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We explore the dynamics of an adiabatic neural cell of a perceptron artificial neural network in a quantum regime. This mode of

cell operation is assumed for a hybrid system of a classical neural network whose configuration is dynamically adjusted by a quan-

tum co-processor. Analytical and numerical studies take into account non-adiabatic processes as well as dissipation, which leads to

smoothing of quantum coherent oscillations. The obtained results indicate the conditions under which the neuron possesses the re-

quired sigmoid activation function.

Introduction

The implementation of machine learning algorithms is one of
the main applications of modern quantum processors [1-9]. It
has been shown that a relatively small quantum circuit may be
capable of searching for a large number of synaptic weights of
an artificial neural network (ANN) [10-13]. The rate of the
weight adjustment is an important parameter that determines the

possibility of the ANN dynamic adaptation. Such tunability is

required when working with rapidly changing content. The cor-
responding information flow naturally arises, for example,
within the framework of novel telecommunication paradigms,
such as software-defined radio [14,15] implying the change of
signal frequency and modulation. An efficient architecture of a
flexible hybrid system requires a close spatial arrangement of

the classical ANN with its control quantum co-processor, see
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Figure 1a. Superconductor technology is a promising platform
for such a solution since both superconducting quantum
machine learning circuits [16-22] and superconducting ANNs

[23-37] are rapidly developed nowadays.

Robust implementation of the considered quantum-classical
system would benefit from the utilization of a single technolo-
gy suitable for superconducting qubits. In this case, the clas-
sical part can operate in an adiabatic mode ensuring minimal
impact on quantum circuits. However, quantum effects, in turn,
can significantly affect the operation of neuromorphic elements.
In this work, we account for this by considering the neuron cell
operation in a quantum regime. We investigate the dynamics of
this cell in search of conditions that provide the required
sigmoid activation function (conversion of the input magnetic
flux into the average output current), suitable for the operation
of the ANN as a perceptron [4]. The studied cell is called a
quantum neuron or Sq neuron. Its closest analogue is the flux
qubit used by D-Wave Systems in quantum annealers [38-41].

An important incentive for this work are the previously ob-
tained results on classical adiabatic neurons with extremely
small energy dissipation [42-45]. We especially note the
demonstrated possibility of the adiabatic evolution of the state
for a neuron in a multilayer perceptron with Josephson junc-
tions without resistive shunting [46]. It is precisely such a
heterostructure without resistive shunting that is used in the

implementation of a quantum neuron based on a flux qubit.

The article is organized as follows. First, we present the scheme
of the proposed quantum neuron and also investigate the spec-

trum of the Hamilton operator for such a system. Next, on the
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basis of the numerical solution of the Schrodinger equation, we
investigate dynamic processes in a quantum neuron. We pay
special attention to the analysis of the activation function of the
cell for two main modes (with one and two minima of the
potential energy of the system). We use Wigner functions for a
visual interpretation of the dynamics of the neuron. The range
of the operating parameters for the proposed neuron circuit
under the action of unipolar magnetic flux pulses is found.
Finally, the influence of the dissipation on the features of the

dynamic processes and characteristics of the cell is revealed.

Methods
Neuron model and basic equations

A single-junction superconducting interferometer with normal-
ized inductance /, a Josephson junction without resistive
shunting (JJ), an additional inductance /,, and an output induc-
tance /o, (see Figure 1b) are the basis of the quantum neuron.
This circuit has been presented before as a classic super-
conducting neuron for an adiabatic perceptron [42,46].

The classical dynamics of the system under consideration is de-

scribed using the equation for the dynamics of the Josephson

phase:

m;2(p+0);1(b+sin(p:b(pin (t)—ao, (1)
where the coefficients are determined by the expressions

ly + oy Ly + 2oy =141,

a= ,b=
I, + gy (1+1,) 2[11a o (141, )]

superconducting
adiabatic

neuron

Figure 1: (a) Sketch of a flexible hybrid system consisting of a classical ANN having its configuration (synaptic weights) dynamically adjusted by a
quantum co-processor. (b) Schematic representation of the Sq neuron providing nonlinear magnetic flux transformation.
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These coefficients were introduced in [46] when considering the
classical mode of this system. Inductances are normalized to
(2ml/®g), where I, is the critical current of the Josephson junc-
tion and @ is the magnetic flux quantum. The inertial proper-
ties of the system are due to the junction capacitance, which,
along with the critical current /., determines the plasma fre-

2el
w,, = .
P\ he

In this case, the dissipative properties of the system are deter-

quency of the JJ,

mined by the Josephson characteristic frequency w, = 2¢RI #
(here, R and C are the normal state resistance and capacitance of

the Josephson junction, respectively).

