set of
qualitative and quantitative physicochemical characteristics
selected from those examined for a link with biological activity
by Karcher and co-workers [31]. Two characteristics were
rejected on the grounds that they were either constant (material
type) for the modelled data, that is, all dataset entries were
labelled as metal oxides, or the characteristic only took one
value other than “unknown” (core structure), making them
uninformative.

The quantitative characteristic, treated directly as a descriptor,
was average primary particle size. (In keeping with Karcher et
al. [31] the reported maximum size was used in lieu of a
missing average size, if the minimum value was also missing.
This might reflect inconsistent recording of data.) The qualita-
tive characteristics were as follows: surface charge (positive,
negative, neutral), purity, core shape, core atomic composition
and information regarding the chemical composition of the shell
and/or outermost surface functional groups (if applicable). With
the exception of the core, shell and outermost surface chemical
composition descriptions, these characteristics were one-hot-
key encoded. This entailed creating, for each characteristic, a
separate numeric descriptor for each of the reported qualitative
values (including some “unknown” values). These descriptors
took the values one or zero if the value for the characteristic
corresponded or did not correspond to the value used to define
the descriptor, respectively.

The chemical composition of the core was approximately repre-
sented using the following descriptors, in keeping with a
previous study, which found these to be useful for modelling
nanosized metal oxide cytotoxicity data [55]: Pauling metal
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Table 2: Abbreviations used to label the different endpoints corresponding to different biological changes observed at either 24 and/or 120 hours post-
fertilisation.

Abbreviation Expanded description Lethal or sub-lethal?

M mortality lethal
DP delayed developmental progression sub-lethal
SM lack of spontaneous movement sub-lethal
N notochord malformation sub-lethal
J jaw malformation sub-lethal
Y yolk sac edema sub-lethal
A curved axis sub-lethal
E eye malformation sub-lethal
Sn snout malformation sub-lethal
O otic vesicle malformation sub-lethal
H heart malformation sub-lethal
B brain malformation sub-lethal
So somite malformation sub-lethal
PF pectoral fin malformation sub-lethal
CF caudal fin malformation sub-lethal
P atypical pigmentation sub-lethal
C occluded circulation sub-lethal
T trunk malformation sub-lethal
SB atypical swim bladder inflation sub-lethal
TR lack of touch response sub-lethal

atom electronegativity, number of metal cations in the oxide,
number of oxygen anions in the oxide and charge of metal
cation in the oxide. The chemical composition of the shell and
outermost surface functional groups, where applicable, was
approximately represented via computing a set of molecular
descriptors from SMILES strings representing the neutral forms
of the free molecules. (These SMILES are reported in the code
archive made available on Zenodo [80].) These molecular
descriptors were as follows: (1) HOMO–LUMO gap;
(2) HOMO energy; (3) LUMO energy; (4) McGowan volume;
(5) Wildman–Crippen molar refractivity (SMR); (6) Labute’s
approximate surface area (LabuteASA); (7) topological polar
surface area (TPSA) and (8) approximations of the Absolv
descriptors corresponding to the solvation parameters origi-
nally proposed by Abraham [86], not including the directly esti-
mated McGowan volume. These descriptors were selected to
reflect the potential for reactivity, in the case of the descriptors
related to the HOMO and LUMO energies, as well as effects on
nanomaterial surface interactions [87] and were informed by a
previous local nano-QSAR study of the effect of surface com-
position and concentration on the biological response of coated
gold nanoparticles [28].

