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Abstract
We introduce a scheme to obtain the deconvolved density of states (DOS) of the tip and sample, from scanning tunneling spectra

determined in the constant-current mode (z–V spectroscopy). The scheme is based on the validity of the Wentzel–Kramers–Bril-

louin (WKB) approximation and the trapezoidal approximation of the electron potential within the tunneling barrier. In a numerical

treatment of z–V spectroscopy, we first analyze how the position and amplitude of characteristic DOS features change depending on

parameters such as the energy position, width, barrier height, and the tip–sample separation. Then it is shown that the deconvolu-

tion scheme is capable of recovering the original DOS of tip and sample with an accuracy of better than 97% within the one-dimen-

sional WKB approximation. Application of the deconvolution scheme to experimental data obtained on Nb(110) reveals a conver-

gent behavior, providing separately the DOS of both sample and tip. In detail, however, there are systematic quantitative deviations

between the DOS results based on z–V data and those based on I–V data. This points to an inconsistency between the assumed and

the actual transmission probability function. Indeed, the experimentally determined differential barrier height still clearly deviates

from that derived from the deconvolved DOS. Thus, the present progress in developing a reliable deconvolution scheme shifts the

focus towards how to access the actual transmission probability function.
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Introduction
Undoubtedly, the power of scanning tunneling microscopy

(STM) is based on its capability to map the surface topology of

a conductive sample with resolution down to the atomic scale in

real space [1]. Moreover, previous experience on metal–insu-

lator–metal tunnel junctions [2] immediately suggested

extending STM to become a local analytical tool, opening up
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the field of scanning tunneling spectroscopy (STS). The most

prominent property that can be accessed by STS is the local

electronic density of states (LDOS). For that purpose, the

applied tunneling bias, V, is ramped while the probe–sample

separation is kept constant (commonly denoted as I–V spec-

troscopy) [1,3]. However, determination of the sample LDOS

from such a measurement is always obscured by unavoidable

interfering influences from other STS constituents such as the

tunneling barrier, with its bias-dependent transmission proba-

bility, as well as from the LDOS of the probing tip. The

problem becomes most clearly visible when referring to the

semiclassical Wentzel–Kramers–Brillouin (WKB) description

of tunneling processes. There, the experimentally determined

tunneling current, I, is expressed as a convolution integral

involving the sample and tip LDOS as well as the barrier behav-

ior on equal footing. Thus, if there is just one I–V characteristic

available for a given tunneling barrier, extraction of the sample

LDOS is in principle impossible. That used to be the standard

situation for previous tunnel junctions with their fixed oxide

barriers. In STS, however, at any given sample location,

barriers can be experimentally adjusted. In this way, additional

information is provided by taking I–V curves at different fixed z

values.

Based on this additional degree of freedom when applying STS,

much work has been devoted in the past to unraveling the

different contributions to the tunneling current. Most of the

work was concerned with removing at least a proposed

tunneling probability from the measured quantity, assuming

validity of the WKB approximation. This, however, still leaves

a kind of a convolved LDOS of tip and sample [4-12]. Recently,

it was shown that the tunneling current as described by the

WKB approximation can be transformed into a Volterra inte-

gral equation of the second kind and, therefore, well-known

schemes can be applied to solve such an equation numerically

[7,8]. Taking this one step further, it was demonstrated that,

taking I–V curves at different tip–sample distances, these

Volterra equations form a set of coupled integro-differential

equations, which allow for a deconvolution of the transmission

probability as well as of the LDOS of tip and sample [13].

