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Abstract
We demonstrate the manifestations of nonlinear features in magnetic dynamics and I–V characteristics of a φ0 Josephson junction in
the ferromagnetic resonance region. We show that at small values of the system parameters damping, spin–orbit interaction, and
Josephson-to-magnetic energy ratio, the magnetic dynamics is reduced to the dynamics of a scalar Duffing oscillator driven by the
Josephson oscillations. The role of the increasing superconducting current in the resonance region is clarified. Shifting of the ferro-
magnetic resonant frequency and the reversal of its damping dependence due to nonlinearity are demonstrated by the full
Landau–Lifshitz–Gilbert–Josephson system of equations and in its different approximations. Finally, we demonstrate the negative
differential resistance in the I–V characteristics and its correlation with the fold-over effect.
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Introduction
The coupling of the superconducting phase difference with the
magnetic moment of a ferromagnet in a φ0 junction leads to a
number of unique features important for superconducting spin-

tronics and modern information technology [1-5]. It allows one
to control the magnetization precession by the superconducting
current and affects the current–voltage (I–V) characteristics by
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magnetic dynamics in the ferromagnet, in particular, to create a
DC component in the superconducting current [6-8]. A remark-
able manifestation of this coupling is the possibility to stimu-
late a magnetization reversal in the ferromagnetic layer by
applying a current pulse through the φ0 junction [3,9-13].

There are two features of Josephson junctions that come into
play in our study. The first one is the broken inversion
symmetry in the weak link of the Josephson junction when the
link is magnetic, which introduces an extra phase in the cur-
rent–phase relation, preventing it from being antisymmetric.
Such Josephson junctions are named φ0 junctions [1], and ex-
amples, such as MnSi and FeGe, exist. The second one is the
nonlinear property of the system, which makes for an anom-
alous resonance behavior [14].

We couple such a Josephson junction to the model that de-
scribes the magnetodynamics in thin films or heterostructures to
form the Landau–Lifshitz–Gilbert–Josephson model (LLGJ)
[14-16]. It is shown that, for a particular set of parameters, the
coupled equations reduce to the dynamics of a Duffing oscil-
lator [14]. The cubic nonlinearity in this oscillator describes
several effects in other models, too [17]. One example are the
resonance effects in the antiferromagnetic bimeron in response
to an alternating current, which has applications in the detec-
tion of weak signals [15,18,19].

The Gilbert damping term is added phenomenologically to the
Landau–Lifshitz model to reproduce the damping of the
precessing magnetic moment. Gilbert damping is also impor-
tant in modeling other resonance features, as its temperature de-
pendence affects them [20,21], and, in turn, in the supercon-
ducting correlations that affect it [22]. The magnetization
precession in an ultrathin Co20Fe60B20 layer stimulated by
microwave voltage under a large angle requires modeling by a
Duffing oscillator, too. This is aided by the so-called fold-over
features, again due to nonlinearity [16,23,24].

The consequences of the nonlinear nature of the coupled set of
the LLGJ system of equations in the weak coupling regime was
demonstrated recently in [14]. We showed that, in this regime
where the Josephson energy is small compared to the magnetic
energy, the φ0 Josephson junction is equivalently described by a
scalar nonlinear Duffing equation. An anomalous dependence
of the ferromagnetic resonant frequency (FMR) on the increase
of the Gilbert damping was found. We showed that the damped
precession of the magnetic moment is dynamically driven by
the Josephson supercurrent and the resonance behavior is given
by the Duffing spring. The obtained results were based on nu-
merical simulations. The role of the DC superconducting cur-
rent and the state with negative differential resistance (NDR) in

the I–V characteristics were not clarified. Also, the effects of the
Josephson-to-magnetic energy ratio and the spin–orbit coupling
(SOC) were not investigated at that time.

In the present paper, we study the nonlinear aspects of the mag-
netic dynamics and I–V characteristics of the φ0 Josephson
junction in the ferromagnetic resonance region. We compare
description of the anomalous damping dependence (ADD)
exhibited by full LLGJ system of equations with approximated
equations and demonstrate the Duffing oscillator features in the
small parameter regime. Effects of the Josephson-to-magnetic
energy ratio, and the spin–orbit coupling on the ADD, referred
to earlier as the α-effect [14] are demonstrated. By deriving the
formula that couples the DC superconducting current and
maximal amplitude of magnetization we discuss the correlation
of superconducting current and the negative differential resis-
tance in the resonance region. Finally, we discuss the experi-
mentally important features by emphasizing the details of the
magnetization dynamics and the I–V characteristics of the φ0
junction.

