
230

Modeling noncontact atomic force microscopy
resolution on corrugated surfaces

Kristen M. Burson1,2, Mahito Yamamoto1,2 and William G. Cullen*1,2

Full Research Paper Open Access

Address:
1Materials Research Science and Engineering Center, Department of
Physics, University of Maryland, College Park, Maryland 20742-4111,
USA and 2Center for Nanophysics and Advanced Materials,
Department of Physics, University of Maryland, USA

Email:
William G. Cullen* - wcullen@physics.umd.edu

* Corresponding author

Keywords:
graphene; model; noncontact atomic force microscopy; SiO2; van der
Waals

Beilstein J. Nanotechnol. 2012, 3, 230–237.
doi:10.3762/bjnano.3.26

Received: 29 November 2011
Accepted: 16 February 2012
Published: 13 March 2012

This article is part of the Thematic Series "Noncontact atomic force
microscopy".

Guest Editor: U. D. Schwarz

© 2012 Burson et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of

technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough

surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy,

based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate

(modeled as a sinusoid). The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of

the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.
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Introduction
Noncontact atomic force microscopy (NC-AFM) has brought

considerable advancement to the atomic-scale study of surfaces,

by allowing both atomic-resolution imaging and atomically

resolved force spectroscopy. Generally, these advancements

have been made on atomically flat crystalline surfaces. Yet,

many surfaces of technological interest are neither crystalline

nor atomically flat and this presents a challenge for the assess-

ment of measurement resolution and the ultimate determination

of the structures of interest. Problems of friction and adhesion

serve as examples in which roughness is a determining factor,

and a full understanding of the microscopic interactions requires

adequately resolved measurements [1,2].

SiO2 grown as a gate dielectric on Si wafers, for example, is

amorphous and exhibits stochastic surface roughness. Precise

measurement of this roughness by AFM has generated contro-

versy following the widespread use of SiO2 as a support for

exfoliated graphene, which may be probed with UHV scanning

tunneling microscopy (yielding full atomic resolution, as

demonstrated by several groups) [3-7]. The controversy arises

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:wcullen@physics.umd.edu
http://dx.doi.org/10.3762%2Fbjnano.3.26


Beilstein J. Nanotechnol. 2012, 3, 230–237.

231

when STM measurements of graphene/SiO2 are compared with

AFM measurements of the bare SiO2 substrate, because AFM

measurements of SiO2 generally show a much smoother

topography than is shown by STM of graphene/SiO2. Moti-

vated by the experimental difficulty in measuring SiO2 surfaces,

we propose a model to gain insight into this issue.

Here we present experimental findings on SiO2 that have moti-

vated the modeling of tip–surface interactions for the case of a

corrugated surface. We discuss the issues that arise when the

surface is corrugated on relatively small length scales (our best

measurements on SiO2 yield a correlation length of 8–10 nm).

We develop a continuum model that explicitly accounts for a

quasi-1-D substrate corrugation (modeled as a sinusoid) and

obtain the response of a spherical tip to van der Waals (vdW)

interactions. To our knowledge, it is the first model to directly

incorporate the lateral variation of van der Waals forces due to

surface corrugation and to attempt to quantify this in terms of

contours of constant frequency shift. We discuss the first results

of this model, specifically showing attenuation of the substrate

corrugation in imaging. We also report a deviation from the

generally assumed Hamaker force law for the interaction of a

sphere with a flat surface (F ~ AHR/6z2).

SiO2 resolution controversy
Graphene was brought to prominence by the pioneering work of

Geim and Novoselov in developing a fabrication technique for

graphene devices involving optical identification of exfoliated

flakes on 300 nm thick SiO2/Si [8]. As a result, much of the

early scanning probe investigations were performed on SiO2

and questions about the relationship between graphene device

properties and substrate properties, including topography,

remain prominent in the field of graphene research. The first

investigations of SiO2-supported graphene by means of scan-

ning-probe methods appeared in 2007 [5,6]. These early investi-

gations attributed the roughness of the graphene to the rough-

ness of the underlying SiO2. Previously, measurements of

suspended graphene by TEM in diffraction mode suggested an

“intrinsic” rippling in the graphene structure [9], which presum-

ably originates from the same physics that describes the crum-

pling of soft membranes [10]. More recently, a study comparing

scanning-probe measurements of the corrugation of single-layer

graphene (by UHV STM) with that of SiO2 (by ambient AFM)

reported a significantly greater corrugation for the graphene

than that observed for the SiO2 [4]. These measurements were

interpreted as an “intrinsic” rippling of the partially suspended

graphene, presumably of the same origin as that observed

by TEM for fully suspended graphene [9]. However, any

significant “suspension” and intrinsic rippling of the graphene

over SiO2 is hard to reconcile with the energetics of substrate

adhesion [11-13].

