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Abstract
Background: The complex nature of the magnetic interactions between any number of nanosized elements of a magnetic superlat-

tice can be described by the generic behavior that is presented here. The hysteresis characteristics of interacting elliptical nanomag-

nets are described by a quasi-static method that identifies the critical boundaries between magnetic phases. A full dynamical

analysis is conducted in complement to this and the deviations from the quasi-static analysis are highlighted. Each phase is defined

by the configuration of the magnetic moments of the chain of single domain nanomagnets and correspondingly the existence of

parallel, anti-parallel and canting average magnetization states.

Results: We give examples of the phase diagrams in terms of anisotropy and coupling strength for two, three and four magnetic

layers. Each phase diagrams character is defined by the shape of the magnetic hysteresis profile for a system in an applied magnetic

field. We present the analytical solutions that enable one to define the “phase” boundaries between the emergence of spin-flop, anti-

parallel and parallel configurations. The shape of the hysteresis profile is a function of the coupling strength between the nanomag-

nets and examples are given of how it dictates a systems magnetic response. Many different paths between metastable states can

exist and this can lead to instabilities and fluctuations in the magnetization.

Conclusion: With these phase diagrams one can find the most stable magnetic configurations against perturbations so as to create

magnetic devices. On the other hand, one may require a magnetic system that can easily be switched between phases, and so one

can use the information herein to design superlattices of the required shape and character by choosing parameters close to the phase

boundaries. This work will be useful when designing future spintronic devices, especially those manipulating the properties of

CoFeB compounds.
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Introduction
The development of highly ordered superlattices is of

significant importance from a practical perspective as well as

for discovering new collective properties. The cumulative

magnetic effects associated with the interaction of many nano-

magnets can be witnessed as giving rise to unique-phase tran-

sitional behaviors. This is especially true for thin elliptical

cylinder nanomagnets that have high shape anisotropies [1].

A nanomagnet with high shape anisotropy must have some

kind of modulation in order to reduce the height of the

anisotropy energy barrier. This is typically done through

doping in order to reduce the saturation magnetization of the

nanomagnet. In recent years amorphous ferromagnetic

materials have been successfully doped (with, for example,

vanadium or chromium [2]) to lower the saturation magnetiza-

tion of the compound. In doing so the energy barrier between

stable states of the magnetization remains at a surmountable

level. This is of high significance for designing magnetic

logic elements and magnetic sensors because changing the

geometry of the nanomagnet and levels of doping allows one to

change the magnetic properties in a controllable way. Superlat-

tices with magnetic elements of amorphous magnetic alloys,

such as Co60Fe20B20 [3] and Fe65Co35B12 [4], have been devel-

oped due to their excellent room temperature magnetoresis-

tance properties. Indeed, these bromide alloys are prime candi-

dates for creating functional magnetic field sensors and

magnetic random access memory devices. Recent work has

even focused on controlling the nucleation and propagation of

topological magnetic solitons through CoFeB/Ru superlattice

stacks [5]. With their excellent magnetic properties and soft

magnetic character, amorphous magnetic materials will

continue to be used in future devices. Thus, we investigate the

generic magnetic response of nanomagnets that are composed

of amorphous magnetic materials that have low random

anisotropy.

In this work we study the magnetic response of linear arrays

of nanomagnets to an oscillating magnetic field that is applied

at a slight angle from parallel to the longest axis of an

individual nanomagnet. A small perturbing magnetic field is

also introduced that enables the system to locate the metastable

states that exist in the energy landscape. The size of the shape

anisotropy energy barrier is a function of the saturation magne-

tization, the geometry of the nanomagnet and its demagnetiza-

tion factors.