The electronic structure descriptors (HOMO–LUMO gap as
well as HOMO and LUMO energy) were computed using the
MOPAC2016 implementation of the semiempirical quantum

chemical method PM7 [88]. These calculations were performed
on estimates of the lowest-energy conformer for the standard-
ised structure of the molecule represented by the available
SMILES string, where an initial conformer was generated using
the ETKDG algorithm [89], followed by a global conformer
search using the MMFF94 force field [90]. The approximated
Abraham solvation parameters were as follows: R2 (E - solute
excess molar refraction, representing the potential for disper-
sion interactions), Pi2 (S - solute dipolarity-polarizability,
representing the potential for dipole-induced dipole interac-
tions), BetaH2 (B - solute H-bond total basicity, representing
H-bond acceptor ability) and AlphaH2 (A - solute H-bond total
acidity, representing H-bond donor ability). These were calcu-
lated via building a Support Vector Regression model [91],
using an extended connectivity fingerprint [92] and a Tanimoto
kernel [93], trained on a set of previously reported Absolv
calculations on a molecular dataset [94]. The remaining descrip-
tors were computed using the RDKit [95] or Mordred [96].

When the nanomaterial in question had no shell and/or organic
outermost surface functional groups, that is, was uncoated,
dummy values were used for all of the corresponding descrip-
tors (see below). Finally, the presence or absence of shell or
organic outermost surface functional groups was explicitly
encoded using two descriptors taking the values one (present) or
zero (absent).
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Table 3: Summary of all descriptor names, or prefixes for the one-hot-key encoded qualitative variables, reported in Supporting Information File 2,
along with a description of how they were derived.

Descriptor name or prefix for
qualitative variables

Quantitative or
qualitative variable? Description Source

Surface Charge: (positive,
negative, neutral)

qualitative qualitative physicochemical
characterisation data reported in the NBI
Knowledgebase

characterisation data

Primary Particle Size: Avg.
(nm)

quantitative quantitative physicochemical
characterisation data reported in the NBI
Knowledgebase

characterisation data

Outermost Surface Functional
Groups: Present?

quantitative [binary] binary variable (values = 1 or 0) based
upon whether any outermost surface
functional groups are reported in the NBI
Knowledgebase

characterisation data

Shell: Present? quantitative [binary] binary variable (values = 1 or 0) based
upon whether any shell is reported in the
NBI Knowledgebase

characterisation data

purity qualitative physicochemical characterisation data
reported in the NBI Knowledgebase

characterisation data

core Shape qualitative physicochemical characterisation data
reported in the NBI Knowledgebase

characterisation data

Pauling metal atom
electronegativity

quantitative electronegativity (Pauling scale) for the
metal atom corresponding to the cation in
the metal oxide core

calculated value reported in
the literature [55] or by the
Royal Society of Chemistry
[97]

number of metal cations in the
oxide

quantitative number of metal cations in the formula unit
of the metal oxide core

defined by the formula unit

number of oxygen anions in the
oxide

quantitative number of oxygen anions in the formula
unit of the metal oxide core

defined by the formula unit

charge of metal cation in the
oxide

quantitative formal oxidation state of the metal in the
metal oxide core

defined by the formula unit

FG: GAP (eV) quantitative HOMO–LUMO gap for the lowest energy
conformer of the standardised molecular
structure of the outermost surface
functional groups (or a dummy value if the
ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

FG: HOMO energy (eV) quantitative HOMO energy for the lowest energy
conformer of the standardised molecular
structure of the outermost surface
functional groups (or a dummy value if the
ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

FG: LUMO energy (eV) quantitative LUMO energy for the lowest energy
conformer of the standardised molecular
structure of the outermost surface
functional groups (or a dummy value if the
ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

FG: McGowanVolume quantitative McGowan volume for the molecular
structure of the outermost surface
functional groups (or a dummy value if the
ENM does not possess this)

Mordred (1.2.0)

FG: SMR quantitative Wildman–Crippen molar refractivity
descriptor for the molecular structure of
the outermost surface functional groups
(or a dummy value if the ENM does not
possess this)

Mordred (1.2.0) [RDKit
wrapper]

The full set of descriptor names, or the descriptor name prefixes
for the one-hot-key encoded qualitative variables, as reported in
the model development dataset file provided in Supporting
Information File 2, is summarized in Table 3. As explained

below, the descriptors corresponding to the molecular struc-
tures of the outermost surface functional groups or shell were
set to dummy values when these components were not present.
In addition, as also explained below, the one-hot-key encoded
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Table 3: Summary of all descriptor names, or prefixes for the one-hot-key encoded qualitative variables, reported in Supporting Information File 2,
along with a description of how they were derived. (continued)

