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Abstract
We investigate how the optical gain or loss (characterized by isotropic complex refractive indexes) influence the ideal Kerker scat-
tering of exactly zero backward scattering. It was previously shown that, for non-magnetic homogeneous spheres with incident
plane waves, either gain or loss prohibit ideal Kerker scattering, provided that only electric and magnetic multipoles of a specific
order are present and contributions from other multipoles can all be made precisely zero. Here we reveal that, when two multipoles
of a fixed order are perfectly matched in terms of both phase and magnitude, multipoles of at least the next two orders cannot
possibly be tuned to be all precisely zero or even perfectly matched, and consequently cannot directly produce ideal Kerker scat-
tering. Moreover, we further demonstrate that, when multipoles of different orders are simultaneously taken into consideration, loss
or gain can serve as helpful rather than harmful contributing factors, for the elimination of backward scattering.
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Introduction
The original Kerker scattering of zero backward scattering was
first proposed for homogeneous magnetic spheres with equal
electric permittivity and magnetic permeability ε = μ [1]. This
proposal had not attracted much attention for a long time,
mainly due to the scarcity of magnetic materials, especially at
the high-frequency spectral regimes. In the past decade, thanks
to the explosive developments of metamaterials and metasur-

faces, the underlying core concept of optically induced
magnetism in non-magnetic structures has invigorated and com-
pletely transformed Kerker’s original proposal (see the reviews
[2-4]). The fusion of optically induced magnetism with Kerker
scattering by high-index materials [5] has rendered new
perspectives for photonic studies concerning not only scattering
of individual particles or their finite clusters [6,7], but also of
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extended periodic or aperiodic structures [2-4,8-14]. Moreover,
this significantly broadened concept of Kerker scattering has
rapidly penetrated into other disciplines of photonics, revealing
hidden connections between seemingly unrelated concepts and
demonstrations [15-23].

In the original proposal for homogenous spheres with ε = μ,
electric and magnetic multipoles of all orders are automatically
perfectly matched in terms of both phase and magnitude [24],
leading to ideal Kerker scattering of exactly zero backward scat-
tering [1]. Nevertheless, for demonstrations relying on optically
induced magnetism with non-magnetic structures (μ = 1), it is
rather challenging, if not impossible, to precisely match all
multipoles simultaneously, ending up with only significantly
suppressed but not exactly zero backward scattering [2-4].
Quite recently, Olmos-Trigo et al. revisited the simplest case of
a non-magnetic isotropic and homogeneous sphere with inci-
dent plane waves and concluded that: (i) ideal zero backward
scattering is achievable only for materials without gain or loss
(characterized by real refractive indexes) [25], and (ii) extra
gain or loss inhibit such ideal Kerker scattering. Besides the
proven feasible perfect matching of electric and magnetic multi-
poles of one specific fixed order, the validity of the conclusion
resides on the additional assumption that magnitudes of multi-
poles of all other orders can be simultaneously tuned to be
perfectly zero. For general discussions of optical properties,
such as scattering and absorption cross sections, it is physically
legitimate to take into consideration only those dominant con-
tributing multipole terms and drop other minor ones (such as in
the widely adopted dipole approximation). While for the inves-
tigation into the extreme case of ideal zero backward scattering,
those minor multipole terms cannot be simply discarded unless
they are exactly zero or also perfectly matched in a similar
fashion.

In this work we show that, despite the previously proven
fact that multipoles of a fixed order can be perfectly matched
in the absence of loss or gain [25], the contributions from
multipoles of at least the next two orders cannot be simulta-
neously tuned to be all zero or perfectly matched. In other
words, ideal Kerker scattering of exact zero backward
scattering is not directly achievable through matching a
pair of multipoles of one specific order only. We further
reveal that when multipoles of different orders are all taken
into consideration, loss or gain should be employed rather
than avoided for the elimination of backward scattering.
It is shown that, at the presence of multipoles of various orders,
the absence of backward scattering can be obtained through
tuning the refractive index on the complex plane, breaking the
connection between zero backscattering and helicity conserva-
tion.