We have shown that, in the limit of small values for the system
parameters Josephson-to-magnetic energy ratio G, damping α,
and spin–orbit coupling r, the dynamics is given by a Duffing
spring [14]. We focus on the shift in resonance and the effects
of nonlinear interactions. We give semi-analytic models to
explain our results in various limits.

The paper is organized as follows. In section “Models and
Method” we outline the theoretical model and discuss the
methods of calculations. The ferromagnetic resonance and the
effect of the system parameters on the anomalous damping de-
pendence are considered in subsection A of section “Results
and Discussion”. In subsection B we present an analytical de-
scription of the dynamics and I–V characteristics of the φ0 junc-
tion at small system parameters. The manifestation of negative
differential resistance in the I–V characteristics through the
fold-over effect is discussed. We compare the description of the
anomalous damping dependence by the full LLGJ system of
equations with approximated equations and show how the
Duffing oscillator captures the nonlinearities in the regime of
parameters with small values in subsection C. We present
results on the critical damping and derive a formula that couples
the DC superconducting current and the maximal amplitude of
magnetization in the ferromagnetic layer. The section “Conclu-
sion” concludes the paper.

Models and Method
The following section is closely related to our work in [13]. The
φ0 junction [6,12,25] that we study is shown in Figure 1. The
current–phase relation in the φ0 junction has the form
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Is = Icsin(φ − φ0), where φ0 = rMy/M0, My denotes the compo-
nent of magnetic moment in the  direction and M0 is the
modulus of the magnetization. The physics of φ0 Josephson
juncton is determined by a system of equations, which consists
of the Landau–Lifshitz–Gilbert (LLG) model, the resistively
capacitively shunted junction (RCSJ) model expression with the
current–phase relation (Is) described above, and the Josephson
relation between phase difference and voltage.

Figure 1: Schematic view of a SFS φ0 Josephson junction. The
external current is applied along the x direction. The ferromagnetic
easy axis is along z direction.

The dynamics of the magnetic moment M is described by the
LLG equation [26]:

(1)

where M is the magnetization vector, γ is the gyromagnetic
relation, Heff is the effective magnetic field, α is the Gilbert
damping parameter, and M0 = |M|.

In order to find the expression for the effective magnetic field
we have used the model developed in [6], where it is assumed
that the gradient of the spin–orbit potential is along the easy
axis of magnetization taken to be along . In this case the total
energy of the system can be written as

(2)

where φ is the phase difference between the superconductors
across the junction, I is the external current, Es(φ,φ0) = EJ[1 −
cos(φ − φ0)], and EJ = Φ0Ic/2π is the Josephson energy. Here Φ0
is the flux quantum, Ic is the critical current, r = lυso/υF, l = 4hL/
ℏυF, L is the length of the ferromagnetic (F) layer, h is the

exchange field of the F layer, , the pa-
rameter υso/υF characterizes a relative strength of spin–orbit
interaction, K is the anisotropic constant, and  is the volume
of the F layer.

The effective field for LLG equation is determined by

(3)

where ΩF = γK/M0 is the frequency of the ferromagnetic
resonance and  determines the ratio between
Josephson energy and magnetic energy.

In order to describe the full dynamics of the φ0 junction the
LLG equations should be supplemented by the equation for the
phase difference φ, that is, the equations of the RCSJ model for
bias current and the Josephson relation for voltage. According
to the extended RCSJ model, which takes into account deriva-
tive of φ0 phase shift, the current flowing through the system in
underdamped case is determined by

(4)

where I is the bias current and C and R are capacitance and
resistance of the Josephson junction, respectively. The
Josephson relation for the voltage is given by

(5)

We note that, in the framework of the RCSJ model, the dis-
placement current is proportional to the first derivative of the
voltage (or the second derivative of the phase difference). The
magnetization dynamics plays the role of an external force, and
the first order derivative of φ0 is a source of an external current
in the JJ. This was demonstrated in [25,27], where the authors
included the first derivative of φ0 as the source of the electro-
motive force. The voltage is determined by the phase differ-
ence and does not depend on φ0. From this point of view, in the
framework of the RCSJ model, the external current source
cannot modify the expression for the displacement current. This
is why we do not include the second derivative of φ0 in our
model.
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Using Equation 1, Equation 3, Equation 4, and Equation 5 we
can write a system of equations, in normalised variables, that
describes the dynamics of the φ0 junction:

(6)

where mx ,y , z  = Mx ,y , z /M0  and satisfy the constraint
 and βc = 2eIcCR2/ℏ is the McCumber pa-

rameter. In order to use the same time scale in the LLG and
RCSJ equations, in this system of equations we have normal-
ized time to  where  and ωF = ΩF/ωc is the
normalized frequency of ferromagnetic resonance ΩF = γK/M0.
The bias current is normalized to the critical current Ic and the
voltage V is normalized to Vc = IcR. The system in Equation 6 is
solved numerically using the fourth-order Runge–Kutta method
[14].