I–V spectroscopy is not the only STS measurement mode to

determine the LDOS of a sample. Though less commonly used,

z–V spectroscopy, alias constant-current spectroscopy, offers an

interesting alternative to the I–V mode. In constant-current

mode, the topographic feedback loop is left on and, thus, the

tunneling current is held constant while the bias, V, is scanned

and the derivative of I with respect to V, ∂VI(V), as well as the

varying tip–sample separation, z(V), is acquired. In a number of

cases, z–V may be superior to I–V spectroscopy. Examples are

the common case of a limited dynamic range in the current

measurement, the need to keep the tunneling current below a

certain upper limit in order to avoid local damage of a delicate

sample, or the necessity of a measurement over a wide range of

biases, such as in case of samples with adsorbed organic mole-

cules in order to resolve the lowest unoccupied molecular

orbital (LUMO) [14-16]. Ziegler et al. showed that an approxi-

mation, originally derived for I–V spectroscopy in reference [7],

can be used to obtain a joint LDOS of tip and sample from such

a measurement [17]. However, so far such a deconvolution

scheme as that for I–V spectroscopy is not yet available for z–V

spectroscopy.

Consequently, it is the aim of the present contribution to

provide such a scheme by extending the previous deconvolu-

tion derived for I–V spectroscopy and tailoring it for the z–V

mode. After a short introduction to the theory, the deconvolu-

tion scheme is applied to different LDOS model functions for

tip and sample. By numerically calculating the related I–V

curves for various barrier and LDOS parameters, insight is

gained into how these parameters may influence “experimental”

data. The newly developed deconvolution is adopted to analyze

experimental STS data obtained on Nb(110). By comparison

with earlier results we find that the commonly used transmis-

sion probability function (TPF) according to the one-dimen-

sional WKB approximation is deficient, at least in the case of

Nb(110). We propose that the differential barrier height is a

sensitive indicator of how to adjust the TPF to obtain a more

realistic description of the tunneling probability.

Results and Discussion
Theory
The underlying theory for z–V spectroscopy is closely related to

that applied to I–V spectroscopy [7] except for an explicit

dependence on the tip–sample separation, z. The starting point

of the calculation is the tunneling current, I, as given by the

one-dimensional WKB approximation for a barrier character-

ized by an energy-dependent transmission probability function

(TPF), T(E,V,z). Assuming zero temperature, application of a

bias, V, results in a tunneling current which, according to WKB,

can be written as

(1)

where ρS and ρT are the sample and tip density of states (DOS),

respectively, and E is the energy of electrons participating in the

tunneling process; z is considered as being an independent vari-

able with ∂Vz = 0. If, in a z–V measurement, z is the response of

the tip–sample separation on ramping the bias voltage for a

preset constant current, I0, we denote z as  or for
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simplicity z(V). According to Simmons [18,19] the TPF,

T(E,V,z), can be approximated by assuming a trapezoidal shape

of the barrier, leading to

(2)

where φ is the height of the tunneling barrier at zero bias and

. We introduced here the dimensionless parameters β

and γ. For the trapezoidal approximation in 1-D, β = 2 and

γ = 1. The parameter β may be increased slightly, e.g., to

account for the image potential, while γ may be used to consider

the energy dependence of the TPF on the dispersion relation of

the electrons [7,20]; for a surface state with no energy compo-

nent perpendicular to the surface and perfect parabolic disper-

sion, γ = 0. Note, that γ × E may be replaced by any continuous

energy-dependent function with no impact on the proposed

formalism. This way, a wide range of energy-dependent decay

lengths of the electron states into the vacuum may be imple-

mented in the deconvolution scheme.

Taking the derivative of Equation 1 with respect to bias delivers

(3)

where we used −∂Vρ(E−V) = ∂Eρ(E−V). Comparing Equation 3

with Equation 5 in [17] we set ∂Vz = 0 since z is an independent

variable. If we set z = , ∂VI(V,z(V)) would necessarily be

zero. Equation 3 can now be solved formally for ρS(V), giving

(4)

This is a Volterra integral equation of the second kind. For a

known ρT(V) it can be solved numerically by means of the

Neumann approximation scheme, by replacing ρS(V) on the left

side by ρS(V)n+1 and on the right side by ρS(V)n. Assuming a

constant tip DOS, φ > V, and applying the mean value theorem

of integrals, we arrive at an equation that has been introduced

already in [7] for I–V spectroscopy and extended to z–V spec-

troscopy in [17]:

(5)

As the tunneling junction is symmetric, we may change the

reference frame from the sample to the tip. We then obtain simi-

larly a Volterra integral equation for the tip DOS:

(6)

where VT = −V is the bias with respect to the Fermi level of the

tip. Note that this equation is identical to Equation 4 in the

respective reference frame, but ∂VI has to be mirrored at V = 0

because ∂VI has been measured in the reference frame of the

sample.