These demagnetization factors, Nx,y,z, are defined by length

scales associated with the x, y and z axes of a nanomagnet. To a

reasonable degree of accuracy, given the high accuracy of

modern fabrication technologies, each of the N magnetic layers

in the superlattice can be taken as having the same demagneti-

zation factors. Each nanomagnet in the system, each given an

index i = 1,2...,N, has lengths lx,y,z. The nanomagnets in the

superlattice, each of which is a thin elliptical cylinder of volume

V, have dimensionless magnetization vectors associated with

them: mi = (mxi,myi,mzi) = (cosφi sinθi,sinφi sinθi,cosθi). Here,

we focus primarily upon structures that have antiferromagnetic

coupling between nanomagnets. Ferromagnetic coupling invari-

ably leads to magnetization hysteresis profiles that depict

parallel magnetizations of equal magnitude and direction for all

the constituent nanomagnets. In artificial superlattice structures

the thickness of the interlayer is manipulated to enforce an anti-

ferromagnetic coupling. In all superlattices the lattice period of

the layers is of crucial importance to defining its purpose and

physical properties [6,7].

The properties of the spacer layers (composed of MgO or Ru,

for example) between the nanomagnets, and the resulting inter-

facial exchange coupling, usually leads to magnetization satura-

tion fields in superlattices that are smaller than those of indi-

vidual magnetic layers [8]. The coupling energy is a function of

the thickness of the interlayer. Experimentally, it has been

found that creating a ruthenium interlayer of 1.2–1.5 nm

between CoFeB nanomagnets has the consequence of gener-

ating an antiferromagnetic coupling, whereas with a larger

thickness ferromagnetic coupling will ensue [9]. We investi-

gate the changes in the hysteresis profiles that become apparent

in systems of antiferromagnetically coupled nanomagnets when

the coupling strength is altered.

It is important to note that the interaction of magnetic disks

in a stack may have a dipolar character. For example, if we

consider two small elliptical magnetic particles in a vacuum,

separated by large distances from each other so that each

particle will have a large magnetic moment, then these

particles will primarily have only dipolar interaction. However,

when the distance between these particles decreases, the

inter-particle interaction will be modified. The latter depends

on the specific media separating the particles. If this is a

metal then there appears the RKKY interaction, which is

mediated by the electrons of the surrounding metal. Depending

on the distance between particles it may have both antiferro-

magnetic and ferromagnetic character. However if the

media between the particles is not metallic and say, a dielectric,

then at each magnetic particle there may be induced higher

multipoles which add additional contributions into the overall

interaction.

Thus, the resulting interaction between the particles depends on

the relative interaction between them, so that the shape

anisotropy will play a key role. Recently, Serantes et al. [10]
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produced a methodology that is based upon a very powerful

computational Monte Carlo technique to study the magnetic

ordering in a system of dipolarly interacting magnetic nanopar-

ticles distributed along 1D chains. They studied in detail the

very interesting issue of the interplay between the nanoparticles

magnetostatic dipolar interaction and magnetic anisotropy [10].

The separation distance for dipole–dipole interactions also

determines whether the system has an affinity for an antiferro-

magnetic or ferromagnetic interaction. Therefore, in their work

two different cases, non- and collinear, are considered [10]. So,

in the present paper we have considered the case when the parti-

cles are packed into the stack. Here the magnetic moments are

oriented perpendicular to the stack (or chain of particles). Due

to this form of construction the inter-particle dipolar interaction

has primarily the antiferromagnetic character (which, in the

next section, we will describe by the constant of inter-particles

interaction, J).

Thus, our approach is consistent with the studies [10-13], which

found by computational Monte Carlo techniques that the

magnetization of the dipolarly interacting magnetic nanoparti-

cles is well described by the Curie–Weiss law. Moreover,

Serantes et al. [10] obtained in the mean-field approximation

that even non-interacting particles are described by the

Curie–Weiss law where the critical parameter, an ordering

temperature, stands for the antiferromagnetic order. Because of

that fact the general conclusion of these papers was that a mean-

field treatment is not adequate to study magnetic nanoparticle

systems [10-13]. Therefore, in the present paper we developed a

microscopic approach which is based on considering the

dynamical behavior of magnetic nanoparticles with the use of

coupled micromagnetic equations. The results we obtain are

consistent both with a macroscopic Curie–Weiss type fitting

and the microscopic calculations of Serantes and co-workers

[10], which point to the primary importance of the shape

anisotropy of nanoparticles and the resulting magnetic prop-

erties of these systems.