Results and Discussion
A. Effect of system parameters on the anom-
alous damping dependence
ADD of the FMR frequency with increasing α was discussed in
[14]. It was found that the resonance curves demonstrate fea-
tures of a Duffing oscillator, reflecting the nonlinear nature of
the LLGJ system of equations. There is a critical damping value
at which anomalous dependence comes into play. This critical
value depends on the system parameters. Here, we present the
details of such a transformation from usual to anomalous depen-
dence with variations in the spin–orbit coupling and the
Josephson-to-magnetic energy ratio.

To investigate the effect of damping, we calculate the maximal
amplitude of the magnetization component my taken at each
value of the bias current based on the LLGJ system of equa-
tions (Equation 6). In Figure 2 we show the voltage depen-

dence of the maximal amplitude  in the ferromagnetic
resonance region at different damping parameters and small
values of Josephson-to-magnetic energy ratio, G = 0.05, and
spin–orbit coupling, r = 0.05. The ferromagnetic resonance
curves exhibit the different forms. An increase in damping
shows a nonuniform change in the resonant frequency: It ap-
proaches ωF instead of moving away with increase in α. We em-
phasize that this happens at small G and r. We consider that
such behavior can be explained by the nonlinear nature of the
LLGJ system of equations. There is a manifestation of subhar-
monics of the FMR in Figure 2 at V = 0.25, 0.167, and 0.125.

Figure 2: Maximal amplitude of magnetization my-component at each
value of voltage along the I–V characteristics of the φ0 junction in the
ferromagnetic resonance region for different α. The inset enlarges the
main maximum. Parameters: βc = 25, G = 0.05, r = 0.05, and ωF = 0.5.

We usually expect the resonance peak to move away from
resonance as α increases. Figure 2 shows that this normal effect
is accompanied with an anomalous behavior, as can be seen in
the inset in this figure, where the resonance peak approaches ωF
as α increases [14].

The manifestation of FMR in the I–V characteristics of the φ0
junction at three values of the damping parameter is demon-
strated in Figure 3. A strong deviation of the I–V curve is
observing at α = 0.01, which is a characteristic value for many
magnetic materials. This fact indicates that ADD can be ob-
served experimentally by measuring the I–V characteristics in
wide interval of the damping parameter.
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Figure 4: (a) Demonstration of ADD at different values of SOC parameter r at G = 0.05. Numbers indicate: 1 – r = 0.05; 2 – r = 0.1; 3 – r = 0.5; Arrows
show critical α value, corresponded to the reversal in the α dependence. (b) Demonstration of ADD at different values of the Josephson-to-magnetic
energy ratio G at r = 0.05. Numbers indicate: 1 – G = 0.01; 2 – G = 0.1; 3 – G = 1.

Figure 3: Part of the I–V characteristics of the φ0 junction at G = 0.05,
r = 0.05, and different values of Gilbert damping. The numbers show
the α value. The inset shows the total I–V characteristics and the arrow
indicates the resonance region.

Interesting features of ADD appear through a variation of
spin–orbit coupling. As it was demonstrated in [28], an increase
in SOC leads to an essential change in I–V characteristics and
magnetization precession in the ferromagnetic resonance
region. The nonlinearity goes stronger and a state with negative
differential resistance appears at large SOC.

Figure 4a demonstrates results of numerical simulations of the
 dependence on α at different values of the SOC parame-

ter r.

It shows two specific features of ADD. First, with an increase in
r, the critical value of Vpeak decreases (the curve moves away
from ωF). The second important feature is an increase of αcrit,
which is indicated by arrows in the figure.

Another model parameter that affects the phenomenon dis-
cussed in the present paper is the ratio G between Josephson
energy and magnetic energy. Figure 4b demonstrates the results
of numerical simulations of the  dependence on α at dif-
ferent values of G.