With Equation 4 and Equation 6 we have a set of two coupled

integro-differential equations for the sought properties ρS(V)

and ρT(V) based on the measurable data ∂VI and z(V). The add-

itionally required parameter φ can be determined from, e.g.,

I–z spectroscopy and the absolute tip–sample separation,

, can be reasonably guessed or esti-

mated through recently proposed methods [12].

This set of Volterra integral equations is applied in order to

deconvolve the DOS of both sample and tip, by referring to a

previously described scheme [13]. There, the basic idea was to

take advantage of the additional information provided by

different ∂VI–V curves, taken at different tip–sample separa-

tions. Presently, the additional information is provided by

different ∂VI–V and z(V) curves taken at different set currents,

I0. Note that it is the TPF that makes the difference. As it is not

symmetric in E, V, or z, it allows deconvolution of the tip and

sample DOS .

In the following section we will demonstrate this deconvolu-

tion scheme for z–V spectroscopy. Starting with model func-

tions for ρS(V) and ρT(V), the “experimental” data I(V,z) for a

given V and z are calculated according to Equation 1. Add-

itionally,  for a given set current, I0, is determined by

calculating I(V,z) and varying z until |I(V,z)–I0|/I0 < 0.001. Next,
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∂VI is calculated from Equation 3 with the afore-determined

 for a given I0. In this way, two sets of ∂VI and z(V)

curves for set currents I0,1 and I0,2 are obtained and mimic

experimental data, which form the starting point of the decon-

volution procedure. Assuming that on entry to the deconvolu-

tion scheme no specific information is available for ρS(V) and

ρT(V), both entries are initialized as unity for the iteration.

It should be noted that, due to the coupled equations, one may

commence the iteration with data for either the larger or the

smaller set current. There is no criterion available to determine

a better choice. In the following examples we achieved better

results, i.e., faster convergence and better accuracy, when

starting with data for the smaller set current. Note also, as previ-

ously reported [7,13], that numerical errors may accumulate

during the iterations leading to a divergence of the DOS at the

boundaries. For a sufficient optimization we found that it is

necessary to repeat the iteration at least four times but not more

than six times, which, according to the numerical examples

presented below, will lead to acceptably accurate results.

Equation 6 and Equation 4 exhibit an apparent singularity with

z → −∞ for V → 0. However, this singularity is not substantial

in theory and is of no practical relevance, since experimental

data can be safely measured only above a minimal bias, Vmin.

Below Vmin the tip or sample could be damaged. Assuming that

the measurement is started at that sufficiently small bias, Vmin,

such that ρS, ρT ≈ constant for |E| < |Vmin| and Vmin << φ, we

replace in Equation 4 the integral

The first term on the right then gives

and similarly the last term gives

These approximations simplify the numerical integration of

experimental data. However, to account for the missing data in

the range 0 ≤ V ≤ Vmin, extrapolation of the experimental data

towards zero bias is carried out. For this purpose, in the case of

∂VI being linear and for z(V) being logarithmic the extrapola-

tions delivered satisfying results.