Results
Formulas and analysis of ideal Kerker
scattering
For the scattering of incident linearly polarized plane waves
(wavelength λ and angular wavenumber k = 2π/λ) by homoge-
neous non-magnetic spheres (isotropic refractive index m,
radius R, and normalized geometric parameter x = kR), the scat-
tered fields can be expanded into a series of electric and mag-
netic multipoles of order l (l = 1 corresponds to dipoles). They
are characterized, respectively, by the complex Mie coeffi-
cients al and bl [26,27]:

(1)

where αl and βl are complex phase angles (they are real when m
is real). Those phase angles can be obtained through the
following relations [26]:

(2)

Here the prime ′ denotes first-order derivative with respect
to the entire argument in the bracket; Sl(z) = zjl(z) and
Cl(z) = −zyl(z) are Riccati–Bessel functions; jl(z) and yl(z) are
spherical Bessel functions of the first and second kinds.

With al and bl obtained, the total scattering efficiency can be
calculated through [26,27]:

(3)

and the ideal Kerker scattering in terms of backward scattering
efficiency Qb can be expressed as [26,27]:

(4)

Equation 4 has an infinite set of possible solutions, and what is
discussed [25] is actually the following very special scenario:

(5)
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(6)

where l0 is an arbitrary natural number and a pair of multipoles
of order l0 are perfectly matched as shown in Equation 5. The
significant contribution from [25] is to prove rigorously that
Equation 5 has a solution only when m is real, meaning that, at
the presence of loss or gain, multipoles of the same order cannot
be ideally matched. Despite this seminal contribution, there is a
problem that in [25] it has not been discussed whether
Equation 5 and Equation 6 are really compatible. Such discus-
sions concerning compatibility are vitally important, since
Equation 5 will not necessarily lead to ideal Kerker scattering of
precise zero backscattering.

Mismatch among multipoles of three
successive orders
In this section, we aim to prove that Equation 5 and Equation 6
are not exactly compatible, thus proving that Ideal Kerker scat-
tering of exact zero backward scattering is actually inaccessible
through matching multipoles of a specific order only. For all
our following discussions, the obviously trivial scenario of
m = 1 (we assume that the background medium is air of index 1
throughout our study) or R = 0 is excluded. For another special
case of zero index m = 0, the Mie coefficients can be simplified
as (as m→0) [26,27]:

(7)

where , and  is a spherical Hankel func-
tion of the first kind. Since Sl(mx)→0 when m→0, we get a
definite al but indefinite bl (L’Hôpital’s rule will not help to
make bl definite, since the zero term in the numerator and
denominator is the same [28]). So it has been proved that for
m = 0, there are no definite scattering properties for ideally
monochromatic plane waves. Physical investigations can be
implemented only after considering simultaneously the disper-
sion of the index and the spectrum of the incident waves.
Consequently, the zero-index scenario is also excluded in the
following analysis.

It has been rigorously proved that the solutions of Equation 5
satisfy either of the following equations:

(8)

(9)

which do not have a common solution according to the
Brauer–Siegel theorem [29,30]. Similarly, to prove that then
multipoles of all other orders (l ≠ l0) cannot all be perfectly
matched (of which that other multipoles cannot be tuned to be
all zero is merely a special scenario), it is more than sufficient
to prove that there exists one multipole order l1 (l1 ≠ l0) for
which:

(10)

Obviously, Equation 10 ensures that , meaning that
Equation 6 cannot be simultaneously met.

According to the following recurrence relations of
Riccati–Bessel functions [29]:

(11)

(12)

( i )  when  and  :  According  to
Equation 12, we obtain . This together with Equa-
tion 11 leads to . As a result, Equation 10 is satis-
fied at least for l1 = l0 + 1, securing that .

(ii) When  and : Also, according to
Equation 12, we get . Nevertheless, according to
Equation 11,  if the following conditions can be
met:

(13)

Nevertheless, following the same logic, extending the multi-
pole matching to the next order l0 + 2 requires:

(14)

It is quite obvious that Equation 13 and Equation 14 can not be
simultaneously satisfied, that is, mx cannot be both ±(l0 + 1) and
±(l0 + 2), and, thus, multipole mismatch happens at least for
l1 = l0 + 2: .