Similar to the effect of r, increasing G also causes the value of
αcrit to increase. By changing the volume of the ferromagnetic
layer, the ferromagnetic energy and, consequently, the value of
G can be changed [6]. For small values of G, that is, a situation
where the magnetic energy is much larger than the Josephson
energy, the magnetic layer receives less energy, and its ampli-
tude decreases in the y direction. Also, the maximum value of
the oscillation frequency is closer to the magnetic frequency ωF.

B. Dynamics and I–V characteristics of the φ0
junction at small values of system
parameters
As it was discussed in [6,29,30], in the case of G, r and α ≪ 1,
and mz ≈ 1, first three equations of the system in Equation 6 can
be simplified. Taking into account φ = ωJt and neglecting
quadratic terms of mx and my, we get
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(7)

This system of equations can be written as the second-order
differential equation with respect to my,

(8)

The corresponding solution for my has the form

(9)

where

(10)

and

(11)

with Ω± = (ωJ ± ωF)2 + (αωJ)2 (see [6] and the corresponding
erratum [31]).

When the Josephson frequency ωJ is approaching the ferromag-
netic frequency ωF, my exhibits damped ferromagnetic
resonance. The differential resistance in the resonance region
decreases, which is manifested in the I–V characteristics as a
resonance branch [7].

Taking into account rmy ≪ 1, we rewrite the expression for the
superconducting current as

(12)

Using Equation 9 we obtain

(13)

where

(14)

This superconducting current explains the appearance of the
resonance branch in the I–V characteristics. The generated cur-
rent I0 can be expressed through the amplitude of my and the
SOI parameter r,

(15)

with (ωJ) being the frequency response of my.

At small model parameters α ≪ Gr ≪ 1 of a superconductor-
ferromagnet-superconductor (SFS) φ0 Josephson junction,
states with a negative differential resistance appear in the I–V
characteristics in the FMR region. Due to the nonlinearity, the
resonance peak is asymmetric. An increase of the nonlinearity
leads to bistability (fold-over effect). The question appears if
the states with a negative differential resistance are the origin of
the fold-over and ADD. In order to clarify this question, we
show in Figure 5 a part of the I–V characteristics of the φ0 junc-
tion together with the I–V characteristics of a superconductor-
insulator-superconductor (SIS) junction in the ferromagnetic
resonance region and the numerically calculated supercon-
ducting current through the φ0 junction. The total I–V character-
istics are demonstrated in the inset to this figure.

Figure 5: I–V characteristics of φ0 and SIS junctions and calculated
average superconducting current through the φ0 junction.

We see the correlation of the fold-over effect in the supercon-
ducting current (blue) with the NDR part of the I–V curve. The
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peak in the superconducting current and the minimum of the
I–V curve are at the same voltage value. So, both effects reflect
the nonlinear features of the ferromagnetic resonance in the φ0
junction. However, in contrast to the fold-over and ADD
effects, which begin to appear at relatively small deviations
from the linear case, the nonlinearity in case of the NDR plays a
more essential role.

We note that, in the resonance region for the considered limit of
model parameters, the my amplitude is coupled to the value of
the superconducting current (see Equation 15). We stress the
importance of the performed analysis demonstrating the analyti-
cal coupling of time-independent superconducting current and
magnetization, reflecting the Duffing oscillator features of the
φ0 junction.

As it is well known, the states with negative differential resis-
tance appear in the I–V characteristics of Josephson structures
in different physical situations. In particular, nonlinear super-
conducting structures being driven far from equilibrium exhibit
NDR states [32]. The NDR states plays an essential role in ap-
plications related to terahertz radiation emission [33]. A
detailed explanation of the different types of negative differen-
tial resistance in Josephson junctions (i.e., N-shaped and
S-shaped) is introduced in [34]. The authors emphasize that the
nonlinear behavior of the Josephson junction plays a key role in
the NDR feature. In our case, the NDR states appear as a result
of the nonlinearity of the system at small values of φ0 junction
parameters, such as SOC, ratio between Josephson energy and
magnetic energy, and Gilbert damping. We demonstrate
these effects here by presenting results of detailed investiga-
tions of the NDR state at different system parameters and
discuss the possibility of their control near the ferromagnetic
resonance.

Figure 6 shows the effect of the spin–orbit coupling on the I–V
characteristics at G = 0.05 and α = 0.01. We see the NDR fea-
ture, which is getting more pronounced with an increase in r. A
further increase in r leads to a jump down in voltage and then
practically linear growth of the I–V characteristics.