Our previous work [14] addressed the issue of intrinsic rippling

in SiO2-supported graphene by presenting high-resolution UHV

NC-AFM measurements of the SiO2, in which it was shown

that there were more small-scale features present on the SiO2

than previously measured. The corrugation of bare SiO2 was

shown to be slightly greater than the corrugation of the

graphene over all relevant length scales and, thus, the graphene

conforms to the substrate, consistent with the energetics of

bending and adhesion. This study helped to resolve questions

about the relationship between the substrate and the graphene

topography for SiO2. Specifically, the higher-resolution

measurement of the substrate roughness allowed a quantitative

analysis based on theories of membrane adhesion. It also

brought to the fore the experimental difficulty of obtaining

high-resolution AFM images on corrugated surfaces, given that

many previous measurements of SiO2 appear to be under-

resolved. It is likely that further high-resolution SPM studies

will provide breakthroughs in problems that are currently poorly

understood, such as the unusually high adhesion energy of

graphene to SiO2 [15], and its anomalous frictional behavior

[16]. Beyond graphene, the use of SiO2 is commonplace as

a substrate in electronic-device research (carbon-nanotube

devices, organic electronics, etc.).

While one may readily obtain atomic resolution on certain flat

surfaces, such as the well-studied (7 × 7) reconstruction of

Si(111), obtaining this same level of resolution on rough

surfaces presents an experimental challenge. Under suitable

conditions, atomic resolution of amorphous surfaces has been

achieved. For atomically resolved images of barium silicate

glass, UHV contact-mode AFM with a relatively high loading

force (25–50 nN) was utilized [17]. Quartz glass has also been

measured with comparable resolution, leading to real-space

images of the amorphous atomic structure [18]. Despite the

atomic resolution obtained for quartz in [18], those measure-

ments fail to account for the observed topography of SiO2-

supported graphene, due to apparent differences in surface

structure between the carefully UHV-prepared quartz in that

study and the SiO2 substrates used for graphene. As with the

barium silicate measurements, for high-resolution measure-

ments of SiO2, special conditions were necessary [18]. In order

to obtain the high-resolution measurements of the SiO2

presented in this paper, a supersharp tip, with a nominal radius

of curvature of 2–5 nm, was crucial. Comparing the images

obtained with these supersharp tips to those obtained with a

metal-coated tip of nominal radius 30 nm, demonstrates the

distinct improvement in resolution (Figure 1a and Figure 1b).

Features with radius of curvature as small as 2.3 nm were

observed in images with the supersharp tip (Figure 1a) [19].

Yet, under comparable experimental conditions, the (7 × 7)

structure of Si(111) could be discerned with atomic resolution
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Figure 1: AFM resolution examples: (a) high resolution UHV NC-AFM image of SiO2 displaying features with radius of curvature ~2.3 nm (Rtip nomi-
nally 2 nm, ∆f = −20 Hz, A = 5.0 nm, image size = 200 nm × 200 nm) (b) under-resolved UHV NC-AFM image of SiO2 with the same height scale as
(a) (Rtip nominally 30 nm, ∆f = −150 Hz, A = 1.0 nm, image size 200 nm × 200 nm) (c) UHV NC-AFM image of Si(111) with inset showing atomic reso-
lution (Rtip nominally 7 nm, ∆f = −40 Hz, A = 7.1 nm, image size 50 nm × 50 nm).

without the aid of a supersharp tip (Figure 1c). Atomic resolu-

tion on Si(111) depends on the short-range chemical forces and

the bonding configuration of the tip apex atom [20-23], whereas

long-range vdW interactions are a constant background force

for AFM imaging of this and other flat surfaces. In contrast, for

corrugated surfaces, the vdW interactions will vary laterally and

thus play a greater role in determining the contour followed by

the probe tip. These experimental observations highlight the

difficulty in obtaining adequately resolved NC-AFM measure-

ments on rough, amorphous surfaces and challenge the assump-

tion that, for a given tip radius, the resolution on a rough surface

will be comparable to the resolution on a flat surface. While it is

the controversy over the resolution of the SiO2 substrate that

motivates our modeling of AFM resolution for corrugated

surfaces, the vdW interaction model itself is more generally

applicable to other corrugated surfaces.