Numerical Examples
Analysis of peak positions
Before we start applying the deconvolution procedure, we

analyze how different characteristic features of the sample and

tip DOS appear in the “experimental” ∂VI–V curves or the

derived quantity ∂VI × V within the one-dimenional WKB

approximation. For that purpose, we start with a Gaussian peak

of a given width and height, at various peak positions within the

range −1.8 eV to +1.8 eV, in an otherwise constant DOS of the

sample while the tip DOS is kept constant. In Figure 1a the

corresponding conductivity, ∂VI, is presented showing the

following characteristics: (i) There is a hyperbolic background

in the conductivity, since the TPF can be approximately

described by T ~ V−1 at low bias for a constant DOS and

constant tunneling current (the already discussed singularity at

zero bias is excluded). (ii) For DOS peaks in the negative

energy range (occupied states) only weak shoulders are visible,

while DOS peaks in the positive energy range (empty states)

result in pronounced peaks with increasing amplitude for

increasing peak bias positions. This is an immediate conse-

quence of the growing TPF for increasing energies, E. In the

present case, the resulting conductivity peaks in the negative

bias range are so weak that a reasonable analysis of their pos-

ition is not possible. (iii) The pronounced peaks in ∂VI at posi-

tive bias shift in energy with respect to the original position in

the DOS. The shift is always negative and amounts to −0.15 eV

in Figure 1a. Furthermore, this peak shift depends on the pos-

ition, Emax,0 of the Gaussian in the model DOS as well as on its

width, w, the set current, I0, and the barrier height, φ. The

corresponding numerically determined peak positions, as

depending on these parameters, are presented in Figure 1c–f.

Due to the hyperbolic background, the peak shift in ∂VI is larger

the closer the original DOS peak is to zero bias. The depend-

ence on its width, w, and the set current, I0, is as expected: The

broader the original DOS peak and the smaller the set current,

the larger the shift of the corresponding peak in ∂VI. Thus, it is

worth noting that for lifetime-broadened states in transition

metals or molecular states on top of a metal surface, which may

approach ~1 eV, the expected peak shifts in ∂VI will be of

similar order. The peak shift in dependence on the barrier height

(Figure 1d) is larger the lower the barrier. However, for a rea-

sonable barrier height ranging from 2 eV to 4.5 eV the shift is

relatively small.
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Figure 1: Calculated ∂VI–V curves (a) and (∂VI × V)–V curves (b) for different peak positions in the sample DOS ranging from −1.8 eV to +1.8 eV. The
model DOS of tip and sample are constant with an additional Gaussian peak in the sample DOS at the given position. Parameters are: Barrier height
φ = 3 eV, I0 = 13.7 nA. The initial peak positions were ±[1.0 (black, magenta), 1.2 (red, yellow), 1.4 (green, dark yellow), 1.6 (blue, navy), 1.8 (cyan,
purple)] eV. Panels (c) through (f) show the dependence of the peak positions in ∂VI on the barrier height, φ, the set current, I0, the initial peak pos-
ition, Emax,0, and the width of the peak, w, respectively. The values of the set currents result from the particular choice of the tip–sample separation at
zero bias.

The hyperbolic background around zero bias can be removed by

plotting ∂VI × V versus V (Figure 1b), which corresponds to

setting I0 = 0 and T ~ V−1 in Equation 5. Accordingly, the peaks

at positive bias shift back towards the original positions as

given by the sample DOS. Peaks in the negative bias range,

however, remain hardly detectable while those in the positive

range are largely enhanced at increasing bias positions, even

though the peak heights are all equal in the original DOS. Thus,

the results presented in Figure 1 may serve as a warning that

experimentally observed peak-like features in ∂VI cannot imme-

diately be assigned to corresponding DOS characteristics. For

that purpose, a complete deconvolution procedure must be

applied as presented in the following.

Recovery and deconvolution of the DOS
In the first example we focus on the positive bias range (in the

reference frame of the sample). Again, a model DOS of the

sample is defined by setting it to unity with an additional

Gaussian peak centered at 0.6 eV (height h = 1, width

w = 0.2 eV). Similarly, the model DOS of the tip is taken as
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Figure 2: Numerically calculated z(V)–V curves in the a) positive and c) negative bias range with respect to the sample. The two set currents are
a) I0,1 = 80.7 nA and I0,2 = 0.386 nA and c) I0,1 = −80.7 nA and I0,2 = −0.386 nA. The inset displays the corresponding ∂VI–V curves. For better com-
parison, the ∂VI–V curve for I0,2 has been scaled by I0,1/I0,2. b) and d) are the corresponding recovered and deconvolved DOS for the positive and
negative bias range, respectively, together with the errors (δ) relative to the model DOS (upper curves, ρSe: black solid, ρTe: red dashed; lower
curves, δρSe: black solid, δρTe: red dashed). The values of the set currents result from the particular choice of the tip–sample separation at zero bias.