An interesting question concerns the effect of Gilbert damping.
Results of I–V characteristics simulations in the resonance
region in a certain range of the damping parameter α at
G = 0.05 and r = 0.13 are shown in Figure 7a. In this case, the
most pronounced characteristic appears at α = 0.01. At G = 0.05
and r = 0.13, the range of α with pronounced NDR features is
0.01 ≤ α < 0.014.

The maximal amplitude  as a function of the voltage is
shown in Figure 7b. Based on the results presented in Figure 7a

Figure 6: Enlarged parts of the I–V curves, in the resonance region at
different values of the SOC parameter r, at α = 0.01 and G = 0.05. The
numbers indicate the increase of r from 0.09 to 0.15 with an increment
of 0.01. The inset shows the total I–V characteristics ar r = 0.15.

and Figure 7b, we came to the important conclusion that the
fold-over effect (bistability) and the NDR state have strong
correlations and have the same origin related to the nonlinearity
at small system parameters.

However, the anomalous damping dependence does not show a
one-to-one correlation with either negative differential resis-
tance or fold-over effect. The resonance peak positions of 
in bias current Ipeak and in voltage Vpeak as functions of α are
demonstrated in Figure 7c. According to our results, we can
divide the α interval into two regions (see Figure 7c). Region I
includes the values of α where the NDR feature is present,
while in region II it disappears. In region II the fold-over effect
(bistability) disappears as well, but ADD is realized.

C. Duffing oscillator features of the φ0
junction and critical damping
The system in Equation 6 is nonlinear and very complex.
Hence, in order to provide an analytical study of dynamics of
the φ0 junction, we need to derive an approximated equation for
some limited values of model parameters. In [14], it was shown
that the resonance curves demonstrate features of a Duffing
oscillator, reflecting the nonlinear nature of the LLGJ system of
equations. In this section, we present an analytical approach to
describe the nonlinear dynamics of the φ0 junction and compare
analytical results obtained from am approximated Duffing equa-
tion with numerical simulations of the total system in
Equation 6. We show that in the limit of α ≪ G and r ≪ 1, we
arrive at the Duffing oscillator. We start with the first three
equations of Equation 6 for the magnetization components:
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Figure 7: (a) Enlarged parts of the I–V curves at different values of α. (b) Voltage dependence of  at different α. (c) α-Dependence of the
resonance curve maximum in current (Ipeak) and voltage (Vpeak). The numbers indicate the value of α from 0.01 to 0.018 in (a) and from 0.01 to 0.02
in (b) by an increment 0.001. Results were obtained at r = 0.13 and G = 0.05.

(16)

Simplifying this system of equations by the same procedure as
it was done in [14], we can write equation for my as

(17)

Finally, by neglecting the α2 and α4 terms, which are much
smaller than 1, we come to the well-known Duffing equation,

(18)

In the range of small parameter values, this Duffing equation
can describe the dynamics of my. We will have the full
dynamics once we consider the coupling with the Josephson
equation,

(19)

The system of Equation 18 and Equation 19 can replace the
LLGJ equations in the limit of G, r ≪ 1 and G, r ≪ α.

Taking into account φ = ωJt we can write the analytically ob-
tained frequency response for Equation 18,
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(20)

where ω = ωJ/ωF. From Equation 20 we get

(21)

This equation allows one to determine analytically the frequen-
cy dependence of the  amplitude. To find it, we solve
Equation 21 by the Newton method. Results of the analytical
calculations (blue dots), corresponding to Equation 21, and the
numerical solution (red dots), corresponding to the full system
in Equation 6, are given in Figure 8.

Figure 8: Numerically (red curve) and analytically (blue curve) calcu-
lated amplitude dependence of my.

We can see that they are close to each other, which proves the
correctness of the chosen approximation. Both curves demon-
strate an asymmetric resonance peak, which is common for a
Duffing oscillator. When the role of the cubic term is getting
larger, we observe a bistability of the resonance curve, which is
usually called a fold-over effect. Note that the fold-over effect
can be also achieved by decreasing the damping. This means
that, by decreasing the dissipative term in Equation 18, we can
increase the influence of the cubic term in this equation.

The comparison of analytically and numerically calculated
superconducting currents as a function of the Josephson fre-
quency is demonstrated in Figure 9. We note that in our normal-
ization V = ωJ.

Figure 9: Numerically calculated superconducting current for SFS
junction (plot 1) and analytical I0 (plot 2) and superconducting current
for SIS junction (plot 3).

