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We elucidate that guided modes supported by a regular photonic crystal slab structure composed of a square lattice of air holes in a
silicon slab will transition into quasi-guided (leaky) modes when the radius of every second column of air holes is changed slightly.
This intentional geometric perturbation will lead to a doubling of the period in one direction and the corresponding shrinkage of the
first Brillouin zone. Because of the translational symmetry in the k-space, leaky waves inheriting the spatial dispersion of the orig-
inal guided modes, which do not interact with external radiation, will appear with the dispersion curves above the light cone. Our
results show that ultrahigh Q-factor resonances with large operating bandwidth can be achieved. Interestingly, the perturbation in
only one direction of the photonic lattice will lead to an in-plane wave number-dependent resonance characteristic in both direc-
tions. Our numerical results demonstrate a local enhancement of the electric field magnitude by the order of 102, which is even
more significant than those in most plasmonic structures. These quasi-guided modes with superior properties will provide a new
platform for efficient light-matter interactions.

Introduction

Photonic resonances with the possibility of free-space excita-
tion (i.e., leaky modes) and large local electromagnetic field en-
hancement are central for the manipulation of light-matter
interactions. Optical resonators of various forms have been
exploited for this purpose. What follows are a few representa-
tive examples investigated in the last several decades: Photonic

crystal cavities are realized when small disorders or defects are

introduced into large-scale periodic structures [1]. Extremely
high Q-factors can be achieved thanks to the bandgap associat-
ed with the periodic structure, which prevents the leakage of ra-
diation into the surrounding environment. Whispering gallery
modes supported by dielectric spheres or suspended disks made
of high-index materials are another example of resonances to

provide ultrahigh Q-factors [2]. However, above structures are
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still bulky. For example, the photonic crystal cavities need the
surrounding periods to provide the bandgap, which is not favor-
able for nanoscale applications. Plasmonic nanoantennas [3], al-
though with relatively low Q-factors resulting from material
dissipation, still provide a large level of field enhancement due
to the deep-subwavelength level of mode confinement. As new
alternatives to plasmonic nanostructures, all-dielectric nano-
structures supporting Mie resonances [4] and quasi-bound state
in the continuum (QBIC) modes [5] have attracted significant
attention in nanophotonic research, with the latter proposed to
address the problem of radiation losses associated with the
former. A large variety of novel applications benefiting from
such optical resonances have been demonstrated in all aspects
of light-matter interactions, ranging from optical generation [6],
propagation [7], nonlinear processes [8] to signal detection [9]
and collection, to name a few. Although QBIC resonances in
all-dielectric nanostructures have become a popular and main-
stream approach to enhance light—matter interactions, as deriva-
tives of ideal BIC resonances, which are associated with isolat-
ed or discrete points of high symmetry in the w—k space [10],
they still suffer from very limited operating bandwidth. As a
result, the QBIC resonances are not suitable for many impor-
tant optical applications where multiple or spectrally tunable
inputs are required simultaneously. Consequently, new mecha-
nisms are still explored to realize novel photonic components
with additional advantages besides a high Q-factor. These are,
for example, phase gradient metasurfaces and spatial beam
splitters [11], metasurfaces that produce narrow-band spatially
tailored wave fronts [12], and zigzag arrays of dielectric disks
with ultranarrow bandwidth resonances over a large spectral
band [13]. Some new attempts to engineer the radiation envi-
ronment to achieve so-called lines of BICs have emerged quite
recently [14]. But the idea and reported results require very
complicated geometries [15], which are challenging to fabri-
cate.

Results and Discussion

In this work, we propose a fundamentally different approach to
realize optical leaky resonances that can combine all the advan-
tages of the above resonances, that is, ultrahigh Q-factors, huge
local electric enhancement, and intermediate mode volume,
while providing a large operation bandwidth. Unlike QBIC
resonances, we start from guided modes (GMs) whose optical
fields are well confined within the geometry and have no access
to external radiation. The GMs have typical continuous and
one-dimensional dispersion curves below the light line over a
large bandwidth. This leaky resonance is generated through
band folding, which occurs when a perturbation is introduced
into a regular periodic structure to have its period increased and
the first Brillouin zone (FBZ) shrunk. Because of the transla-

tional symmetry in the k space, the GMs with infinite Q-factors
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supported by the original lattice will appear as new leaky reso-
nances with the dispersion curves above the light cone in the
new structure. These resonances, termed quasi-guided modes
(QGMs), will inherit the spatial dispersion of the original GMs,
with Q-factors significantly dependent on the level of perturba-
tion. As a result, they feature ultrahigh Q-factors while the reso-
nance can be tuned by the lateral wave vector. The QGMs
outperform QBIC resonances, which can only operate within a
narrow bandwidth, even at a wave number largely different

from that of the original BIC resonance.

