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Abstract
In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case,

finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a

strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load FN. As

for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be

readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent

discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of

the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion

decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on FN, Δγ, and μT

but – unlike the contact area – barely on the functional form of the finite-range attraction. The results can benefit the interpretation

of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts.
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Introduction
The continuum description of single-asperity contact mechanics

has received much attention in the last few decades. This is in

large parts because it describes force-displacement curves rather

accurately down to nanometer scales relevant to atomic force

microscopy (AFM) [1-3]. The contributions to the linear elas-

ticity of (frictionless) single-asperity contacts most central to

this work are the following: Hertz [4] solved the contact

mechanics of a parabolic tip pressed against a substrate for
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hard-wall repulsion. He found that the contact area Ac and the

separation between the two solids d both disappear continuous-

ly with  as the normal load squeezing the two solids

together, FN, approaches zero. Derjaguin, Muller, and Toporov

(DMT) [5] included adhesion as a long-range interaction, in

which case adhesion effectively acts as a normal load that is

independent of the contact-radius ac. Johnson, Kendall, and

Roberts (JKR) [6] solved the problem for short-range adhesion,

for which the attractive surface forces act directly at the contact

line. Unlike Hertz and DMT, JKR found finite values for Ac and

d at pull off. Tabor [7] introduced a dimensionless parameter,

μT, now known as Tabor coefficient, allowing one to estimate if

a contact is closer to DMT or to JKR theory. He actually recog-

nized that DMT and JKR describe the opposite limits of long-

and short-range forces, respectively. This had not been known

before but was soon confirmed in numerical simulations by

Muller, Yushenko, and Derjaguin [8]. Lastly, Maugis [9] used a

cohesive-zone model introduced by Dugdale (MD) and found

analytical solutions for intermediate-range adhesion at arbitrary

values of μT.

Although single-asperity, linearly-elastic, adhesive contacts

mechanics is a rather mature field [10], two key issues remain

worth addressing: First, only few studies have considered the

case of negative work of adhesion [11,12], Δγ < 0, specifically

finite-range repulsion between two surfaces acting in addition to

hard-wall repulsion. In particular, the concept of the Tabor

coefficient has not yet been applied to negative Δγ. Therefore, I

investigate if there are different regimes for Δγ < 0 as is the case

for contacts with Δγ > 0, which are classified as JKR for large

μT and as DMT for small μT. This includes a study of which

parameters determine the behavior near squeeze-out as well as a

comparison to the behavior near pull-off for Δγ > 0. For the

latter, it is straightforward to deduce from established results

how the ac(FN) relation depends on the Tabor coefficient in the

DMT and the JKR limit. Specifically, ac − ap  (FN + Fp)κ for

FN ≥ −Fp, where Fp and ap are pull-off force and pull-off

radius, respectively. They both depend on μT just like the expo-

nent κ, e.g., ap > 0 and κ = 1/2 in the JKR limit, while ap = 0

and κ = 1/3 for DMT. In the present comparison of squeeze-out

(finite-range repulsion) versus pull-off (finite-range attraction),

I also study whether the exponent κ changes continuously

between JKR and DMT or discontinuously – as assumed

implicitly in the Carpick–Ogletree–Salmeron (COS) model [1].

The second motivation for this paper is that it has not yet been

investigated sufficiently how the (precise) functional form for

adhesive interactions affects contact mechanics – assuming that

all continuum parameters, from normal load to Tabor coeffi-

cient, are identical. It is only established that there is little sensi-

tivity in the limits of large and zero Tabor coefficients. Yet,

when studying contact-mechanics between macroscopic, adhe-

sive, rough surfaces in the context of continuum-mechanics, one

would want to know how to best reach the JKR limit, which

appears to be the relevant limit for that application. For

example, it is used implicitly in Persson theory for nominally

flat, adhesive surfaces [13]. In fact, the current work was initi-

ated by the desire to add adhesion into a Green’s function mole-

cular dynamics (GFMD) code used to model the contact

between rough surfaces. To model adhesion, one needs to iden-

tify a functional form for the finite-range surface forces

allowing one to reach the JKR limit in an efficient and well-

controlled fashion. It quickly became clear that doing a clean

job is not entirely trivial and that modeling single-asperity

contacts ought to be better understood first and moreover is

interesting in its own right.

The remainder of this paper is organized as follows: I first intro-

duce the model, sketch the numerical methods and discuss diffi-

culties arising in simulations in the limit of large and small

Tabor coefficients. Next, I present a brief dimensional analysis

motivating the commonly used unit system and the Tabor coef-

ficient. The result section opens with adhesive contacts. There, I

reproduce some established results and investigate how sensi-

tive results are on the details of the interaction model. That

section also contains a comparison to and an asymptotic

analysis of the MD model motivating some minor modifica-

tions of the empirical COS equations [1]. Next, results on posi-

tive adhesion are presented before the major results are summa-

rized and conclusions are drawn.

Results and Discussion
Definition of the model
In this section, the single-asperity contact problem is intro-

duced. As shown in Figure 1, we consider a stiff, ideally-flat

wall positioned in the xy plane at z = 0 and a linearly-elastic tip

of parabolic shape. Its undeformed surface is given by

(1)

where R is the radius of curvature and  the

in-plane distance of the center of the tip from the origin of the

coordinate system. The elastic displacement of the tip, u(x,y) is

formally a function of both in-plane coordinates, although the

equilibrium solutions only depend on r. The gap g(x,y) indi-

cates the distance between the deformed tip and the substrate,

i.e.,

(2)
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It is furthermore assumed that the tip cannot penetrate the sub-

strate. This can be stated as a non-holonomic boundary condi-

tion

(3)

Alternatively, one can formally introduce a short-range, hard-

wall repulsion [14]

(4)

where fr is an arbitrary positive constant of unit force per area.