Model of the corrugated-surface resolu-
tion
Here we briefly outline the analytic development of the model.

Ultimately we wish to find the dependencies of the potential,

force, frequency shift, etc., for the case of a spherical tip and a

quasi-one-dimensional corrugated surface. The following

sections develop the calculation on the assumption that interac-

tions are pairwise additive, beginning with a Lennard-Jones

interaction between two atoms [24]. The formalism here closely

follows that of [11], in which a detailed analytical theory was

developed to model the adhesion of graphene to a sinusoidally

corrugated substrate.

This section is presented as follows:

1. Development of the basic formalism for carrying out nu-

merical integration of a Lennard-Jones potential, for a

“point atom” interacting with a semi-infinite substrate.

By obtaining this “point atom” potential, one can then

integrate over the tip volume to obtain the tip–surface

potential. We first obtain results for a flat surface with

boundary at z = 0, initially for the “point atom” and then

for a spherical tip body. This allows a check of the nu-

merical integration scheme by comparison with analyti-

cal results.

2. We then apply the method to a corrugated surface. As an

intermediate result, we discuss the tip–surface potential

and its z dependence since we find a different scaling

from the sphere–plane result generally assumed.

3. Finally, to simulate NC-AFM imaging, we compute

frequency shifts for the spherical-tip/corrugated-surface

system.

We begin with the Lennard-Jones potential written as

(1)

which represents the interaction between a pair of atoms sepa-

rated by a distance r. Following the Hamaker procedure, we

assume that the total interaction energy (atom–surface or

tip–surface) is obtained pairwise by integration of this potential.

1 Atom–surface potential
We first consider a “point atom” interacting with a flat, semi-

infinite substrate with density ρS (number/volume). The integra-

tion may be written as

(2)

As shown in [25], this has an analytic solution. For a general

potential described by
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(3)

the substrate-integrated potential is

(4)

and this is valid for n > 3. Here z represents the distance from

the “point atom” to the substrate surface. We use subsript “a–s”

to denote that this is a potential for an “atom” interacting with

the semi-infinite substrate.

For n = 6 (the usual attractive vdW form) this reduces to

(5)

Combining the attractive r−6 term and repulsive r−12 term, the

result may be expressed as

(6)

with

(7)

By inspection, it is apparent that Equation 6 represents a poten-

tial with depth w0 at distance h0 from the surface. Additionally,

one sees that choosing (w0, h0) is equivalent to choosing (C1,

ρs), according to Equation 7. Thus, in our numerical implemen-

tation we choose values for w0 and h0. As a first check on our

substrate by numerical integration, we compare the numerical

integration of Equation 2 with the analytical result in

Equation 6. In this case the interaction is parameterized as

w0 = 1.0 aJ and h0 = 0.3 nm. The agreement is excellent, as

shown in Figure 2.

2 Tip–surface potential
Once the atom–surface potential is obtained, the tip–surface

potential is obtained in an analogous manner. It is computed as

(8)

Figure 2: Verification of atom–substrate potential: Potential wa–s
versus z for numerical and analytical schemes for a “point atom” inter-
acting with a flat surface. The near-perfect overlap of the curves
demonstrates the fidelity of the numerical integration scheme.

Figure 3: Schematic illustrating the model geometry: The surface is
sinusoidally corrugated along the x direction only, with wavelength λ
and amplitude δs. The surface corrugation is independent of y (quasi-
1-D geometry). The tip is modeled as a sphere of radius R.

where the uppercase W designates a potential between two

extended objects. Here, ρt is the tip density (number/volume)

and the integration is over the (spherical) tip volume. The z co-

ordinate for Wt–s(z) is the distance between the surface and the

apex of the spherical tip (the point closest to surface), as

depicted in Figure 3. Employing the NIntegrate function in

Mathematica 8.0, the numerical integration of Equation 2 gener-

ates the atom–surface potential as a tabulated function of z, with

scaling determined by (w0, h0). We then numerically integrate

this tabulated function over the spherical tip volume, for

varying tip–surface distance z, using an approach that incorpo-

rates the IDL routines INTERPOLATE and INT_3D. As a

check on this numerical integration, we compare against the

exact analytical result for a sphere attracted to a flat surface by



Beilstein J. Nanotechnol. 2012, 3, 230–237.