Dynamic control of the system states is carried out by a
changing external magnetic flux, ¢;j,(#), normalized to the mag-
netic flux quantum ®g:

®in (1) = A{(l 1o 2P(n) )1 n (1 4+ 2PU0) )l}—A, @)

where A is the normalised amplitude of the external action, 7,
and ) = 3¢1 are the characteristic rise/fall times of the control
signal, whose steepness is determined by the parameter D. The
phase of the Josephson junction, ¢, obeys Equation 1. The acti-
vation function of the neuron is determined by the dependence
of the output current iy, on the input flux @;,:

. (pin - 2lal .
1 =, 1= b s —adQ@.
out 2(13 i lout) Pin P 3)

Spectrum of the neuron Hamiltonian

The quantum regime manifests itself through a discrete spec-
trum of allowed values for the total energy of the system. The
characteristic gaps in the spectrum of the effective Hamiltonian
are significantly larger than the thermal smearing in the studied
case. Also, the level broadening due to the influence of the
environment is relatively small. The described features affect
the neuron ability to non-linearly transform the magnetic signal.
In order to describe the quantum mechanical behavior of the
system (Equation 1), we start from the case of a Josephson junc-
tion with a large shunted resistance (wc_] —0). In this case,
Equation 1 can be interpreted as the equation of motion for a
particle with mass M = #2/2E, (charge energy E, = (2¢)%/2C) in

potential
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The dynamics of the system is governed by the Hamilton func-

tion,

HLp0s0n (0] =20 0,03 1]

The canonical quantization procedure leads to the Hamiltonian:

. 22 bo (1)—ai T
H[f”‘ba(Pin(f)]=E;§ +E; b0 (1) -ab] .

2a

(1-cos) ¢, (5)

where the operators p and ¢ obey the commutative relation
[, p]=ih.

The form of the potential from Equation 4 in each moment of
time, and hence the dynamic behavior of the system, is deter-
mined by the physical parameters of the circuit shown in
Figure 1. There is a range of inductance values where the poten-
tial profile from Equation 4 has a double-well shape under the
action of the input flux (Equation 2). Their values can be ob-

tained from solution of the transcendental equation

oUu
—((P) =a@—bo;, (t) +sine =0.
2y
The potential has more than one extremum in the case that

a < 1 and ,therefore,

[>T =12, +1-1,.

Note that for the classical regime the sigmoidal shape of the ac-

tivation function is possible only when [ < " [46].

One of the goals of this work is to determine the parameters of
the adiabatic switching of the quantum neuron for [ < [* (single-
well mode) and [ > [* (double-well mode). Within the adiabatic
approach it is possible to numerically solve the time-indepen-
dent Schrodinger equation (see Appendix 1) for each moment
of time to find “instantaneous energy levels”, E,(f), and “instan-
taneous wave functions” of the system, (o, 7):

H[ p.6.05 (1) [w, (0:) = E, (£)w,, (0:2). ©)
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Figure 2 demonstrates the spectrum of instantaneous energy
levels and wave functions of the system at the initial moment of
time (Figure 2a,c) and at the moment 7, when the input magnet-
ic flux (Equation 2) is equal to ¢;, = 27 (Figure 2b,d). Note that
for the case [ < [ (Figure 2a,b), the form of the potential can be
approximated by a parabolic function (single-well mode). The
symmetry of the potential under external influence does not
change, and only a shift in the energy levels with preservation
of the interlevel distance is observed during the rise/fall periods
of the signal. A different behavior is observed for [ > [* where
during the rise/fall periods of the signal, a double-well potential
appears (Figure 2d). Here, the two lowest close energy levels
are separated by an energy gap from the rest of the level struc-
ture. This resembles the formation of the flux qubit spectrum
[47].