We can see the manifestation of the asymmetric resonance peak
in the frequency dependence of the superconducting current. So,
the approximated system in Equation 7 reflects one of the main
features of a Duffing oscillator.

Figure 10 compares the anomalous damping dependence of the
resonance peak of (V) calculated numerically according to
the full LLGJ system in Equation 6 with the one calculated
numerically according to the generalized Duffing model (Equa-
tion 17 and Equation 19). We see that in the damping parame-
ter interval [0.001–0.2] the agreement of the dependences is
sufficiently good.

Using Equation 18 with φ = ωJt, we can find (see Supporting
Information File 1) a relation between the position of the
resonance peak in the (V) dependence and the damping,

(22)

where  determines the position of the resonance
peak.

Equation 22 allows one to find the formula for the critical
damping αcrit, which is an important parameter determining the
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Figure 10: The dependence of the resonance maximum of (V)
on α in the damping parameter interval [0.001–0.12]. Green squares
show results calculated numerically according to the full system in
Equation 6, blue circles show results calculated numerically according
to the generalized Duffing and Josephson equations (Equation 17 and
Equation 19). The dashed line connects the symbols to guide the eyes.
The solid line show the analytical dependence on α calculated accord-
ing to Equation 22. All calculations have been carried out with βc = 25,
G = 0.05, r = 0.05, and ωF = 0.5.

reversal point in damping dependence of the resonance peak in
(V).

Taking into account Equation 22 we can write the equation
regarding Gr/(4α) (see Supporting Information File 1),

(23)

Using the approximation 10  ≪ 1 and  ≪ 1, it gives
(see Supporting Information File 1)

(24)

Figure 11 presents a comparison of numerical and analytical
results for αcrit as a function of Gr (Table 1).

There is a good agreement between numerical and analytical
results of the calculations for small products of Josephson-to-
magnetic energy ratio and spin–orbit interaction.

Figure 11: Numerical calculations according to Equation 6 (squares),
analytical calculations according to Equation 23 (solid line), and ap-
proximated analytical calculations according to Equation 24 (dashed
line).

Table 1: A comparison between the numerical and analytical values of
αcrit at different values of G and r.

G r Gr αcrit, numerical αcrit, analytical

0.01 0.05 0.0005 0.0100 0.0123
0.05 0.05 0.0025 0.0300 0.0276
0.05 0.10 0.0050 0.0400 0.0391
0.05 0.30 0.0150 0.0700 0.0677
0.05 0.50 0.0250 0.0900 0.0874
0.10 0.05 0.0050 0.0391 0.0391
0.60 0.05 0.0300 0.0950 0.0958
0.70 0.05 0.0350 0.1000 0.1035
1.00 0.05 0.0500 0.1200 0.1237

Conclusion
The understanding of the nonlinear features of magnetization
dynamics in superconductor–ferromagnet–superconductor
Josephson junctions and their manifestation in the I–V charac-
teristics has implications for superconductor spintronics and
modern information technology. In φ0 junctions, the nonlinear
features can affect the control of magnetization precession by
the superconducting current and external electromagnetic radia-
tion [28].

Here, using numerical and analytic approaches, we have
demonstrated that at small values of the system parameters
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damping, spin–orbit interaction, and Josephson-to-magnetic
energy ratio in φ0 junctions, magnetic dynamics is reduced to
the dynamics of the scalar Duffing oscillator driven by the
Josephson oscillations. We have clarified the role of the increas-
ing superconducting current in the resonance region leading to
the fold-over effect in the ferromagnet magnetization. We have
demonstrated the parameter dependence of the anomalous ferro-
magnetic resonant shifting and the anomalous damping depen-
dence due to the nonlinearity of the full LLGJ system of equa-
tions and its different approximations. We have derived an ana-
lytical expression for critical damping value. Also, we demon-
strated the appearance of negative differential resistance in the
I–V characteristics and the correlation with the occurrence of
the fold-over effect in the magnetization of ferromagnet.

We have stressed that the manifestation of negative differential
resistance is related to the nonlinear features of the system
[34,35]. It was demonstrated that in the case of small model pa-
rameter values, the equation for the magnetic subsystem takes
the form of the Duffing equation where the nonlinearity mani-
fest itself as the cubic term. We have shown that the appear-
ance of negative differential resistance in the I–V curve is
related to the appearance of the fold-over effect in the –V
curve.

We believe that experimentally measured I–V characteristics of
φ0 junctions with the manifestations discussed in detail here,
would allow for close investigations of its nonlinear features
important for superconductor electronics and spintronics.
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