234

van der Waals forces. It is well-known that the sphere–plane

Hamaker integration has the approximate solution [25]:

(9)

in the limit z << R, where AH is the Hamaker constant for the

tip–surface material system, given by AH = C1·π2·ρs·ρt.

Equation 9 is sometimes used for fitting the vdW background in

NC-AFM experiments [26,27]. However, for the tip radii

modeled here, the limiting approximation is not accurate

enough to serve as a test for the tip integration scheme, and we

use the following exact analytical expression:

(10)

In Figure 4, we plot −Wt–s versus z to show that the numerical

integration over the tip volume accurately reproduces the exact

formula. Additionally, we plot the function z−1 to indicate the

small-z limiting behavior. In all numerical calculations the full

Lennard-Jones potential of Equation 6, including both the

attractive and the repulsive terms, is utilized. While the analyti-

cal expression in Equation 10 is limited to the attractive inter-

action, the agreement in Figure 4 is excellent.

Figure 4: Hamaker force for flat surfaces: Relationship between tip
potential and distance from the surface. Here the distance is taken
relative to the surface position (distance from surface = z(x) − zs(x)).
The dashed line is a reference for the 1/z dependence expected from
the Hamaker force law for the interaction between a flat surface and a
sphere. The numerical results show excellent agreement with the
exact potential (Equation 10).

Following these consistency checks on the numerical integra-

tions with a flat substrate surface as a reference, we now extend

the calculation to a corrugated surface. The treatment follows

that of [11]; in analogy with Equation 2 the atom–substrate

potential is written as

(11)

with the essential difference being the upper integration limit on

z. The upper integration limit in z is now the (sinusoidal)

surface profile zs(x), given by zs(x) = δs·sin (2 πx/λ). Note that

wa–s is necessarily a function of x and z. The tip–surface poten-

tial is obtained in analogy with the calculation for the flat

surface (Equation 8), and is also a function of x and z.

All computations are carried out with λ = 10 nm, δs = 0.5 nm,

w0 = 0.169 aJ, and h0 = 0.3 nm. The particular choice of ampli-

tude and wavelength is based on our best measurements of

SiO2, which gave rms roughness ~0.38 nm and correlation

length ~10 nm. The 10 nm period is divided into 16 intervals at

which points the potential is calculated (shown as black dots on

the sinusoidal surface in Figure 3). In the z direction, the grid is

much finer, namely 0 to 40 nm in increments of 0.01 nm. The

40 nm range is necessary to incorporate realistic tip diameters,

and to allow proper integration over the oscillation amplitude,

as discussed below. Our scheme is motivated by simplicity;

however, an adaptive grid scheme would be desirable to deal

with the rapidly varying behavior of wa–s near the surface and

very smooth asymptotic behavior several nm from the surface.

The computation of the atom–surface potential wa–s(x,z) for the

corrugated surface requires some careful discussion. In [11],

analytical formulas were derived for the integration given in

Equation 2. However, the formulae developed there ultimately

make the approximation that z >> δs, and consequently they do

not work well at relatively small z (anomalies begin to appear

even >1 nm from the surface contour). This is why a final nu-

merical integration was adopted in our work to obtain wa–s(x,z).

There appear to be inherent numerical difficulties in computing

the integral for a sinusoidal surface, and we are currently

limited in the closest distance to the surface for which we can

compute wa–s. For example, in the case of the flat substrate, our

numerical integration routine allows computation of wa–s to

within 0.19 nm of the surface. In that case, the potential is in the

highly repulsive regime with a value of about +24.60w0, where

w0 is the depth of the potential well at the minimum. The

equivalent calculation for a corrugated surface with δs = 0.5 nm

and λ = 10 nm is generally limited to ~0.26 nm throughout most

of the corrugation period (the potential cannot be computed

closer than 0.26 nm to the surface). The limits on wa–s carry

over directly into limits on Wt–s, as we only integrate the tip

potential where the integrand is defined. Thus within our

continuum model with a perfectly rigid tip and substrate, we
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cannot generally take the tip into the regime in which the

overall interaction is repulsive. This is rather unsatisfactory at

present, as it would be preferable to have well-defined numeri-

cal values (even if unrealistically large), and then let the limits

of the model be decided on physical grounds, i.e., peak force or

stress on the tip apex, etc.