FG: LabuteASA quantitative Labute’s approximate surface area
descriptor for the molecular structure of
the outermost surface functional groups
(or a dummy value if the ENM does not
possess this)

Mordred (1.2.0) [RDKit
wrapper]

FG: TPSA quantitative topological polar surface area for the
molecular structure of the outermost
surface functional groups (or a dummy
value if the ENM does not possess this)

RDKit (2019.03.3.0)

FG: approx_D_R2_E_ quantitative approximation of the Absolv descriptor R2
(E - solute excess molar refraction,
representing the potential for dispersion
interactions) for the molecular structure of
the outermost surface functional groups
(or a dummy value if the ENM does not
possess this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

FG: approx_D_Pi2_S_ quantitative approximation of the Absolv descriptor Pi2
(S - solute dipolarity-polarizability,
representing the potential for
dipole-induced dipole interactions) for the
molecular structure of the outermost
surface functional groups (or a dummy
value if the ENM does not possess this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

FG: approx_D_BetaH2_B_ quantitative Approximation of the Absolv descriptor
BetaH2 (B - solute H-bond total basicity,
representing H-bond acceptor ability) for
the molecular structure of the outermost
surface functional groups (or a dummy
value if the ENM does not possess this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

FG: approx_D_AlphaH2_A_ quantitative approximation of the Absolv descriptor
AlphaH2 (A - solute H-bond total acidity,
representing H-bond donor ability) for the
molecular structure of the outermost
surface functional groups (or a dummy
value if the ENM does not possess this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

Shell: GAP (eV) quantitative HOMO–LUMO gap for the lowest energy
conformer of the standardised molecular
structure of the shell (or a dummy value if
the ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

Shell: HOMO energy (eV) quantitative HOMO energy for the lowest energy
conformer of the standardised molecular
structure of the shell (or a dummy value if
the ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

Shell: LUMO energy (eV) quantitative LUMO energy for the lowest energy
conformer of the standardised molecular
structure of the shell (or a dummy value if
the ENM does not possess this)

MOPAC2016 (PM7)
[conformer generation
performed using RDKit]

Shell: McGowanVolume quantitative McGowan volume for the molecular
structure of the shell (or a dummy value if
the ENM does not possess this)

Mordred (1.2.0)

Shell: SMR quantitative Wildman–Crippen molar refractivity
descriptor for the molecular structure of
the shell (or a dummy value if the ENM
does not possess this)

Mordred (1.2.0) [RDKit
wrapper]

Shell: LabuteASA quantitative Labute’s approximate surface area
descriptor for the molecular structure of
the shell (or a dummy value if the ENM
does not possess this)

Mordred (1.2.0) [RDKit
wrapper]

Shell: TPSA quantitative topological polar surface area for the
molecular structure of the shell (or a
dummy value if the ENM does not possess
this)

RDKit (2019.03.3.0)
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Table 3: Summary of all descriptor names, or prefixes for the one-hot-key encoded qualitative variables, reported in Supporting Information File 2,
along with a description of how they were derived. (continued)

Shell: approx_D_R2_E_ quantitative approximation of the Absolv descriptor R2
(E - solute excess molar refraction,
representing the potential for dispersion
interactions) for the molecular structure of
the shell (or a dummy value if the ENM
does not possess this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

Shell: approx_D_Pi2_S_ quantitative approximation of the Absolv descriptor Pi2
(S - solute dipolarity-polarizability,
representing the potential for
dipole-induced dipole interactions) for the
molecular structure of the shell (or a
dummy value if the ENM does not possess
this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

Shell: approx_D_BetaH2_B_ quantitative approximation of the Absolv descriptor
BetaH2 (B - solute H-bond total basicity,
representing H-bond acceptor ability) for
the molecular structure of the shell (or a
dummy value if the ENM does not possess
this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

Shell: approx_D_AlphaH2_A_ quantitative approximation of the Absolv descriptor
AlphaH2 (A - solute H-bond total acidity,
representing H-bond donor ability) for the
molecular structure of the shell (or a
dummy value if the ENM does not possess
this)

Support Vector Regression
model trained on Absolv
calculations for a molecular
dataset

qualitative descriptors and the binary descriptors corresponding
to the presence or absence of outermost surface functional
groups or a shell were not perturbed as part of data augmenta-
tion, as these can only take discrete values of one or zero.