Results
The superlattice magnetic energies and
magnetic fields
By lowering the saturation magnetization (Ms) of magnetic

compounds such as CoFeB by doping [2] one can extend the

elongation of each nanomagnet without creating too high an

energy barrier between the stable states of the superlattice

[14,15]. This is important for creating magnetic logic or

memory devices, so as to enable switching between different

orientations of the magnetic moments in moderate magnetic

fields. The height of the energy barrier is reduced by doping and

in order to compensate for the resulting off-set in the height of

the barrier a higher aspect ratio nanomagnet has to be designed.

The shape anisotropy is given by [15],

(1)

In this work we define the longest axis of each nanomagnet to

be in the x-direction and so the smallest shape anisotropy is

associated with this x-coordinate (tending to zero the more

stretched a magnet becomes). A superlattice composed of inter-

spersed nanomagnets can be created by balancing the aforemen-

tioned energy concerns to create a robust system against

thermal instabilities (shaped as an elliptical stack). The protec-

tion of magnetic information can be achieved due to the

increase in magnetic volume and the reduced switching current

density [16]. The energy equations for the system of N nano-

magnets are,

(2)

where the interaction energies between the end and next nearest

to the end nanomagnets (one nearest neighbor) are given by Ee

(3)

the inner interaction energies (two nearest neighbors) Ein are,

(4)

and the Zeeman energies Eze are

(5)

Later, we will define all the coupling energies equal, with J

being a dimensionless coupling parameter. When J is negative

the coupling is antiferromagnetic for certain interlayer thick-

nesses. The nature of the coupling changes according to the

mechanisms of Ruderman–Kittel–Kasuya–Yosida (RKKY)

interaction theory [17-19]. The field applied to the superlattices

is H = Msh = Ms {hx,hy,hz} (with Ms = 0.5 × 106 A/m) and we

reintroduce the notation {e,a,b} = 2{Nx,Ny,Nz} from [15]. Now,

the dynamical equations for the magnetization are derived from

the Landau–Lifshitz–Gilbert (LLG) equation ([15,20,21]),

(6)
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Figure 1: The magnetic phase diagrams of anisotropy, a, as a function of coupling strength J. In (a) N = 2, (b) N = 3, (c) N = 4 the phase diagrams are
found through a quasi-static analysis. In (d) the dynamical results by using Equation 6 for N = 2 are shown. One can see that in the AP phase the
hysteresis alternates between an AP and P phase, indicating that the AP phase is the least stable.

where Heff,i is an effective field and γ is the gyromagnetic ratio.

In the last term, the Gilbert damping, with damping parameter

α, is incorporated into the model. Equation 6 is expanded as in

[22] to find the evolution of the magnetization angles in each

nanomagnet. A resulting dimensionless form is found by

dividing by Ms
2 and writing time as t = τ/γ Ms. The dimension-

less parameters used here (J, e, a, b, and hx,y,z), have also been

divided by Nx throughout [15]. The magnetizations are defined

through ∂φi/∂τ and ∂θi/∂τ. The resulting 2N coupled first-order

differential equations are then solved with a numerical algo-

rithm based upon adaptive Runge–Kutta–Cash–Karp tech-

niques. The oscillating magnetic field is directed along the

x-axis of the superlattice, i.e., the longest axis, with a frequency

of 1 GHz.

The response of nanomagnets to an applied
magnetic field
Throughout we use the damping parameter equal to α = 0.01

and a large value of b (about 390) to confine the magnetic

moments to move in the x–y-plane. We investigated nanomag-

nets with semi-major to semi-minor elliptical cross-sections of

lx/ly ≈ 10. The external magnetic field in the x and y compo-

nents,

(7)

is applied with frequency fapplied = fγMs and amplitude

Ha = Msha. The angle of deviation between the applied field and

the x-axis of the superlattice is β, and λ is a small time-depen-

dent perturbation in hy with amplitude 0.02 (the perturbation

has its origin in a thermally assisted magnetization reversal, as

discussed on page 6 of [15] and in [23]). In the stretched ellip-

tical disks or nanowires the perturbation in hx has an insignifi-

cant effect and hence can be neglected. The hz component of the

field is taken to be zero.