The arguments above, consistent with a recent study [30],
confirm that when a multipole of a specific order l0 is perfectly
matched in a nontrivial way, Equation 5, the scattering contri-
butions from multipoles of at least the next two successive
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Figure 1: Scattering spectra (both total scattering and the contributions from different multipoles are included) are shown in (a) and (b) for m = 4.1,
and in (d) and (e) for m = 4.29. Here, (b) and (e) are sections of (a) and (b), respectively, which are close to the dipole matching points and enlarged
for clarity. For each scenario, there is a indicated point (xA ≈ 0.6684 and xB ≈ 1.0472) where the dipoles are perfectly matched. (c, f) Dependence of
Qb on Im(m), at xA with fixed Re(m) = 4.1 and at xB with fixed Re(m) = 4.29, respectively. In (c) and (f), two sets of results are shown, considering only
dipoles or all multipoles, respectively.

orders (l0 + 1 and l0 + 2) cannot be simultaneously tuned to be
zero or matched. In other words, perfect matching of multi-
poles of one specific order does not guarantee ideal zero back-
ward scattering.

Effects of gain or loss on ideal Kerker
scattering: non-resonant regimes
We show in Figure 1 two scenarios where the electric and mag-
netic dipoles (ED and MD) are perfectly matched in non-reso-
nant spectra regimes. The scattering efficiency spectra (scat-
tering efficiency Qsca as a function of x = kR) for a homoge-
neous sphere (m = 4.1) are shown in Figure 1a, where both total
scattering and the contributions from different multipoles
(dipoles and electric and magnetic quadrupoles: EQ and MQ)
are included. This is actually the case studied in detail in [25].
The ED and MD are perfectly matched at xA = 0.6684, where

. As argued in the last section, at xA, scattering
from multipoles of higher orders is not exactly zero (see
Figure 1b, which shows an enlarged part of the spectra close to
xA in logarithmic scale), though they are much smaller than
those of dipoles. For explorations of general properties like
scattering and absorption cross sections, it is fine to drop those
quadrupole terms and to keep the dipole terms only. Neverthe-
less, for the study of the extreme case of ideal Kerker scattering,

simply discarding those higher-order terms cannot be justified
and could even lead to inaccurate conclusions.

To verify the claim above, we show in Figure 1c the depen-
dence of the backward scattering efficiency Qb at xA on the
imaginary part of refractive index Im(m); the real part of m is
fixed at Re(m) = 4.1. Im(m) > 0 and Im(m) < 0 correspond to
loss and gain, respectively. Here two sets of spectra are shown,
for which either only dipoles or multipoles of all orders are
taken into consideration. It is clear from Figure 1c that, when
only dipoles are considered, ideal Kerker scattering is achieved
when m is real, and any extra loss or gain would inhibit such
scattering, as is the major conclusion of [25]. In sharp contrast,
when all multipoles are considered, ideal Kerker scattering is
not accessible at the perfect matching point of dipoles anymore.
Moreover, as shown in Figure 1c, extra loss can be employed to
further suppress the backward scattering, serving as a friend
rather than a foe for the Kerker scattering. Another scenario of
perfect dipole matching at xB = 1.0472 for m = 4.29 is summa-
rized in Figure 1d–f, for which the other perfect matching
condition is satisfied, that is S1(mxA) = 0. Here the effects of
higher-order multipoles are even more pronounced (see
Figure 1f) since the magnitudes of dipoles and higher multi-
poles are comparable (see Figure 1e.



Beilstein J. Nanotechnol. 2022, 13, 828–835.

832

Figure 2: Scattering spectra are shown in (a) for m = 5.14 and in (d) for m = 2.83. For each scenario, there is an indicated point (xC ≈ 2.7366 and
xD ≈ 4.4123) where the dipoles are perfectly matched. (b, e) Dependence of Qb on Im(m) at xC with fixed Re(m) = 5.14 and at xD with fixed
Re(m) = 2.83, respectively. (c, f) The 2D angular scattering patterns (in the plane parallel to both polarization and incident directions) at xC with
m = 5.14 and at xD with m = 2.83, respectively. In (b, c) and (e, f) two sets of results are shown, considering only dipoles or all multipoles, respective-
ly.