Inapplicable descriptor dummy values
Where a nanomaterial did not possess a shell or organic outer-
most surface functional groups, the corresponding molecular
descriptors were set to dummy values chosen to lie below the
minimum of the values calculated where the corresponding
component was present. (This is in keeping with recommenda-
tions in the recent literature for treating data that “does not exist
in principle” for the purpose of modelling studies [45].) The
choice of descriptor specific dummy values was made to avoid
compressing the true values into a small numerical range during
descriptor scaling (see below), which might lead to problems in
practice with some modelling methods. More specifically, the
dummy value for the i-th descriptor (Ddummy,i) was computed
according to Equation 1, where Dmin,i is the minimum of the
values calculated when the corresponding component was
present, and Ai is an adjustment factor calculated, by default,
according to Equation 2, where Dmax,i is the maximum of the
values calculated when the corresponding component was
present, unless this would give a value of zero. Otherwise, Ai is
calculated according to Equation 3, unless this would give a
value of zero, in which case Ai is set to one. Here, Dmax,i and
Dmin,i were calculated with respect to the entire model develop-

ment set prior to any cross-validation, albeit subsequent
descriptor pre-processing was carried out independently using
the distribution of values for each outer cross-validation training
set (see below).

(1)

(2)

(3)

The same principle was used to derive dummy values for other
numeric ENM descriptors when ChEMBL molecular toxicity
data were treated as pseudo-ENM data samples in one of the
explored data augmentation techniques. In addition, for the
qualitative ENM descriptors, such as core shape and purity, a
fixed dummy label was assigned prior to one-hot-key encoding.

Descriptor pre-processing
Subsequent to descriptor calculations and the assignment of
inapplicable descriptor dummy values, as described above, the
descriptor values were pre-processed. Pre-processing involved
converting the qualitative characteristics into numeric descrip-
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tors, with values of zero or one, using one-hot-key encoding
(see above). In addition, the original numeric descriptors were
mean centred, by subtracting the mean, and scaled to unit vari-
ance. These operations were carried out independently for each
of the outer cross-validation training sets (see below).

For the externally validated single descriptor Random Forest
model, no such descriptor pre-processing was performed, as
scaling and mean centring should not affect the distribution
of class labels with respect to numerical descriptors and,
hence, should not affect the results obtained with tree-based
models.

Cross-validation scheme for estimating model
performance and model selection
To minimise model selection bias, double or nested cross-vali-
dation [43], sometimes referred to as “external” cross-valida-
tion [44], was employed. This means that, for a given machine
learning algorithm, model hyperparameters were tuned indepen-
dently for each outer cross-validation training set, with overall
model performance estimated on the remaining outer fold, by
determining the combination that maximised balanced accu-
racy estimated using an inner cross-validation split of this outer
cross-validation training set. For both the outer and the inner
folds 5-CV was employed.

For modelling excess lethality at 120 hpf, stratified cross-vali-
dation was employed for both the outer and inner folds. For
modelling lethality at 24 hpf, after initially observing substan-
tially worse results with Random Forest using the same nested
cross-validation scheme, the outer folds were set to those
selected based upon stratified cross-validation for the 120 hpf
endpoint, to ensure a direct comparison was being made.

In order to better simulate the performance of the model on an
external test set, for which the model would be fixed based
purely upon the endpoint and descriptor values for the training
set, all descriptor pre-processing was performed independently
using each outer cross-validation training set. However, it
should be acknowledged that the descriptor specific inapplic-
able descriptor dummy values (see above) were selected based
upon the range of true descriptor values calculated for the en-
tire model development set. Nonetheless, in the case of Random
Forest, this should not affect the results, as the precise value of
these dummy values would not affect the training set class dis-
tributions with respect to the corresponding descriptors, given
that the dummy values would always lie below the true
descriptor values for the training set, whether selected indepen-
dently for each outer cross-validation training set or not. Hence,
the split points selected for the decision trees in the forest would
be unaffected.