3 Calculation of frequency shifts
Once the tip–surface interaction potential Wt–s is obtained, the

interaction force Ft–s is found straightforwardly by differenti-

ation with respect to z. We then compute the frequency shift

using the following expression [28], which is exact to 1st order

in classical perturbation theory:

(12)

with spring constant k = 40 N/m and resonant frequency

f0 = 300 kHz. We then convert to the normalized frequency

shift γ, which is defined as [20]

(13)

Results and Discussion
Using the model, we arrive at several key results. First, we find

that the generally assumed Hamaker force law for the inter-

action between a spherical tip and a flat surface does not hold in

the case of corrugated surfaces. Second, we find that the imaged

structure is attenuated with respect to the surface geometry,

even for small distances between the tip and the sample.

Deviation from the sphere–plane Hamaker
force law
In the previous section, we discussed the Hamaker integration

for a sphere interacting with a flat surface through van der

Waals forces. The integration can be carried out without

approximation to yield the exact formula; this exact formula is

cumbersome and given by Equation 10. In the limit z << R, this

formula simplifies greatly to Wt–s ≈ −AHR/6z, which is often

used in describing tip–sample vdW forces. Applying the

formalism developed for a sinusoidally corrugated surface, we

find that the basic scaling with distance is fundamentally

different when the surface is corrugated.

Figure 5 shows the relationship between Wt–s and the local

height above the surface (h = z(x) − zs(x)) for tip radii of 5 nm

and 10 nm, at four high symmetry points on the corrugated

surface (x = 0, x = λ/4, x= λ/2, and x = 3λ/4). We compare the

curves derived from the corrugation model to the exact curves

corresponding to a flat surface, and additionally show the refer-

ence curve 1/z, which represents the small-z limiting behavior

for the flat surface. We see that, unlike the flat case, the curves

do not show a 1/z dependence in the limit of small tip–sample

distances. Assuming a relationship of the form 1/zβ for Wt–s

versus the tip–sample distance, we find β > 1. This means that

the tip potential drops off more quickly with increasing dis-

tance than one would expect from application of the Hamaker

force law for the relationship between a sphere and a plane.

Additionally, the dependence of Vtip on the tip–sample distance

varies with lateral position, showing the strongest distance

dependence at the valley position (x = 3λ/4, blue curve) and the

weakest distance dependence at the peak position (x = λ/4, red

curve). For x = 0 and x = λ/2, the distance dependencies are

equivalent, which is consistent with the observation that these

two locations are mirror symmetric in geometry. For all lateral

positions studied, a departure from the sphere–plane Hamaker

force law results. The departure is most pronounced when the

tip is in close proximity to the surface; as the distance from the

surface increases the potential converges to the exact result for a

flat surface. While the deviation from the sphere–plane

Hamaker force law is not mapped throughout the corrugation

(λ, δ) parameter space here, we expect that for a given tip radius

the deviation will decrease with longer λ and smaller δ due to

decreased interaction between the tip and the substrate side

walls. This prediction is consistent with the flat surface case,

which is restored in the limits λ → ∞ and δ → 0.

Figure 5: Hamaker force law for corrugated surfaces: Tip–sample dis-
tance dependence of tip potential for high-symmetry points (inset,
x = 0, x = λ/4, x = λ/2, and x = 3 λ/4) for the two radii (R = 5 nm and
R = 10 nm); for x = 0 and x = λ/2 the curves overlap. Lines for the
exact analytical form (Equation 10) of the Hamaker relationship
between a sphere and a plane are shown (black line) for comparison.
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Attenuation of surface features
To determine the degree of attenuation of surface features for

NC-AFM, contours of constant frequency shift were calculated

(Figure 6) by using the method described in the previous

section. Here, we present results for a tip with radius 5 nm.