We should note that a similar band-folding effect has been pro-
posed in the literature to improve the angular tolerance in the
reflection of resonant grating filters with doubly periodic struc-
tures [16,17]. Other structures, such as diatomic [18] or dimer-
ized [19,20] gratings, have been also investigated in recent
years, but mainly with emphasis on the far-field spectrum, using
one-dimensional (1D) grating structures. In addition, band
folding was also employed to realize terahertz radiation from
difference frequency generation (DFG) by using 1D leaky
modes of binary waveguide gratings [21] and to manipulate the
radiation coupling in the vertical directions in some photonic
crystal cavities [22,23]. A similar structure of a ZnO photonic
crystal slab (PCS) with doubled periods in both directions has
been proposed to realize low-threshold polariton lasers [24].
However, we show in this work that, even when the period
increase and the accompanied FBZ shrinking occurs only along
one direction of the two-dimensional periodicity, the resonance
still depends on the in-plane wave vector along both directions.
This suggests the possibility of resonance tuning over an ex-
tended bandwidth by using the incident angle along two differ-
ent directions as the tuning mechanism. More importantly, we
further illustrate that these QGM resonances have a significant-
ly enhanced local electric field, which is even larger than that of
most plasmonic nanoantennas, suggesting the great potential of
these QGMs for enhanced light—matter interactions.

We use GMs supported by a regular PCS structure composed of
a square lattice of air holes perforating a thin silicon (refractive
index: 3.45) film on a silica (refractive index 1.45) substrate as
an example to demonstrate that these modes can be switched to
QGMs with ultrahigh Q-factors over a large operating band-
width, as shown in Figure 1. When all air holes have the same
radius, the whole structure represents a two-dimensional PCS
structure with a square primitive unit cell. With the period
Py = Py = a along both x and y directions, this structure is
known to support a set of well-confined GMs with no external
radiation [25], which lay out the foundation for integrated
photonic elements in the PCS. The lines of empty circles in
Figure 2 present the dispersion curve for the GMs along I'X and
XM directions in the FBZ supported by the square lattice with
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Figure 1: (a) Schematic of the photonic crystal slab structure of air holes in a silicon layer. (b) Top view of the unit cells for two cases. Left: the square
lattice of the original structure, right: the distorted rectangular lattice with a period of 2a x a.
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Figure 2: Dispersion curves of the GMs (hollow circles) supported by
the PCS of air holes in SOI and the QGMs (solid circles) supported the
distorted lattice where the radius of every second column of air holes is
changed to R». The inset shows the FBZ for the two cases. The green
and red colors denote the dispersion along the ky and ky, direction, re-
spectively.

a =400 nm, R; = 100 nm, and ¢ = 220 nm. The results were ob-
tained by using the eigenfrequency analysis and lateral Fouquet
boundary conditions implemented in the commercial finite-ele-
ment method software Comsol Multiphysics. All numerical
models are built with 3D structures. The size of the tetrahedral
mesh was tested to ensure the numerical convergence of the
calculated results. It is seen that the dispersion curve of the
GM s fy(ky, ky) is well below that of the light cone (this region is
displayed with a dark background). When the radius of the air
holes in every second column is increased by a quantity of d to
R, =120 nm, the period along the x direction will be doubled to
be Py, = 2a while it remains unchanged in the y direction. As a
result, the FBZ shrinks in the x direction and its shape changes
from a square to a rectangle, as shown in the inset of Figure 2.
With the period in the k, direction halved to 2mn/P,, = m/a, one

has the dispersion equation f(ky, k,) in the distorted lattice as:

f(kx,ky):f(kx—n/a,ky). (1)

When the perturbation introduced into the lattice is weak, the
distorted lattice remains approximately the same as the undis-
torted, and so are the supported resonance frequencies. Then we

have
ke =nfa.ky,) = fo (ke —/a k). 2)

Combining Equation 1 and Equation 2, we obtain the following

equation:
f(kx’ky)sz(kx_n/a’ky)ﬂ (3

which suggests that dispersion curves with similar profiles as
the GMs in the PCS around the X point will appear around the
I point in the distorted lattice. In other words, the dispersion
curve of GMs along I'X and XM directions in the original
square unit cell will be translated to the —X'T" and I'Y directions
in the new lattice, respectively. Since the wave numbers close to
I" point are relatively small, the majority of the translated
dispersion curves will be located above the light cone in the dis-
torted lattice, suggesting leaky resonances.

The curve composed of solid circles in Figure 2 presents the
calculated dispersion for the QGMs of the rectangular primitive
cell shown on the right side of Figure 1b, where R; is set to be
120 nm. The eigenfrequencies are found around the same band
as the GMs. The results are entirely consistent with the above
predictions from Equation 3. It is quite clear that the dispersion
curves of the QGMs around the I" point have roughly the same
profiles as the original GMs around the X point, both in the &,

and ky, directions. As a result, although the period remains un-
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changed along the y direction (Py, is still @), the dispersion along
ky is also located above the light cone and resembles the profile
of fo(ky, ky) along the XM direction. A weaker spatial disper-
sion of the QGMs is present in the k, direction compared to the
ky direction, which is the same as for the GMs.