Results and Discussion

Dynamics of the quantum neuron without
dissipation

The dynamics (evolution of the states of the system, W(r))
of the quantum neuron (Equation 5) is associated with
the nonlinear transformation of the input magnetic flux (Equa-
tion 2). We describe it using the time-dependent Schrédinger
equation:

Beilstein J. Nanotechnol. 2022, 13, 653-665.

i (1) = F1 0 (1) ]9 (1) ™

Eigenvectors of the system are found by numerical solution of
Equation 7 (see details in Appendix 2). Thereafter, from the
evolution of average values of the phase and current operators
we found the transfer characteristic iou(¢in) of the Sq neuron
Equation 3, that is, its activation function. Let us explain the
idea of our calculations. We assume that the system is initial-
ized at the initial moment of time. At cryogenic temperatures
(millikelvin range) the system states are localised at lower
energy levels.

According to Equation 3, the dependence of the average value
of the output current i, on the input magnetic flux ¢;, is calcu-
lated:

We use the Wigner functions in order to visualize the adiabatic
dynamics in the “phase-conjugate momentum” space [48]. This
function is determined by the Fourier transform of a bilinear

combination of the wave functions:

o U/ES

o]

[\

271

3n - 0

0 L
2n 3n

"

Figure 2: The energy spectrum and adiabatic (instantaneous) wave functions are represented at the initial time ¢ = 0 (a, c) and at the rise of the
applied flux, ty = 500 (b, d) for the inductance values / = 0.1 (a, b) and / = 2.5 (c, d). The parameters of the system and the input magnetic flux are:

Ec=05Ey, Iy=1+1,lou=0.1,D=0.008, A = 4.
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The wave function W(¢,r) can be expanded in terms of the in-
stantaneous eigenvectors g, (@,1):

t

¥ (p.1) =D c, (1), (9.t)exp —%IEn ()dr |, o)

0

where the coefficients ¢,(0) are determined from the initial
conditions for the wave function W(¢,0). Changes of the coeffi-

cients ¢,(t) in time are determined by the system of N coupled

equations
l.dcn (t) _t do;, (t)
dt dr

h
N1 (oA . ~ 41 b
' z {wn,m (Z) (6(%1],1 m o 2 exp|:l.[0w”’m (t)dt :‘}’

where the time-dependent matrix elements appear. Their rate of
change is given by o, (1) = E,(t) - E, (¢). Note that if the

adiabaticity condition,

;( oH ] <1 (12)
h(,l)n’m (f) 8(pin nm ’

is satisfied for pairs of levels, then transitions between them
become improbable.

We consider the case where only the two lowest levels are taken
into account. In this case, the remaining energy levels lie notice-
ably higher than the selected doublet. In addition, adiabaticity
conditions (Equation 12) should be satisfied. When these condi-
tions are met, the following expression can be written to ap-
proximate the wave function:

it
¥ (@.1)=co(t)wo (9.1)exp _%.[EO (¢")dt’
0
i
+cp (1) wy (@.1)exp —EJ.El(t’)dt' ,
0

13)
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and we can get the expression for the Wigner function:

W (0, p.) = o () Koo (0 pt)+|er () Ky (9. p0t)
a0 ks (op e o 00|
e (1) (1)Ko (9.0 )exp[—fiwo,l (f)dt}
where
won (01,1 —jd&e’ﬂiwn(mé/z D (9-8/2.1). (15)

Further we demonstrate two effects in this approximation:
(1) One can construct a superposition of the basis states and
observe the manifestation of the interference of quantum states
in the oscillations of the output characteristic; (2) there are
oscillations of the output characteristic due to the influence of

nonadibaticity.

Single-well potential

Figure 3 demonstrates the calculated activation functions of the
S neuron operating in the quantum regime in single-well mode
(I < I") for three different initial states of the system.

Numerical analysis has shown that the activation functions for
the quantum neuron, initialised in the basic states, takes a
sigmoidal shape (black and red curves in Figure 3). This is in a

good agreement with the classical regime of operation [46].

i()lll
6 -
4 F
2 F
4z
Pin
or 2
2+ 0o 1 1 t
0 2 4 6 gy, 8 10 12

Figure 3: The neuron activation functions for / = 0.1 and different initial
states: The black curve corresponds to the ground initial state yo(,0),
the red curve to the first excited state y1(¢,0), and green curve corre-
sponds to the superposition of states ([yq(¢,0)+ Lp1((p,0)]/\/§. Param-
eters of the input magnetic flux are D = 0.008, A = 4m, and t; = 500.
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Note that when the input flux (Equation 2) changes from 0 to
41, the phase ¢ on the Josephson junction changes from 0 to 27

and vice versa.