unity with a Gaussian peak at −1.2 eV (h = 1, w = 0.2 eV). For

two set currents I0,1 = 80.7 nA and I0,2 = 0.386 nA, and an

effective barrier height of φ = 3 eV the resulting z–V curves and

the corresponding ∂VI–V curves were calculated. The results are

displayed in Figure 2a and represent “experimental” data as

before. The curves show the expected behavior: Decreasing the

set current from I0,1 to I0,2 leads to a shift of z(V) to larger

values. The ∂VI–V curves (inset in Figure 2a) roughly scale with

the ratio of the set currents. In detail, however, there are small

deviations from a constant shift of z(V) or from a linear scaling

of ∂VI with the set currents. It is exactly these deviations that

allow for the deconvolution of the DOS. Both z–V curves ex-

hibit a logarithmic behavior with two shoulders, one at about

0.7 eV and a very small one at 1.6 eV. The conductivity ∂VI

shows a shoulder at around 0.5 eV and a broad peak at around

1.5 eV, both on top of a hyperbolic background (~ V−1) as

discussed above.

When applying the deconvolution scheme to these data it turned

out that the best results were achieved by starting the iteration

from Equation 4 with data related to the smaller set current, I0,2.

After six iterations the Gaussian peaks in the sample and tip

DOS clearly emerged (Figure 2b) with an accuracy of better

than ±0.03 when compared to the given model DOS.

As a second example, the deconvolution scheme was applied to

the negative bias range (in the reference frame of the sample).

Again, the model DOS used as input consists of a Gaussian

peak on top of a constant background at unity. The peak in the

sample DOS is centered at −1.2 eV (h = 1, w = 0.2 eV) and in

the tip DOS at +1.2 eV (h = 1, w = 0.2 eV). It should be noted,

that both peaks should lead to a superposed feature appearing at

a bias of −1.2 eV in the “experimental” ∂VI curves. With the

two set currents, I0,1 = −80.7 nA and I0,2 = −0.386 nA, we

obtained the two z–V curves displayed in Figure 2c. Both z–V
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curves show a logarithmic behavior with a shoulder at about

−1.2 eV. The related ∂VI–V curves are displayed in the inset of

Figure 2c. Both have a peak at −1.1 eV. The shift of about

0.1 eV relative to the model value has already been discussed in

section “Analysis of peak positions”. When applying our decon-

volution scheme at negative bias the best results were achieved

when starting from Equation 6 with data for the lower set

current. After six iterations the deconvolved DOS of tip and

sample emerged as shown in Figure 2d. In comparison to the

model DOS the accuracy is better than 0.0042 over the

complete bias range under study.

Both examples clearly demonstrate successful recovery and

deconvolution of the density of states of tip and sample within

the framework of the one-dimensional WKB approximation

with data obtained from z–V spectroscopy. As in the case of I–V

spectroscopy, we found (besides numerical/technical issues)

only one restriction to the successful implementation of the

formalism: The DOS of tip and sample must be continuously

differentiable, and slopes that are too steep will reduce the accu-

racy of the result. It turned out, as might have been expected,

that the larger the difference between the two set currents the

better the recovery and the deconvolution of the DOS of the tip

and sample.

Application to experimental data
In the following we apply the above-described scheme to

experimental data obtained on Nb(110) [21]. The measure-

ments were performed on a home-built low-temperature STM

operated at a base pressure of ~10−10 mbar and a base tempera-

ture of 5.2 K [22]. The ∂VI–V curves were recorded at different

set currents by employing a lock-in technique with a modula-

tion frequency of ~500 Hz, which is well above the bandwidth

of the topographic feedback loop. As tunneling tip, we used an

electrochemically etched tungsten wire, which was subse-

quently heated in UHV to ~2000 °C and conditioned by field

emission and desorption.