We define the phases by the shape of the magnetic hysteresis

curves of magnetization as a function of the applied magnetic

field strength. There are two phases involving spin-flop states:

AF1 and AF2. These phases have characteristic Barkhausen

jumps from scissored states into anti-parallel states of the rela-

tive orientations of the magnetic moments of each nanomagnet

in a superlattice. Anti-parallel states occur when the magnetic

moments point with opposite polarity along the easy-axes and

are shown by a series of plateaus, in between saturation states (a

parallel phase P occurs when there are no AP or AF states and is

usually typical of ferromagnetically coupled systems). An AP

phase exists when there are no scissored states. An index

(j = 1,..) is applied to signify the number of distinct plateaus that

are present in a hysteresis loop, e.g., AF1j. In the AF1 phase

there is a change of state from the scissored one into a parallel

one. The AF2 phase does not have this transition. Both the AF1

and AF2 phases, however, have transitions that go from parallel

states into scissored states [15]. The AF phases are quite robust

at the levels of damping that occur in most CoFeB systems

(α ≈ 0.01). The balance between the coupling strength J and

anisotropy parameter a is shown through the phase diagram of

Figure 1a for the two coupled nanomagnets systems that were

also considered in [15].
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In this phase diagram the AF1 phase occurs when [15]

(8)

In this system the average magnetization, that evolves with the

application of an external magnetic field, has a defining

Barkhausen jump that emerges from an anti-parallel alignment

of the magnetic moments into a scissoring spin-flop condition

(the AF1 phase). Again, to reiterate the findings of the two

nanomagnet systems [15] before increasing N we now state the

limits of the AF2 phase to be,

(9)

The AP phase exists predominantly when a > 2J. In Figure 1a

the Barkhausen jump between an antiparallel state straight into

a parallel one occurs, which is the nature of the AF2 phase. In

each region of the phase diagrams of Figure 1a–c, a schematic

of the shape of the magnetization versus applied magnetic field

curve for the pertinent phase is shown.

The phase diagrams in Figure 1a–c are found through the use of

the quasi-static techniques described in [15]. The fourth phase

diagram, Figure 1d, is found from the dynamical analysis by

using the LLG equations (Equation 6). From Figure 1d one can

see that the AP phase is the least stable, with large breakdown

to a P state within the analytically found AP region – compare

to Figure 1a. This indicates that spin-flop phases AF1 and AF2

are more durable for logic operations. The AP phase, in the

range of damping for CoFeB compounds around α = 0.01, is

most stable for high anisotropies and high coupling strengths |J|.

The analytically found (through the quasi-classical method

[15]) phase boundary between the AP and AF2 phases holds

with some degree of fluctuation for the fully dynamical

analysis. However, the AF2–AF1 phase boundary corresponds

completely with the analytically found solutions.

In Figure 1b, the phase diagram for three coupled nanomagnets

is shown. Again there are AF (1,2), AP, and P regimes. When

the anisotropy is in the range

(10)

there is an AF1 spin-flop phase. Whereas, when the system of

three nanomagnets is designed with anisotropies in the range,

(11)

the AF2 phase is dominant. Beyond a = 3J the AP phase takes

form. For N = 4, the phases are separated under the conditions

that for the AF1 regime,

(12)

The AF2 phase for four layers of nanomagnets occurs in the

range,

(13)

In Figure 2, the resulting hysteresis evolution as a function of |J|

is shown for four coupled nanomagnets. It demonstrates that by

changing the interlayer spacing and the coupling strength,

completely different magnetic phases are found. Figure 2 shows

the evolution of the hysteresis profile as J is altered. The results

are obtained from a full dynamical analysis, using Equation 6,

and compared to the analytically obtained phase diagram of a

against |J| where J is always taken as an antiferromagnetic

coupling. In Figure 2 one can see that there are clear magnetiza-

tion plateaus that characterize the nature of the hysteresis

(plateaus of the same value of  are given the same index).

When 2 ≤ |J| ≤ 9, there are j = 3 plateaus and an AP phase. The

dynamical analysis reveals that for very small coupling

strengths, |J| ≤ 2, a P phase exists that has a hysteresis curve that

is similar to that of a single nanomagnet in an applied field. For

greater values of |J|, there are j = 5 plateaus in the AP and subse-

quent AF phases, i.e., AP5, AF15 and AF25.