Effects of gain or loss on ideal Kerker
scattering: resonant regimes
In the last section, we discussed only the perfect dipole
matching at the non-resonant regimes, where not only the back-
ward scattering is suppressed, but also the overall scattering is
small. Such scattering is of very limited significance, since what
is widely required in photonics is suppressed backward scat-
tering accompanied by large total scattering [2-4]. In this
section, we move to the resonant regimes where the dipoles can
be perfectly matched. Two such scenarios are summarized in
Figure 2, where the conditions of S1(mxC) = 0 and 
are satisfied, in Figure 2a–c with xC ≈ 2.7366, m = 5.14, and in
Figure 2d–f with xD ≈ 4.4123, and m = 2.83), respectively. In
Figure 2, besides the scattering spectra (Figure 2a,d) and depen-
dence of Qb on Im(m) (Figure 2b,e), we show also the two-
dimensional (2D) scattering patterns (in the plane parallel to
both the incident and polarization directions of the independent
plane waves) at the dipole matching points (Figure 2c,f).

As indicated by the scattering spectra, the scattering by the
higher-order multipoles is rather strong, which ruins the ideal
Kerker scattering (see Figure 2b,e) and makes the overall
patterns considering all multipoles (solid lines of Figure 2c,f)

contrastingly different from those of matched dipoles only
(dashed lines of Figure 2c,f). Similar to what is shown in
Figure 1, when all multipoles are considered, extra loss can be
employed to further suppress the backward scattering, serving
as a constructive rather than a destructive factor for demonstra-
tions of Kerker scattering.

Kerker scattering without multipole matching
of any specific order
We have confirmed in the last sections, by both mathematical
analysis and numerical calculations, that perfect matching of
multipoles of a specific order does not necessarily produce ideal
Kerker scattering due to non-negligible higher-order multipoles.
Moreover, those higher-order terms would make the extra gain
or loss a constructive factor for further suppression of the back-
ward scattering. Now we come back to Equation 4, the solution
of which does not really require multipole matching of any spe-
cific order (such as those shown in Equation 5 and Equation 6),
but can be obtained through fully destructive interferences
among multipoles of several orders along the backward direc-
tion. Such an effect is also termed as “generalized Kerker
effect”, originating from interferences among multipoles of dif-
ferent orders [4,31-34]. Generally speaking, to obtain zero
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Figure 3: Scattering spectra are shown in (a) for m = 1.1875 + 0.1i (with loss) and in (d) for m = 1.275 − 4.225i (with gain). For each scenario, there is
an indicated point (xE ≈ 1.9591 and xF ≈ 1.7492) where the backward scattering is eliminated, as confirmed in (b) and (e). Dependence of Qb (b, e)
and  (c, f) on Im(m), at xE with fixed Re(m) = 1.1875 and at xF with fixed Re(m) = 1.275.

backward scattering with complete destructive interferences
among multipoles, at least two multipoles of opposite parities
are needed. This could be a pair of multipoles of the same order
(such as ED and MD), or two multipoles of different orders
(such as ED and EQ, or MD and MQ), or more than two multi-
poles that are not of the same parity [4,31]. For further confir-
mation, we show two such scenarios with loss or gain in
Figure 3, where Kerker scattering is observed, in Figure 3a,b
(xE ≈ 1.9591, m = 1.1875 + 0.1i), and in Figure 3d,e
(xF ≈ 1.7492 for m = 1.275 − 4.225i), respectively. Figure 3a,b
shows that there is no non-trivial perfect multipole matching
(al = bl ≠ 0) at the indicated positions, despite which the Kerker
scattering can still be achieved (see Figure 3b,e at xE and xF).
Moreover, the dependence of Qb on Im(m) (Figure 3b,e) can
confirm that the selected loss or gain is vitally important for
such achievement, as a little detuning from them would imme-
diately ruin the Kerker scattering. For both scenarios, it is quite
obvious that to fix the index to be real is actually harmful for
the suppression of backward scattering.