In analogy to [13] we measured a set of five ∂VI–V curves

together with the corresponding z–V curves for both positive

and negative bias. For each sign of the bias, two of these ∂VI–V

curves are displayed in Figure 3. The ∂VI–V curves for the

smaller set current, I0,2, have been scaled by the ratio of the set

currents, I0,2/I0,1, in order to make the small separation-depen-

dent differences apparent. The insets depict the corresponding

z–V curves, which were recorded simultaneously. We applied

the deconvolution scheme pairwise to the data sets, on each

occasion cycling three times through the iteration in order to

avoid divergence of the DOS at the interval boundaries. The

resulting tip DOS’s were averaged and the result, ρTe (cf.

Figure 4b), was used to calculate the sample DOS. The aver-

Figure 3: ∂VI-V curves measured on Nb(110) a) in the positive bias
range at two different set currents (I0,1 = 215 pA and I0,2 = 65 pA), and
b) in the negative voltage range at I0,1 = −215 pA and I0,2 = −65 pA.
The insets depict the corresponding z(V)–V curves, which were
measured simultaneously. (φ = 4.1 eV). The given values of the set
currents are the averages of the tunneling current during the measure-
ment at an accuracy of ±5%.

aged result for the sample is presented in Figure 4a as “experi-

mental sample DOS”, ρSe. The tunneling barrier height was

determined from a separate I–z measurement at low bias at the

same spot as the ∂VI–V curves, and a value of φ = 4.1 eV was

extracted. The coefficients β and γ in the TPF (Equation 2) were

set to β = 2 and γ = 1 for negative energy and γ = 1.11 for posi-

tive energy. This choice of γ for positive energy results from an

adjustment of the tunneling probability to the measured differ-

ential barrier height, as proposed in [20] (see below).

Inspecting first ρSe, one finds two broad maxima centered at

around ±1.2 eV with a plateau in between from −0.5 eV to

+0.4 eV. There are several minor peaks and shoulders in the

negative energy range at [−1.8, −1.6, −1.25, −1.0, −0.8, −0.6,

−0.3, −0.15] eV, and at [0.5, 0.8, 1.1, 1.4, 1.8] eV in the posi-

tive energy range. Most probably due to the limited accuracy of

data and/or the calculation, the specific development of those

features depends on the course of the iteration and the details of

the data processing. The tip DOS, ρTe (Figure 4b), is smooth in
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Figure 4: Recovered and deconvolved DOS’s of the sample derived
from z–V measurements (black solid) and I–V measurements
(dashed). Parameters used in the calculations are: z0 = 0.4 nm for z–V
and z0 = 0.6 nm for I–V spectroscopy, β = 2, γ = 1.11 for positive and
γ = 1.0 for negative energy.

the positive energy range, with a weak and broad maximum at

about 1 eV. In the negative energy range, however, there is an

exponential increase with a pronounced maximum at −1.8 eV.

For comparison we performed additionally constant-separation

spectroscopy at the same location and applied the related decon-

volution scheme [13] to those data using the same parameters β

and γ. The result is included in Figure 4 (dashed blue lines). It

agrees very well with the DOS obtained from z–V spectroscopy

except for a much stronger increase (a factor of ~7 instead of a

factor of 2) in the sample DOS at positive energy. We interpret

this as an indication that the assumed TPF needs to be modified.

The stronger increase in the sample DOS is related to the less

pronounced peak of the tip DOS at negative energy. It is impor-

tant to note that the energetic position of the characteristic DOS

features is almost identical in I–V and z–V spectroscopy. The

features, however, are palpably more pronounced in I–V spec-

troscopy. Comparing results obtained here with those published

previously [13,21] or with theory [23-26], the energetic posi-

tions are similar, but the overall behavior of the DOS is consid-

erably different. Consequently, in the following we focus on the

overall behavior of the DOS.