The complete coincidence of the two paths of the system evolu-
tion occurs with a significant increase in the rise time “ T~
(¢ = 0—2m) and the fall time “ | ” (¢ = 2r—0) of the input
signal. For the superposition of the basic states, as seen in
Figure 3, oscillations are observed in the shape of the activation
function. In this regard, for clarity of interpretation of the ob-
tained results of the quantum dynamics, we consider the evolu-
tion of the system in the phase space.

If the adiabaticity condition (Equation 12) is satisfied and the
system was initially at the lowest level |c0(0)|2 =1 (see
Figure 4a), then the dynamics of the Wigner function reflects
the distribution in phase and conjugate momentum related to
this level. Similar reasoning can be given for the case when the
first excited level (Figure 3b) is populated. Here, the center of
the probability density I‘I’(q),z‘)l2 and the distribution of the
Wigner function (Figure 4a,b) shift smoothly, from ¢ = 0 to 2m,
when the cell is exposed to the input magnetic flux. The system
remains localized in the initial state, and as a result, the activa-
tion function takes a sigmoidal form without any oscillations
(black and red curves in Figure 3). If the system is initialised in

e, p,0) _a W, p, 0)

)

Beilstein J. Nanotechnol. 2022, 13, 653-665.

the superposition of the lowest states (Figure 4c) then the inter-
ference term in the Wigner function emerges, see the last two
terms in Equation 14. This is expressed as oscillations on the
Wigner function between the maximum (red area) and
minimum (blue area), see Figure 5. Coherent oscillations on the
current—flux dependence are also the evidence of this phenome-
non (see the green curve in Figure 3).

Double-well potential

For the double-well potential, when [ > [*, the problem of quan-
tum dynamics and the formation of the sigmoidal activation
function have also been studied. We start with the parameters of
the input flux as presented in Figure 3. Numerical simulations
demonstrate a distortion of the sigmoidal form of the activation
function even when the Sq neuron is initialized in the ground

state, see Figure 6.

In the process of evolution, a significant rearrangement occurs
in the spectrum of energy levels (anti-crossing between the
ground and the first excited levels) during the formation of a
double-well potential (see Figure 2). This corresponds to the
rise period of the signal along the path ¢ = 0—2m. Note that, in
this case, the adiabaticity condition (Equation 12) is violated.
This is a consequence of the increase in the input flux @iy,
which leads to the excitation of the overlying states. In this

Figure 4: The Wigner functions W(®, p, t = 0) of the considered system initialized at the initial moment of time ¢t = 0 (a) in the ground state wo(,0),
(b) in the first excited state y4(¢,0) and (c) in the superposition of the lowest states [y (¢,0)+ L|J1((|),0)]/\/§ for / = 0.1. Other parameters are similar to

those shown in Figure 3.

3 a |3 b |3 c 3 )
P »
0 0 0 0
o G ?. .
VAW, VW ‘ t
-3 0 ) ) -3 1000 ) ) -3 1500 -3 2000
—Tt 0 ) T T 271 ) 3t 0 L) 2T —T 0 ) T

Figure 5: The evolution of the Wigner function under the influence of the input flux @, for the Sq neuron initialized in the superposition state
[Wo (9, 0)+yy (9,0)]/+/2 at the moments ¢ = 0 (absence of @) (a); t = 1000 (the plateau of @) (b); t = 1500 (the middle of the decreasing branch of
®in) (c); t = 2000 (absence of ¢j,) (d). The remaining parameters are similar to those shown in Figure 3.
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Figure 6: The activation functions of the neuron with / = 2.5 initialized (a) in the ground state, see the black “ 1 ” and orange “ | ” curves; (b) in the first
excited state, see the red “ T ” and gray “ 1 ” curves; (c) in the superposition of the basis states, see the blue “ 1’ and brown “ | ” curves. Input flux pa-
rameters are D = 0.008, A = 4m, ¢y = 500. The symbol “ T ” corresponds to the rise branch of ¢;, = 0—4m, the “ | ” symbol corresponds to the fall

branch of @, = 4m—0. The inserts show the time-dependent evolution of the populations |ck(t)|? of the ground state, k = 0, and the first excited, k = 1,

state of the system.