The consideration of different modelling algorithms and the
exploration of data augmentation approaches, including the
exploration of different options for each paradigm as fully re-
ported in the Results and Discussion section, could also be a
source of optimistic model selection bias. However, the fact that
only two modelling algorithms were considered and data
augmentation never led to statistically significant improve-
ments in model performance suggests that the results for the
default modelling approaches, employing multiple descriptors,
are unlikely to be optimistically biased via these investigations.

Nonetheless, the selection of the Pauling metal atom electroneg-
ativity for the single descriptor model was based upon perfor-
mance metrics that considered model performance in the outer
folds, hence there is a clear risk of optimistic bias in the re-
ported cross-validation results for this model.

Machine Learning algorithms and tuned
hyperparameters
The two machine learning algorithms employed herein were the
SciKit-Learn [37] variants of Random Forest [38,40,46] and
logistic regression [41,42,98]. For Random Forest, in contrast to
the majority voting approach originally proposed by Breiman
[38], the proportion of training set instances belonging to “class
1” (i.e., the “toxic” class in the current context) in the leaf node
to which a new instance (i.e., nanomaterial in the current
context) is assigned is averaged across all trees in the forest to
generate the final score for “class 1”. In logistic regression, the
score generated by the model is the estimated probability of
“class 1”. In both cases, if the score for a new instance was
greater than 0.5, this was interpreted as a prediction of “class 1”
(i.e., the “toxic” class).

For logistic regression, the primal formulation was employed in
combination with the liblinear solver [98]. In addition, the
following sets of hyperparameter values were explored in com-
bination via a grid search strategy: (1) C (inverse of regulariza-
tion strength) = {1.0,10.0,100.0,1000.0}, (2) penalty = {l2, l1}.
For Random Forest, the following sets of hyperparameter
values were also explored in combination via a grid search
strategy: (1) number of trees = {501,2001}, (2) number of
descriptors randomly selected for evaluation at each split point
= {sqrt(D), D/10, 2D/10, 3D/10, 4D/10, 5D/10, 6D/10, 7D/10,
8D/10, 9D/10, D}, where D is the total number of calculated
descriptors, albeit this value was necessarily just set to one for
the single descriptor model, (3) whether “balanced” weighting
[46] was applied, when computing the reduction in Gini impu-
rity used to choose the descriptor and split point for splitting
each node [56], to avoid biasing the trees towards correctly
classifying members of the majority class at the expense of per-
formance for the minority class.
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Additional hyperparameters related to data augmentation were
also selected based upon the training sets of the validated
models.

Data augmentation
For both data augmentation paradigms, the training sets used to
build the validated models were augmented prior to carrying out
the inner level of cross-validation on the updated training set to
select other model hyperparameters. Each outer cross-valida-
tion training set was augmented independently.

For the first paradigm (“noised training set replication”), the
perturbed copies of the training set added to the original training
set included descriptors modified by adding random perturba-
tions selected from a Gaussian (normal) distribution with a
mean of zero and standard deviation of sigma, where sigma was
treated as a tunable hyperparameter selected from the following
range of values: {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.2, 1.4,
1.8}. (The one-hot-key encoded descriptors and the binary
descriptors corresponding to the presence or absence of outer-
most surface functional groups or a shell were not perturbed, as
these can only take discrete values of one or zero.) These values
of sigma were based upon literature precedence [36]. Each
value of sigma was considered for building a model. After
optimising the machine learning algorithm hyperparameters
using cross-validation on the training set, the model built
using the value of sigma that maximised the training set cross-
validated balanced accuracy obtained with the selected algo-
rithm hyperparameters was selected. This process was repeated
for each number of perturbed training set replicates investigat-
ed.