With increasing distance from the surface these contours show

attenuation of the corrugation. As discussed in the previous

section, the proximity to the surface is limited by our first nu-

merical integration to obtain wa–s. At our computational limit,

the nearest contour that we can calculate corresponds to a

normalized frequency shift of −0.72 nN·nm1/2 (−22.8 fN·m1/2),

which is well into the range in which atomic-resolution images

are normally obtained [20]. Most significantly, at this inter-

action level the contours are attenuated by ~30% (lower-most

contour, purple curve in Figure 6). At −0.1 nN·nm1/2 (upper-

most contour, red curve in Figure 6) the model predicts over

50% attenuation compared to the surface corrugation. The

attenuation of surface features can be understood intuitively by

considering the vdW interaction of the tip and the corrugated

sample surface. For flat surfaces, the vdW interaction provides

a constant background and is most strongly concentrated at the

tip apex, but for corrugated surfaces the vdW interactions over

peak positions and valley positions are different and interac-

tions with the side of the tip become more important. For the

valley positions, the attractive force between the tip and the

sides of the valley will lead to a stronger attraction than for the

flat surface case and thus result in a higher z position for the

same frequency shift. A similar physical argument can be made

for the peak positions. In this case the downward slope means

that neighboring atoms are farther away, the vdW interactions

with these atoms is smaller compared with the flat case due to

the increased distance, and as a result the same frequency shift

will occur at a lower z position. The vdW interactions with

neighboring atoms become more dominant at larger z distances

(smaller frequency shifts), and therefore one can intuitively

expect greater attenuation (lowering of peak positions and

heightening of valley positions) based on these simple, physical

vdW arguments. A similar argument was presented by Sun et. al

in describing the attenuation in the graphene moiré structure on

Ir(111) due to the vdW interaction between the tip and the

underlying Ir(111) structure [29]. While attenuation is to be

expected for increased distance between the tip and the sample,

we emphasize that the degree of attenuation for a tip of 5 nm

radius is significant even at small distances, with a normalized

frequency shift that is relatively large. To obtain accurate

experimental results with NC-AFM it is of critical importance

to choose a frequency shift setpoint such that the distance

between the tip and the surface is minimized, especially when

seeking accurate topography of corrugated surfaces. The model

used does not account for local bonding, electrostatic forces, or

atomistic interactions beyond the inclusion of a pairwise vdW

interaction, all of which affect the AFM resolution; nonetheless,

even if these interactions were included, the varying vdW

and resultant attenuation of features still presents a problem

to resolution.

Figure 6: Contours of constant normalized frequency shift, γ, for a
corrugated surface. Attenuation is observed as the distance from the
surface increases. Here, zabs gives an absolute position in the z direc-
tion, not a relative distance from the surface.

Conclusion
As is already well known in the field of atomic force

microscopy, a sharp tip and close proximity to the surface is the

key to obtaining accurate topographic images with high resolu-

tion. Here we have shown that, even more so than for flat

surfaces, these factors are especially important for high-resolu-

tion imaging of rough surfaces, based only on the differences

between vdW interactions. While the model results support the

experimental difficulty of obtaining accurate images of rough

surfaces, the model itself oversimplifies the multifaceted

complexities of experimental AFM setups. More complex

models, which include short-range bonding and electrostatic

forces, more realistic tip geometries, and calculations for closer

proximities between tip and sample, are needed for a more

complete and quantitatively accurate understanding of the

factors limiting the resolution of corrugated surfaces.

Experimental
All NC-AFM images were collected with a JEOL ultrahigh-

vacuum atomic force microscope with a base pressure of

4 × 10−8 Pa. SiO2 samples (Figure 1a and Figure 1b) were

cleaved in air to the proper size then quickly transferred into the

ultrahigh-vacuum JEOL AFM system (4500A, Nanonis

controller). SiO2 samples were baked at 130 °C for cleaning. In

order to replicate the experimental substrate preparation often

used for graphene exfoliation, no additional cleaning pro-

cedures were performed before imaging of the SiO2. Si(111)

samples (Figure 1c) were cleaned in UHV by the standard
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procedure with repeated flashing at 1530 K, followed by slow

cooling through the (1 × 1)-to-(7 × 7) phase transition [30].

NC-AFM measurements were performed with commercially

available cantilevers; supersharp tips were used for the high-

resolution SiO2 measurements (Veeco TESP-SS with nominal

radius of 2–5 nm), metal-coated Si for the under-resolved SiO2

measurements (MikroMasch DPER15), and uncoated Si for the

Si(111) measurements (Nanosensors Point Probe NCH with

nominal radius 7 nm). All images are presented in raw form,

with only a plane-fit background subtraction. Commercial

software (SPIP) was used for the presentation of image data.
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