There are several reasons why the experimental DOS obtained

here may or even should be different from the theoretical/ex-

pected DOS. Firstly, with STM local measurements are

performed revealing correspondingly local DOS variations due

to the imperfections of a real Nb(110) surface. Secondly, one

should be aware that at negative energies, i.e., for occupied

states, recovery and deconvolution of the DOS is much more

challenging, because these states contribute little to the total

tunneling current. This is most clearly demonstrated in

Figure 1a and b, where identical peaks in the sample DOS

change from being pronounced in STS spectra when centered at

positive energies, to being hardly detectable when shifted to

negative energies. As a consequence, even small deviations

from our assumptions (1-D WKB and trapezoidal approxima-

tion; dispersion) or measurement errors have a strong impact on

the result, especially in the negative energy range (on the

sample and the tip side). A rough estimate of the required accu-

racy in the measurement is given by considering the fractional

contribution of the TPF to the total ∂VI, δc that arises from elec-

tron states at the Fermi level of the tip compared to that which

arises from the states at the Fermi level of the sample. This

contribution is approximately given by

assuming ρT(E) = 1 and V << 0 V. If now ρS(E) = 1 + δSΘ(E −

V) with the Heaviside function, Θ, i.e., ρS changes at E = V by a

step of size −δS to unity, the contribution of states at energy

E = V changes at bias, V, by

Solving for V and setting the inequality correctly, leads to

(7)

δ corresponds to the required accuracy to detect a relative

change of δS in the sample DOS at bias V. In our experiments,

an accuracy of 1% corresponds to a detectable change of ~9%

in the sample DOS at −2 eV. The accuracy of the deconvolved

DOS is probably even lower.
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Figure 5: Influence of the parameter γ on the resulting experimental
sample DOS. Three DOS are shown in the positive energy range for
γ = 1.11 as in Figure 3a (black solid curve), γ = 1.10 (blue dashed),
γ = 1.12 (green dashed) and in the negative energy range for γ = 1.00
as in Figure 3a (black solid curve), γ = 0.99 (blue dashed), γ = 1.01
(green dashed). Note that changing γ has an asymmetric influence on
the DOS.

A third and probably the most important reason why the experi-

mental sample DOS would be different from expectations is the

fact that we used effectively a one-dimensional WKB approxi-

mation. To correct for this to first order, we introduced the para-

meter γ in Equation 2 where, for the sake of simplicity, we

assumed γ to be constant, i.e., the parallel energy component

Ep = (1 − γ)E. Such a correction has a tremendous impact on the

resulting DOS especially at negative energy. In order to eluci-

date that problem, we show in Figure 5 a comparison of the

experimental sample DOS displayed in Figure 4 (black curve)

with results of the calculation obtained by changing γ just by

±0.01. Such a tiny change of γ leads to a variation of the DOS

by ±40% at +2 eV, and at −2 eV the DOS even goes negative.

Thus, the difficulty shifts from the original problem of devel-

oping a deconvolution scheme to the problem of finding the

correct TPF.

Elaborating on that point, we employ the differential barrier

height (DBH) as introduced previously in [7]. A subsumption of

the DBH approach is as follows: All electron states in the

energy range E = 0...V contribute to the apparent barrier height,

φapp = 1/α × (∂zI/I)
2, weighted by their individual tunneling

probability and the product of the DOS ρS(E) × ρT(E–V) [7].