For the second paradigm (“weighted alternative samples”),
when the samples added to the original training set were based
upon molecular data selected from ChEMBL, the similarity
weighting applied to each of the added samples was treated as a
tunable hyperparameter selected from the following range of
values: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Again, each of
these values was considered for building a model. After
optimising the machine learning algorithm hyperparameters
using cross-validation on the training set, the model built using
the similarity weighting that maximised the training set cross-
validated balanced accuracy obtained with the selected algo-
rithm hyperparameters was selected.

Otherwise, when the samples corresponded to the same sam-
ples as the original training set, save for the fact that the
endpoint values were substituted with the active (= 1) vs inac-
tive values (= 0) for one of the sub-lethal endpoints, the simi-
larity weighting was fixed to a value reflecting the correlation
between the modelled lethal endpoint and the sub-lethal

endpoint. Specifically, for all samples in the original training
set, the MCC was computed between the lethal and sub-lethal
endpoint. If this was positive, the similarity weighting applied
to each of the added samples was set to this value. Otherwise,
the similarity weighting was set to zero. In addition, if there
were no active samples for a particular sub-lethal endpoint,
across the entire set of NBI Knowledgebase entries for which
LOEL value estimation was performed, that sub-lethal endpoint
was ignored.

Statistical significance of cross-validation results
The outer cross-validation results obtained with the Random
Forest models following the use of each data augmentation
scenario were compared to the corresponding result obtained
without data augmentation. The results were compared in terms
of the mean balanced accuracy, MCC and AUC. Each compari-
son was assessed for a statistically significant increase in the
result with data augmentation compared to the corresponding
result without data augmentation. This assessment was based
upon analysing the paired values for corresponding cross-vali-
dation folds using an exact paired permutation test [99].
This test was used to compute approximate one-tail p-values.
Since this involved a significant number of pairwise compari-
sons, all of these p-values were adjusted to control the
false discovery rate using the method of Benjamini and Yeku-
tieli [85], by treating the combined set of p-values as a single
family.

Training the final models
For building the models based upon the entire model develop-
ment set that were used for the applicable descriptor impor-
tance analyses (see below), the same modelling protocol
was repeated as described for each of the outer cross-
validation training sets (see above), including selection of the
best combination of hyperparameters via stratified cross-valida-
tion.

However, after checking that, as expected, the cross-validation
results could be reproduced without scaling, the single
descriptor Random Forest model that was selected for true
external validation was rebuilt without scaling.

Descriptor importance analyses
Initially, descriptor importance values for Random Forest and
logistic regression models were computed for models trained on
the entire development set, after tuning the hyperparameters via
cross-validation as per all models, in terms of the Gini impor-
tance measure [56] and coefficient magnitudes. Subsequently,
for both methods, descriptor importance values were estimated
using a permutation variable importance approach. Here, the
importance of each descriptor was estimated as the decrease in
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balanced accuracy on a validation subset of the entire model
development set, for a model trained on the remaining
instances, with hyperparameter tuning and descriptor pre-
processing in the usual fashion using the training set, when the
validation set descriptor values were randomly shuffled [53,54].
Here, the validation subsets were the same five folds used to
estimate model performance and the importance values were
summarized across ten random seeds and all five folds.

As well as estimating the importance of the descriptors for both
of these modelling algorithms, the importance of the descrip-
tors was also estimated for a variation on the Random Forest
algorithm, termed Cforest [57], in terms of its conditional vari-
able importance measure [58]. A Cforest model was built on the
entire model development set, following descriptor pre-process-
ing in the usual fashion. The number of trees and number of
descriptors randomly selected for evaluation at each split point
were set to the options previously selected as part of hyperpara-
meter tuning for the corresponding Random Forest model, with
all other hyperparameters set to the recommended values for
unbiased descriptor evaluation in Strobl et al. [57]. A Cforest
model was built ten times, each time using a different random
seed, and the variable importance values summarized over all
ten models.