case, the system ceases to be localized in the initial state, which
is clearly shown in Figure 7 during the evolution of the Wigner
function in the phase space. It can be seen that the system
evolves adiabatically from the ground state until reaches @;, =
27, when a double-well potential profile (Equation 4) is formed.
In this case, the rate of change of the potential exceeds the rate
of state localisation. Due to the tunneling effect, the wave func-
tion is redistributed from the left to the right local minimum of
the potential profile (see Figure 2). Figure 7b,c clearly shows
that the Wigner function has negative values due to the forma-
tion of a superposition state during evolution (see also the insets
in Figure 6 for the population coefficients |c0(t)|2 and |c1(t)|2 for
basis levels). Because of this, the activation function in Figure 6
exhibits oscillations associated with the interference of the wave
functions. These oscillations are more irregular than the ones in

1 W(%P» t) . a

@ 33

0.5

0.5 - ,
=0.5
,]_7t 8

Figure 3 (see the green curve). This is due to the occurrence of
interference phase effects of a larger number of states partici-
pating in the superposition corresponding to the violation of the
adiabaticity condition (Equation 12).

Note that if the rate of the potential changes is less than the rate
of the localised state movement and the adiabaticity condition
(Equation 12) is satisfied, we can obtain the sigmoidal activa-
tion function even in a double-well potential (see Figure 8). In
this case, there is a good match between the forward “ T and
the backward “ | ” characteristics of the Sg neuron.

Activation function of the quantum neuron

We also study the quality of approximation of the neuron acti-
vation function by the sigmoidal function for different parame-

W(o, p, 1)

0

| W(p, p, 1)

- 3

0
% 3

T

Figure 7: Evolution of the Wigner function of the Sq neuron with / = 2.5 initialized in the ground state under the action of the input flux ¢, at the
moments t = 0 (absence of @jn) (a); t = 500 (the middle of the increase of ¢j,) (b); t = 1000 (the plateau of @) (c); t = 2000 (absence of ¢i,) (d). The

input flux parameters are equal to those shown in Figure 6.
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Lout

Figure 8: The activation function of the neuron with / = 2.5 initialised at
t = 0 in the ground state. Here the parameters are D = 0.0002, A = 4m,
and £y = 10000.

ters of the cell (in the framework of the adiabaticity conditions).
The approximation function is:

D

4o P20ntrs 8

G((Pin ) = (16)

where p; are the parameters of the numerical approximation.
Our goal is to compare the ideal activation function o(g;,) and
the activation function of the considered cell i,,(9i,). We use

the square of the standard deviation, SD, for this purpose:

SD = Dis[(c(q’in )~ lout (@in ))2}’

an

where Dis[(...)] means the dispersion of a data set. Analysis of
Figure 6 and Figure 8 allows us to conclude that the parameters
affecting the activation function shape are primarily the rise/fall
rate of the signal D (see Equation 2) and the inductance value /,
which determines the shape of the potential profile. In this
regard, we obtain the plane of parameters SD(/, D), presented in
Figure 9, where the color indicates the value of the square of the
standard deviation from the “ideal sigmoid”. The area with
SD < 0.0001 (area inside the dark zone in Figure 9) corre-
sponds to the formation of the sigmoid activation function of
the required form.

From the analysis of Figure 9, it can be concluded that the
higher the value of the inductance /, the slower the process
of adiabatic switching of the quantum neuron. For super-
conducting circuit parameters I. = 0.35 pA, C =10 fF,
wp = 10! 571, the adiabatic switching time is approx. 5 ns for
[ = 0.1 (see Figure 3, the regime without oscillations) and

approx. 100 ns for / = 2.5 (see Figure 8).

Beilstein J. Nanotechnol. 2022, 13, 653-665.