The total Q-factor (Qyoa1) Of a resonance observed in the far-
field spectrum is determined by the Q-factors of radiation (Q;,q)
and absorption (Qps) [26]:

N S
Qtotal Qrad Qabs

C)

Because the absorption loss of materials is not considered here,
that is, Q,ps is infinite, Qyota) is determined solely by Q,,q of the
structure. Its value or the radiation loss can be obtained from the
real and imaginary parts of its complex eigenfrequency from the
numerical calculations. The calculated Q-factors of these QGMs
are presented in Figure 3a. The value is infinite at the I" point,
which arises from an ideal BIC resonance of the symmetry-pro-
tected type. This is because the new periodic structure, even
with the radius of the air holes in every second column changed,
still exhibits a mirror symmetry across the central xz and yz
planes of all air holes. Further away from the I point, the
Q-factor decreases for larger wave numbers but maintains
overall large values (above 10%) for all resonances. To have a
moderate level of Q-factors (i.e., measurable in practical experi-
ments) for the transmission spectra presented in the subsequent
part, we used intentionally a stronger perturbation with a &
value of 20 nm. We note that the overall Q-factors will be sig-
nificantly increased if a weaker perturbation is introduced. The
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dispersion of the GMs is located well below the light line,
preventing any outward radiation due to total internal reflection.
In other words, the Q-factors of all GMs are infinite since we
ignore the material absorption in the lossless dielectrics. When
the period-doubling perturbation is applied and the new QGMs
are formed because of the folding of the FBZ, the coupling effi-
ciency between free-space radiation and the QGMs is still very
low, leading to the occurrence of high Q-factor resonances.
Intuitively, the Q-factors highly depend on the level of perturba-
tion. In addition, since the spatial dispersion of the original
GMs is retained in the QGMs, one can have ultrahigh Q-factors
over a large bandwidth, and the resonance can be tuned by
changing the wave vector or, equivalently, the incident angle of
external excitations. This is in huge contrast to QBIC reso-
nances, whose frequency is limited within a narrow band close
to the frequency of the original BIC resonance from which the
QBIC resonances are derived. Similar to QBIC resonances, the
Q-factors exhibit a strong dependence on the level of perturba-
tion and increase significantly as the perturbation decreases.
The value of the Q-factor will approach infinity as & ap-
proaches zero, where the lattice returns to the regular square
lattice of air holes (P, decreases from 2a to a) and the QGMs
switch back to GMs. Interestingly, the trend of Q approaching
infinity when the perturbation vanishes is true for any reso-
nance along the QGM dispersion curve. Figure 3b presents the
calculated Q-factors at two randomly selected points along k,
and ky, for the QGMs and the dependence of Q on the extent of
the perturbation is clearly seen. We should note that this behav-
ior is another feature of the QGMs significantly different from
those of QBIC resonances. The operating bandwidth of QBIC
resonances significantly depends on the level of perturbation
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Figure 3: (a) Q-factors along the dispersion curves of QGMs in Figure 2. (b) Q-factor as a function of the level of perturbation at two points along two

directions.
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introduced into the geometry to transform the BIC resonance
into QBICs. The bandwidth is smaller if the perturbation is
weaker, which is the case when one aspires for a high Q-factor.
As the geometrical perturbation decreases, the dispersion curve
of the QBIC resonances will shrink to a single point in the w—k
space, which represents the BIC resonance. For the QGMs, the
operating bandwidth is not affected at all by the level of pertur-
bation. Instead, it is determined by the spatial dispersion of the
GMs in the PCS. Thus, the ultrahigh Q-factors can be main-
tained over the same broad bandwidth, regardless of the level of
perturbation. All these properties of the QGMs make it possible
to realize superior leaky modes with ultrahigh Q-factors and a
value of Q completely controlled by the extent of perturbation
over the same bandwidth. Compared to the 1D periodic struc-
ture, the operation bandwidth of a 2D structure extends by
exploiting the changes of the wave number in a direction differ-
ent from the direction of lattice change.
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To have a straightforward demonstration of tuning the reso-
nance via the incident angle, we present in Figure 4 the calcu-
lated transmission spectra for three different incident angles of
3¢, 6°, and 9° along both x and y directions. We note that when
the period-doubling perturbation is absent (R = R»), the struc-
ture returns to a regular PCS, which supports the well-known
guided mode resonances in a frequency-doubled spectrum range
[27]. The guided mode resonances have relatively broad band-
widths compared to QGM resonances, and their properties have
been well documented in the literature. In the spectrum of our
interest, the regular PCS only supports broadband Fabry—Pérot
resonances, and the transmission exhibits no sharp features,
because only well-confined GMs are supported. However, when
the perturbation is applied, QGMs will be formed and new
sharp resonances will be superimposed onto the transmission
spectrum. The setup of the incident beams with respect to the
structure can be found in Figure 1a, where the electric field of
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Figure 4: Transmission spectra at different incident angles with the incidence in (a) the xz plane and (b) the yz plane. (c) The maximum electric field
magnitude normalized to that of the incident wave across the central plane of the Si layer. (d) Typical distributions of Ey and E,, along the central plane