Figure 2 has four coupled nanomagnets each of dimensions

lx = 186 nm, ly = 20 nm, and lz = 1.5 nm (with Nx = 0.00454 and

Nz = 0.88269). With the inclusion of a thermally induced fluctu-

ation, λ (see [15]) the number of plateaus can be variable. The

small perturbation to the system can result in metastability and

the magnetic field should be cycled many times in order to

obtain all possible Barkhausen jumps, in accordance with the

energy balances of the system under investigation. It is a subtle

balance that exists in these energy landscapes. For example, in

Figure 3 (for the anisotropy level of a = −50 and increasing the

coupling strength steadily) there are j = 3–7 plateaus within the

different phases. The last image in this figure shows that extra

plateaus can emerge upon repeatedly cycling the magnetic field

hundreds of times if the energy balance is precarious enough to

allow the opportunity for finding extra metastable states. It is

not, however, always the case that extra plateaus emerge. Thus,

near the critical points of stability [24], at the boundaries

marking phase transitions, thermally induced fluctuations in the

magnetization can alter the whole nature of the magnetic evolu-

tion. Thus, the phase diagrams can be used to find the arrange-
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Figure 2: The evolution of four nanomagnets with constant anisotropy and varying interaction strength. Along the top of the plot the shape of the
hysteresis, for magnetization against applied field, in a range of J is shown schematically. The anisotropy parameter is taken as a = −50 (with
Nx = 0.00454). The green line intersecting the bottom phase diagram represents this constant value of anisotropy. The hysteresis occurs with j
plateaus of differing values of , which is the meaning of the subscript of APj, AF1j, and AF2j (plateaus of the same value of  are given the
same index). The hysteresis profiles have been obtained by using a full dynamical analysis using the LLG equations, Equation 6, and compared to the
analytically obtained phase diagram that is similar to Figure 1. The plateaus occur at  = 0, ±1/2, ±1. When  = 0, (φ1,φ2,φ3,φ4) = (0,π,0,π) or
(π,0,π,0). For the saturation magnetized states, all the φ are equal. In the cases of  = 1/2 the azimuthal angles take the form (π,0,0,0) etc. and
vice versa for  = −1/2, e.g., (π,π,π,0). Each of the nanomagnets has dimensions lx= 186 nm, ly = 20 nm, and lz = 1.5 nm. The top and front view
geometry and sizes are shown schematically.

ment of nanomagnets that is most robust against perturbations.

This is important for creating optimized computational and

logic devices.

Figure 3: The hysteresis profiles for N = 6. There are fluctuating levels
of magnetization plateaus as the energy balances of the system shift
between metastable states. The magnetic field has to be cycled a
number of times to obtain all of the possible Barkhausen jumps. For
example, the last hysteresis loop shown will only display the black
lines for many cycles. However, for this case of J = −8, further cycles
reveal the dashed (blue) plateaus.

Discussion and Conclusion
In these systems of single domain nanomagnets the macro-spin

approximation holds and the internal degrees of freedom can be

analyzed by using classical dynamics. We have used the

dynamical Landau–Lifshitz–Gilbert equations in complement to

a quasi-static analysis of the complicated energy landscapes of

the interacting nanomagnets. In doing so we combine analytical

solutions, obtained through quasi-classical methods [15], with

numerical solutions found through a full dynamical analysis.

The result is a design ethic for creating superlattice structures

composed of elliptically shaped and regularly patterned

magnetic particles. The quasi-static model has been used to

identify possible regimes of the many particle system. Natu-

rally the low frequency limit of the applied magnetic field must

reproduce the magnetostatic approach, as it does. However we

found that even in the high frequency limit, even to the giga-

hertz or terahertz frequency range of the applied magnetic field,

that the regimes of the behavior identified within the static

model still stand. The reason for this correspondence between

the high and low frequency limits or static phases is due to the

substantial damping, that removes the high probability for the

creation of chaos in these systems. Indeed, we have found that

chaos emerges within certain limits of the energy balances in

the system, particularly for less elongated nanomagnets and

those less damped. In our future publication we plan to address

the issue of the chaos which may arise in the chains of magnetic
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particles. But the chaos is suppressed when the damping is suit-