It has been rigorously proved that n-fold (n ≥ 3) rotation
symmetry together with helicity conservation would automati-
cally guarantee ideal Kerker scattering of zero backward scat-
tering [22,35]. For homogenous sphere scattering with incident
plane waves, the rotation symmetry is secured (n = ∞) and the

helicity conservation requires the multipole matching of all
orders. Consequently, Kerker scattering obtained through
perfect matching of multipoles at each order are inextricably
connected through helicity conservation, as is confirmed in
[25]. Nevertheless, we have shown in the last section that
Kerker scattering is also achievable without multipole matching
of any specific order, for which it is expected that the connec-
tion between Kerker scattering and helicity conservation would
be broken. To confirm this, we further show the dependence of
the helicity conservation factor  on Im(m) in Figure 3c,f. Here

 is defined as [25,36]:

(15)

Here  = 1 corresponds to ideal helicity conservation, which
means that for incident circularly polarized plane waves, the
waves scattered along all directions are also circularly polar-
ized of the same handedness (including the special case of zero
scattering) [17,22,37,38]. A comparison between Figure 3c,f
and Figure 3b,e can confirm that there is no connection be-
tween the Kerker scattering and helicity conservation, since 
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is far from unity at the indicated Kerker scattering points
(  = 0.857,  = 0.2115). In other words, rotation symmetry
and helicity conservation lead to zero backward scattering,
while rotation symmetry and zero backward scattering does not
necessarily imply helicity conservation.

Discussion
There are several significant points worth emphasizing at the
end: (i) For numerical demonstrations of perfect multipole
matching, we discuss only dipoles while the principles revealed
are applicable for multipoles of any order. (ii) In this study, we
only discuss Kerker scattering of zero backward scattering (first
Kerker scattering). For the second Kerker scattering of zero
forward scattering, despite the inevitable involvement of gain
materials as required by optical theorem, multipoles of various
order rather than a specific order should be taken into consider-
ations simultaneously, as has been implemented in this work.
(iii) Is ideal Kerker scattering of exact zero backward scattering
achievable, in a rigorously mathematical sense, with homoge-
nous non-magnetic spheres? The answer is: We do not know. It
is well known that for arbitrary algebraic equations of order L,

for which L is a finite natural number and cl are complex con-
stant coefficients, the fundamental theorem of algebra secures
that there is at least one solution on the complex x-plane [28].
Nevertheless, Equation 4 is a transcendental rather than an alge-
braic equation, of which the existence of exact solution on the
complex plane is not definite. Such a transcendental equation
can be only tackled through numerical analysis and, thus, nu-
merical errors make it impossible to decide if the Kerker scat-
tering demonstrated in Figure 3 is ideal or not in a mathemat-
ical sense. (iv) If an exact solution of Equation 4 exists, the
chances of this solution being complex are much higher than it
being purely real (real axes cover a tiny part of the complex
plane). If an exact solution does not exist, the backward scat-
tering is minimized more probably at complex arguments rather
than at purely real ones. As a result, gain or loss are definitely
helpful rather than harmful for the realizations of ideal Kerker
scattering or suppression of backward scattering. (v) Discussing
the exact solution of Equation 4 (and thus ideal Kerker scat-
tering) is interesting and meaningful only mathematically. From
a physical perspective, such an exploration is of very little
significance, if not of no significance at all. This is because for
realistic observations, there is no absolute boundary between
exactly zero and approximately zero, which highly depends on
the resolutions of different equipments. Moreover, when the
scattering intensity gets smaller and smaller, the optical regime
we study will shift from wave optics to quantum optics, where

the quantum fluctuations would play a non-negligible role [39].
Then wave optics and, thus, Equation 4 itself breaks down and
it becomes meaningless to discuss its exact solution.

Conclusion
We have proved that perfectly matching electric and magnetic
multipoles of a specific order do not necessarily produce ideal
Kerker scattering of exact zero backward scattering. This is
because no matter how small the contributions from other
multipoles are, they can never be made to be all zero or
perfectly matched. In other words, to obtain zero backward
scattering, we cannot just consider multipoles of a specific
order. Instead we need to consider all contributing ones that are
not exactly zero. It is further demonstrated that when multi-
poles of various order are simultaneously considered, loss or
gain can be employed for suppression of backward scattering,
serving as beneficial rather than detrimental contributions for
the realization of ideal Kerker scattering. When Kerker scat-
tering is achieved through the destructive interference among
multipoles of several orders in the backward direction, rather
than perfect multipole matching of each order, it is not synony-
mous with helicity conservation any more.
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