of the silicon layer.
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E, is used to excite the QGMs. A redshift of the resonance for a
larger incident angle is observed for TM, along the x direction,
while the trend is opposite for TE, along the y direction.
Judging from the bandwidth of the resonance, one can see that
the Q-factor decreases slightly at a larger incident angles for the
incidence along the x direction, while it increases for the inci-
dence along the y direction. All these results are consistent with
the dispersion curves in Figure 2 and the evolution of Q-factors
as a function of the wave number in Figure 3a. Figure 4d
presents typical distributions of the real part of both E, and E,
at the resonance frequency across the central plane of the silicon
layer under an incidence angle of 3° along the x direction. It is
seen that E, exhibits a symmetric profile while Ey, has the oppo-
site distribution within individual holes along the x direction,
where the lattice distortion happens. The distribution of the
electric field mainly within the air holes is due to symmetry
reasons. For our structure, in which the radius of every second
column of holes is changed, mirror symmetry is still retained
across the center of each hole the along x direction, which
ensures an effective coupling between the modes with x-polar-
ized plane waves. This kind of field distribution in Figure 4d is
useful for sensing applications. For other applications where
one would like to have the main field within the dielectrics,
another kind of perturbation by moving the position of every
second column of holes could be used instead. The distribu-
tions in Figure 4d confirm that the QGMs around the I" point
inherit the same mode profiles of the original guided mode at
the boundary of the FBZ (the X point), where the field distribu-
tions are anti-symmetric in the I'X direction. In addition, it is
known that the maximum local field enhancement is deter-
mined by the resonance Q-factor and the mode volume [26].
For periodic structures, a discussion of the mode volume calcu-
lation can be found in [28]. The intermediate mode confine-
ment within the photonic crystal slab structure and the ultra-
high Q-factors of the QGMs make it possible to obtain a huge
electric field enhancement. Figure 4c presents the maximum
local electric field magnitude normalized to that of the incident
plane wave. It can be seen that an enhancement factor of 312
can be achieved for an incident angle of 3° along the x axis.
This number decreases to 156 and 107 for incident angles of 6°
and 9° along the x axis, respectively, and increases to 950, 477,
and 319, respectively, for incident angles of 3°, 6°, and 9° along
the y axis. The trend of the level of enhancement is consistent
with that of the Q-factor as a function of the incident angle
shown in Figure 3. We should note here that all these values of
local electric field enhancement are generally higher than those
that can be achieved with a regular guided resonance in a simi-
lar PCS structure supporting Fano-type resonances [27] or with
most plasmonic nanoantennas [3]. This is because of the high
value of Q and the relatively low mode volume of these QGMs

[26]. We further note that the maximum electric field enhance-
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ment is located within the air holes (from the magnitude of the
electric field, which is not shown in Figure 4), where the mirror
symmetry results in a large spatial overlap of the mode with the
electric field of the incident plane wave [19,20]. If another kind
of period-doubling perturbation is used, for example, by shifting
the position of every second column of air holes, the mirror
symmetry will be maintained within the dielectric material be-
tween the air holes, where the local electric field enhancement

will occur.

Conclusion

We have presented in this work the superior properties of the
QGMs that occur when a perturbation is introduced in a regular
PCS. The QGMs inherit the spatial dispersion of the GMs sup-
ported by the PCS and consequently feature ultrahigh Q-factors,
which can be controlled by the level of perturbation over a large
bandwidth. The huge local field enhancement, even higher than
that in plasmonic nanoantennas, has been demonstrated using
numerical simulations. Although a PCS structure in the form of
air holes in a silicon slab is used for demonstration, we note the
same physics can be extended to other periodic structures such
as arrays of silicon rods. The huge local field enhancement
together with the possibility of resonance tuning by the incident
angle over a large bandwidth make the QGMs a competitive
platform for enhanced light—matter interactions and novel appli-
cations. For example, in some nonlinear applications, the inter-
actions between the incident light and the medium need to be
enhanced simultaneously at multiple wavelengths with largely
different values. This requirement can easily go beyond the
capability of QBIC resonances. However, it can be easily
fulfilled using QGMs by simply choosing the proper incident

angles.
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