Applicability domain analysis for the final single
descriptor model
For the final, externally validated single descriptor model, a
simple applicability domain estimation was performed, whereby
any instances for which this descriptor was less than the
minimum or greater than the maximum values for the model de-
velopment dataset were deemed to lie outside of the applicabili-
ty domain. This simple range-based definition of the applicabil-
ity domain is an established approach [66], but more complex
methods have been proposed elsewhere in the QSAR literature
[100].

Selection of data for external validation of the final
single descriptor model
As discussed under “External validation results”, seven metal
oxide ENMs were selected from the original set of data, used
as the source of data for model development, extracted
from the data records, exported from the Nanomaterial
Biological-Interactions (NBI) Knowledgebase [26], and
reported in the NanoHub online repository [81] as supplemen-
tary material for Karcher and co-workers [31]. These metal
oxides were not included in the original model development
dataset derived from these data as they were rejected according
to the original selection criteria that needed to be applied
for modelling the data using multiple descriptors. However,
they were retained when these criteria were relaxed to

(i) allow for the inclusion of minimally doped ENMs,
(ii) allow for the selection of ENMs with missing numerical
characterisation data used as input variables to the original,
multi-descriptor models, and (iii) allow for the selection of ma-
terials tested at maximum dosage concentrations of less than
250 ppm. The latter point meant that those NMs not tested up to
250 ppm, for which a LOEL was not detected, may have been
false negatives in terms of the categorical endpoint modelled
herein, based upon whether the LOEL for excess mortality, in
the period from 24 to 120 hpf, was less than or equal to
250 ppm.

In addition, the literature was searched for additional datasets to
serve as approximate external validation sets. Only limited
data were identified for metal oxide ENMs (including the
metalloid oxide silicon dioxide) assessed for lethality against
embryonic zebrafish and these were for endpoints that
were not directly comparable to the categorical endpoint
modelled herein. These limited additional datasets comprised
the following: (1) LOEL data for three ENMs, assessed up
to a concentration of 25 ppm, for cumulative lethality up to
120 hpf against embryonic zebrafish [101], where the detection
of a LOEL value in this range of tested concentrations was
deemed toxic and the failure to detect a LOEL “non-toxic”;
(2) LC50 values (ppm), or imprecise estimates based upon a
lower limit, for exposure up to 96 hpf, determined for 11 ENMs
[102]; (3) LC50 values (micromolar) for two ENMs assessed
at different timepoints [103], with the latter data points not
being comparable to each other and hence unsuitable to
assess the ability of the selected model to rank different metal
oxide ENMs according to their lethality against embryonic
zebrafish.

The first two of these additional datasets were evaluated to
assess the ability of the prediction scores of the final Random
Forest model, that is, the average proportion of toxic training set
instances for the model development dataset assigned to the
same leaf node as new instances, to be used for ranking the new
ENMs with respect to the new endpoints. Good correlation was
observed (Supporting Information File 1, Figure S16), in terms
of the area under the receiver operator curve (AUC), between
the model prediction scores and the categories assigned based
upon the LOEL data reported for the three ENMs in the first of
these datasets [101]. Moreover, no correlation was observed
when simply ranking the ENMs according to the single selected
descriptor, suggesting value was added by modelling the related
endpoint (Supporting Information File 1, Figure S17). However,
no correlation was obtained (Supporting Information File 1,
Figure S18) between the model prediction scores and the (ap-
proximate) LC50 values retrieved for the second of these
datasets [102], which could reflect greater differences to the
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modelled endpoint data, the lack of precision in some of these
new datapoints, or the fact that some of the new ENMs were
outside the domain.

Supporting Information
Supporting Information File 1
PDF with two sections: (A) Additional results, (B) Detailed
instructions for reproducing our results using code provided
on Zenodo.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-12-97-S1.pdf]

Supporting Information File 2
ZIP archive containing dataset files described in
corresponding README files (not including a dataset file
derived from the ChEMBL database).
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-12-97-S2.zip]

Supporting Information File 3
ZIP archive containing a dataset file, described in the
README file, derived from the ChEMBL database.
[https://www.beilstein-journals.org/bjnano/content/
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