ably high, the case which we are considering here. With the

emergence of new devices such as the magnetic ratchet for spin-

tronic memory and logic in three-dimensions [25] and recent

results for multisegmented nanowires [26] (where the shape

anisotropy provides the preferential orientation of segmented

magnetic moments along the nanowire), understanding the

magnetic phases has never been more timely. Indeed, by the

experimental studying of the magnetic hysteresis of these nano-

sized stacks the different magnetic regimes described herein can

be observed. This may shed light on the complexity of the

behavior of these unique and extremely interesting magnetic

systems. Also, hybrid structures of ferromagnetic superlattices,

combined with two-dimensional materials such as graphene and

silicene have the potential to revolutionize spin-injection and

detection devices for spintronics [27-30]. The ferromagnetic

materials are ideal contacts for creating these spintronic devices

on, for example, a single layer of graphene [29]. A magnetic

ratchet device could be used to inject, at room temperature, a

reservoir of spin-polarized electrons for propagation through a

graphene spin barrier and avoid conductivity mismatch. The

understanding of the macrospin dynamics of the superlattices

can enable the design of such devices, with the spin-up/down

electrons injected into the graphene for differing tunnel-trans-

mission probabilities. Indeed, the magnetic superlattice can also

be a very sensitive detector of magnetic fields, and may be used

for biodetection as in [31]. Thus, these methods, discussed

herein, for understanding the magnetization dynamics as a func-

tion of coupling energy and applied magnetic fields, can be

used as the basis for creating novel nanomagnetic devices for

magnetoresistance experiments and the creation of hybrid struc-

tures. The stability of the phases was also strongly indicated as

being a function of the coupling strength between the nanomag-

nets for the case of a system composed of two nanomagnets. In

the cases of N nanomagnet superlattices the phase boundaries

have been highlighted by way of example by using analytical

results derived from a quasi-static approach for N = 3 and N = 4.

The results of the quasi-static analytics were then compared to a

full dynamical analysis and it was found that a very good corre-

spondence between them exists. Taking superlattices that are

composed of N nanomagnets with the same geometry, i.e.,

lx = 186 nm, ly = 20 nm, and lz = 1.5 nm, and varying the

coupling strength between them gave illuminating results. As

the coupling strength is altered for larger systems of nanomag-

nets, N > 2, one can find that there are sub-phases within the

main phases that are characterized by different numbers of

plateaus in the hysteresis profiles. These plateaus are related to

the orientations of each single-domains magnetic moments. For

example, in Figure 2 there are 2N = 16 possible configurations

of the magnetic moments for four coupled nanomagnets. In the

hysteresis profile there are a possible N + 1 magnetization

plateaus: those of the two saturated states, those of complete

anti-parallel alignment (or with pairs of equal azimuthal angles,

e.g., (0,0,π,π)), and also those when there is one nanomagnet

out of phase with the rest by π radians. It was seen that for the

case of four nanomagnets the AP phase can occur with j = 3 or 5

depending upon the coupling strength. As the number of nano-

magnets in the superlattice is extended there exist many more

metastable states and paths between energy minima in the

system. In the example of Figure 3, for N = 6 coupled nanomag-

nets, this was demonstrated. In various coupling strength

regimes there are sub-phases within each of the main AF and

AP phases that exist with different numbers of plateaus

emerging. Before a cross-over from one sub-phase into the next,

e.g., Figure 3 with J = −8, the system is again unstable and upon

cycling the applied magnetic field many times all N + 1 possible

levels of magnetization plateaus can emerge. Thus, when

designing the nanomagnetic structures, one needs to carefully

investigate these sub-phases too, as the anisotropy/coupling

balance strongly dictates the resulting hysteresis profile within

the phase. Experiments to test for these phases and sub-phases

should be designed by creating the superlattices with different

inter-layer thicknesses. In doing so we hope that this will lead to

greater clarity in the design process of larger, N > 2, arrays of

nanomagnets, which will be very important in the future for

creating stable magnetic devices.
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