0.4 0.6 0.81

0.2

Figure 9: The value of the square of the standard deviation, SD, of the
Sq neuron activation function from the mathematical sigmoid (Equa-
tion 16) for different inductance / values and rise/fall rates, D, of the
input flux @in(t). The horizontal axis is in logarithmic scale. At the initial
moment, the system was initialized in the ground state. The parame-
ters of the system and the input flux are as follows: A = 4m, [ =/+1,
lout = 0.1.

Influence of dissipation effects on the

quantum neuron dynamics

In the classical regime, the dissipation mechanism in the neuron
has been considered using the Stewart—-McCumber model [49].
To take into account the dissipation in a quantum system, we
“place” it in a bosonic bath. For further analysis, we use a linear
model of the interaction between the quantum neuron and the
bath:

(18)

. At~
Hint:k(PZ(bi J"bi)’
i

where é;T and Z;l are creation and annihilation operators of the
i-th bosonic mode, and £ is the coupling constant. With an adia-
batic change of the input flux, the S state can be described in
terms of the instantaneous eigenbasis ,(¢,t), see Equation 6,

using a density matrix:

()= P (0:8) [ W (6:2)) (W, (01))-

m,n

19)

Under the Born—-Markov approximation, dissipative dynamics is
described by the generalized master equation for the density
matrix [50]. Furthermore, by keeping only the secular terms and
using the random phase approximation, we reduced it to the
Pauli master equation (we present the results of modeling for
the generalized master equation with and without the secular

approximation in Appendix 3):
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(20)

where the dots denote a differentiation by normalized time, W,,,,
is the transition rate from the state n to m given by the expres-

Wonn ZKK\Vn 0 \Vm>2 1)
-{e(wnm)[ﬁ(mnm)+1J+6(wmn)ﬁ(oamn )}

Here A = (2mgk?)/#? is the renormalized coupling constant, 8 is

the Heaviside step function,

is the Planck distribution, and g is the density of bosonic modes,
which is supposed to be constant. Under adiabatic approxima-
tion, the transition rates W,,,, between the neuron states are
calculated in the instantaneous eigenbasis. Numerical simula-
tions are performed for the temperature of the bosonic thermo-
stat at 7 = 50 mK.

We investigated the relaxation of the excited states for both the
single-well (I < I, Figure 10a,c) and double-well (I > I,

Beilstein J. Nanotechnol. 2022, 13, 653-665.

Figure 10b,d) potential shapes. The key result is the suppres-
sion of the oscillations of the activation function for the neuron
initialized in a superposition of two basic states. The dynamics
of changes in the populations |cx(1)? of the energy levels for this
case is shown in the insets of Figure 10 (see Figure 6 for com-
parison). This relaxation takes the full cycle of switching of the
input flux (@;, =0 <> 4n) due to dissipative processes.

In Figure 10b,c there is an obvious suppression of the oscilla-
tions on the activation function, which were observed due to the
anti-crossing of the energy levels in the double-well potential.
In addition, coherent oscillations on the activation function
of the neuron (see Figure 3 and Figure 6¢) arising during
evolution from the superposition state are also smoothed out.
Previously, these oscillations were associated with the interfer-
ence of the phases of the Sq states. However, the possible
dispersion of the initial phases makes the activation function to
be sigmoidal due to the averaging over random phases, see
Figure 10c,d.

Conclusion

We have shown that an adiabatic superconducting neuron of a
classical perceptron, under certain conditions, retains the
sigmoidal shape of the activation function in the quantum
regime (when the spectrum of allowed energy values is
discrete). Moreover, the sigmoidal transformation of the applied