Consequently, the apparent barrier height is relatively insensi-

tive to changes of the DOS. The DBH, φdiff = 1/α ×

(∂z∂VI/∂VI)2, however, selects predominantly contributions from

the limiting energies E = 0 and E = V and, thus, is extremely

sensitive to changes of the DOS at the Fermi levels. Figure 6

Figure 6: Differential barrier height (z = 0.6 nm, φ = 4.1 eV) as derived
from the deconvolved DOS (Figure 4, solid curves) according to the
WKB approximation, and as obtained from an independent ∂VI–z
measurement with the same tip on the same sample at the same pos-
ition (dashed blue). The black dash-dotted curve is the calculated DBH
for constant DOS using the same TPF as for the other data, i.e., β = 2,
γ = 1.11 for positive bias and γ = 1.0 for negative bias. The sample and
tip barriers indicate the barriers experienced by electrons at the Fermi
level of the tip and of the sample, respectively, according to the one-
dimensional WKB approximation.

shows the DBH as calculated from measured ∂VI–z curves taken

at the given biases (blue dashed curve) and the DBH as calcu-

lated from the deconvolved DOS shown in Figure 4 with the

given values for β, γ, and z0 = 0.6 nm. Additionally, we calcu-

lated and plotted the DBH for constant DOS and the given sep-

aration (black dash-dotted curve) according to:

(8)

This entity can be interpreted as the square of a weighted

average of the inverse tunneling decay lengths. In the case of

varying DOS an additional weight factor would appear in front

of the inverse decay lengths containing the DOS.

The agreement between the experimental and the calculated

DBH from the deconvolved DOS is, however, unsatisfactory.

This is a clear indication that the TPF used in the calculation

does not yet reflect the true TPF accurately. The most promi-

nent difference occurs in the energy range E > 0.5 eV where the

experimental DBH falls off linearly as φdiff ≈ 4.4 eV − 0.7E,

whereas the calculated DBH increases linearly. Note that the

DBH depends on the tip DOS, which decreases exponentially in

the corresponding negative energy range (see Figure 4b). The
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exponential decrease of the tip DOS at negative bias favors

increasingly deeper-lying states at the Fermi level of the sample

and thus pushes the DBH towards the higher tip barrier. If this

exponential decrease does not describe reality correctly, one has

to compensate for the changing DOS by an appropriately

changing tunneling probability. A first guess could be adjusting

φ and γ such that they fit to φdiff = φ + V/2 − γV [20]. In our

case we would obtain γ ≈ 1.2, which is too great since the

weighting is neglected. Consequently, we took half of the

change, giving γ ≈ 1.1 for our calculations at positive bias.

However, it must be left to future work to find a better adjust-

ment of the TPF, e.g., by using an energy dependent γ = γ(E), or

to consider a possible dependence of the TPF on the symmetry

of the involved electronic states [27].

Conclusion
A formalism that was introduced in [13] to recover and decon-

volve the DOS of tip and sample from I–V spectra was extended

to allow application also to z–V spectroscopy data within the

framework of the WKB approximation including the trape-

zoidal approximation. Successful recovery/deconvolution was

demonstrated with simulated data. The corresponding results

provide information on how the energy position of character-

istic DOS features depends on relevant parameters such as the

barrier height and width, the tip–sample separation, and true

energetic position of such a feature. It is instructive to see here

how the sensitivity of STS to variations of the DOS changes

with energy and how little the occupied states contribute to the

tunneling current and its derivative. The newly developed

scheme was applied to experimental data obtained on Nb(110)

by z–V spectroscopy and compared to corresponding results

based on the previous formalism introduced for I–V spec-

troscopy. We find comparable accuracy for both approaches.

Thus, the advantages of z–V spectroscopy as mentioned in the

introduction can, if necessary, be exploited without losing accu-

racy in the course of the deconvolution procedure.

Comparison with earlier experimental [13] and theoretical

results suggest, however, that the major deficiency of the STS

analysis lies in the assumed transmission probability function

(TPF). Thus, the problem has shifted from developing a decon-

volution procedure to finding an adequate TPF that describes

tunneling between tip and sample in a more realistic way. To

tackle this problem it is presently suggested to elaborate on the

properties of the differential barrier height (DBH) as obtained

from measurements and the deconvolved DOS. For a proper

deconvolution procedure, both DBHs should agree. In the case

of discrepancies, however, one should re-iterate the procedure

with an adjusted TPF until satisfactory agreement is obtained.

Failure of such an adjustment could imply a principal limitation

of the WKB approximation.
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