magnetic flux into the average output current can be obtained

I out |
4

3

k=

1000

A
2000

0
0 1000

2000

6 8 10 12
goill

6 ®,, 8 10 12

Figure 10: The neuron activation function for / = 0.1 (a, ¢) and / = 2.5 (b, d) when the cell is initialized in the first excited level (a, b) and in the super-
position of two basic states (c, d). The input flux parameters are as follows: D = 0.008, A = 4m, t; = 500; the renormalized coupling constant A = 0.005.
The insets present the corresponding populations |cx(t)|2 of the ground state, k = 0, and the first excited, k = 1, energy levels.
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both for single-well and double-well potential energies of the
cell. The influence of the initial quantum state of the neuron on
the shape of the activation function is especially noticeable for
the case of a superposition of basic states. We have also shown
how dissipation suppresses “quantum” oscillations on the acti-
vation function, just as damping suppresses plasma oscillations
in classical Josephson systems. The obtained results pave the
way for a classical perceptron and a control quantum
co-processor (designed for the rapid search of the perceptron
synaptic weights) to work in a single chip in a millikelvin cryo-
genic stage of a cryocooler. For the practical implementation of
such neural networks, we need synapses, which are also based
on adiabatic superconducting logic cells with magnetic repre-
sentation of information [43,45,51]. Fortunately, there are
already such elements based on an inductively shunted two-con-
tact interferometer with the ability to adjust parameters. Howev-
er, their behavior in the quantum mode requires an additional
study.
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Appendix 1
To solve Equation 6, we used the finite difference method [52],
where a continuous wave function p(o) is transferred to a

discrete grid ¢, = d(p,) with a step Ag:

_(\Vn+l +\anl)+(2+vn )\Vn =€, V- (22)

Here we introduce the following notations:
v, =2MAQV, /12
and
e, =2MAQ E/H2.

The boundaries gy = py+1 = 0 for Equation 22 are sufficiently
removed from the region of actual motion of interest, and the
wave functions of localized states are weakly affected by the

introduced restrictions.

Beilstein J. Nanotechnol. 2022, 13, 653-665.

Appendix 2

We have analyzed the evolution process on the basis of the
Cayley algorithm [53]. The evolution operator of the system on
a discrete time grid with a step Af is represented as:

i At
U(At) =e

_I-ifine/2n

— : (23)
[ +iHAt/2h

where 1 is the unit matrix corresponding to the dimensionality
of the Hamiltonian of the system (Equation 5), H, according to

2E,
t— @y t.
J

According to Equation 7, the Schrodinger time-dependent equa-
tion, and hence the dynamics of the system, can be found from
the following equation:

i+1 i+1,j+1 j+1
Vi = Ry TwT 48T (24)
where the auxiliary quantities are defined as
R J+H_ 1
n-1 " j+17
u, +R;
J+l j+l
Sj+1 _ F =5,
n-1 "~ i
J+l
u, +R; (25)

JH _ J J *ud
= _(Wn+1 TV +”nwn)’

_2MAgYY, . 4iM Ag?

u, =-2
K2 hAt

s

with boundary conditions

gl _ g+l
Vo =¥y =0

Appendix 3

We will use only the Born—-Markov approximation and neglect

the Lamb shift. Hence, the generalized master equation [50] for

the density matrix in terms of the instantaneous eigenbasis in

the Schrodinger picture can be written as follows:

E (t)-E (t
pmn =iMpmn _Zpanbama

a,b (26)

_z Pma Wdccn + z (pefWemfh + p_féWenmf )’
c,d e, f
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where the matrix elements W4 are defined by

Wabcd = %<\Va |¢| \Vb><\Vc |¢)| \'/d>

10(ap )7 (@ap )+ 1]+ 0( e, ) 7 (5, )}

@7

It should be noted that for Equation 26 it is necessary that the
ground state and the first excited state are not nearly degenerate
levels throughout the considered time of system evolution.

The generalized master equation with the secular approxima-
tion can be easily obtained from Equation 26 by multiplying the
fourth term with the Kronecker delta symbol §,,, and by
imposing additional conditions on the indices of summations,
that is, b = m, d = n and e = f. Further, keeping only the diago-
nal terms of the density matrix, the Pauli master equation can be
obtained. For all parameters, we have considered that the
secular approximation has a negligibly small effect on the nu-

merical solution of the generalized master equation.

In Figure 11a—d, we present the activation functions obtained by
solving the generalized master equation for different values of
the inductance / and the renormalized coupling constant A.
Initial conditions are the superposition of states, that is,

[wo(®,0)+wy;(9,0)]/ V2. As expected, oscillations arise due to

l()ut

Beilstein J. Nanotechnol. 2022, 13, 653-665.

interference between levels, which decrease with increasing the

coupling constant.

Note that for small [ < l*, and for the neuron initialized either in
the ground state or in the excited state, the solution of the gener-
alized master equation is the same as the solution of the Pauli
master equation.
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