Note that the integrand on the r.h.s. of Equation 4 is zero for

finite gaps while it diverges for negative gaps. Depending on

the problem, it can be more convenient to use either the non-

holonomic boundary condition or the energy-based description

of the short-range repulsion.

Figure 1: Geometry of the deformed tip (upper grey solid), the sub-
strate (lower solid), and the reference tip (solid line). The dotted line
represents a hypothetical tip that is allowed to penetrate the substrate
the distance d into the substrate without deforming. The following
vectors are introduced in the sketch: Normal load FN acting on the
center of mass of the tip, the elastic displacement field u, and the dis-
placement d of the tip’s center of mass. In addition, two scalar quan-
tities, namely the contact radius ac and the gap (field) g are shown.

This work also considers finite-range adhesive or finite-range

repulsive interactions Vfr, which only depend on the local gap.

The default expression for it is:

(5)

where Δγ is the work of adhesion per surface area that is

obtained when a flat tip touches the substrate in a continuum

description. The choice of the functional dependence of Vfr is

not motivated by the true functional form for the interactions

between any two real solids, but for the moment being, it is a

matter of convenience. Alternative interaction models for the

integrand are introduced in a seperate section.

An important property of all models for Vfr is that the inter-

action is characterized by a prefactor representing the work of

adhesion and a single length scale z0. The choice of the latter

allows one to localize adhesive stress near the contact line

through z0 → 0 or to extend the adhesive interactions to radii

much exceeding the contact radius ac for z0 → ∞. Of course, z0

can take any value between zero and infinity so that intermedi-

ate-range interactions can be modeled as well. Note that Vfr and

Vsr are qualitatively different: The prefactor of the short-range

potential is formally zero, because fr is finite and zr very small.

In other words, zr represents the size of an “infinitesimally-

small” atom whose size is irrelevant on a continuum scale. In

contrast, the prefactor of the finite-range potential is considered

finite as well as the range of interaction z0. It represents a

“collective” length scale, such as the decay length of density

oscillations in the fluid [15] or the radius of gyration of a

polymer.

The displacement u(x,y) and other fields (gap and stress) will be

expressed not only in real space, but also in Fourier space. This

is done most conveniently by using in-plane periodic boundary

conditions. The respective boundaries lie at x or y = ±L/2, which

should be chosen such that L (the linear dimension of the simu-

lation cell) is much greater than the linear dimension of the

contact zone. The latter includes the contact and the area of

non-negligible adhesive (or finite-range repulsive forces)

stresses. The following convention for the Fourier transform

shall be employed

(6)

(7)

where the wave vector components satisfy qα = 2πn/L, A = L2 is

the integration domain, and n an integer number. With these

definitions, one can express the elastic energy of the deformed

tip (in the small-slope approximation) as

(8)

where E is the effective modulus, E = EY/(1 − ν2), EY being the

Young’s modulus and ν the Poisson ratio. The convention of

using the symbol E* for the effective modulus is abandoned for
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clarity, because primes will be used later to indicate scaled

coordinates and scaled parameters.

Since  can be interpreted as the center of mass mode, the

effect of a load (or normal force) exerted on the tip leads to an

energy

(9)

When solving the contact problem, one seeks to minimize the

total energy

(10)

with respect to u(x,y), i.e., the solution u0(r) must satisfy

(11)

for each r. Here, δ indicates a functional derivative. In a discrete

representation of the problem, r is an index so that the func-

tional derivative in Equation 11 has to be replaced by a partial

derivative.

Alternative interaction models
Throughout this paper, different functional forms for the finite-

range interactions between surfaces are considered in addition

to the “default” or “exponential” model introduced in

Equation 5. Functions similar to the ones used in this work have

already been employed for the simulation of mode I fracture or

delamination. Depending on the authors, the functions are

called the cohesive zone model [16], the crack evolution func-

tion [17], or the traction-separation relation [18]. However, it is

not clear how the results obtained for mode I fracture geome-

tries relate to Hertzian contacts. This is the main reason why the

results obtained within the cohesive zone model cannot be

compared in a straightforward fashion to those of the current

study.

The additional models in the current work replace the integrand

on the r.h.s. of Equation 5 with the following expressions:

(12)

where Θ(···) denotes the Heavyside step functions, which is one

for positive arguments and zero otherwise. The interaction

potentials and their first derivatives are shown in Figure 2.

Figure 2: (a) Finite-range surface energies and (b) forces per unit area
for the models investigated in this study.

All expressions take the same value, −Δγ, for the adhesive

energy when the two surfaces touch, i.e., in each case the work

of adhesion is Δγ. In this sense, all four models produce the

same continuum limit. However, in two models, namely the

Gauss and the van der Waals (VDW) integrands, the derivative

 goes to zero when the two surfaces touch, while it

remains finite in the exponential model and the MD model.

As stated before, none of the models are supposed to be highly

realistic representations of surface forces, although each model

may have its justification. In particular the exponential model

follows from the argument that long-range density correlations

in fluids are governed by a single length [15]. In a high-density

fluid, the correlation length becomes complex [15], which then

leads to layering transitions as discussed recently [19]. The

VDW model might approximate the long-range van der Waals

interactions in a way that Δγ reflects the Hamaker constant.

Depending on the confined system in question, other effective

interactions might be possible. However, all models represent

the feature that surfaces repel upon close approach (i.e., when

atoms from opposing surfaces bump into each other, which is

implemented through the hard-wall repulsion) and that attrac-

tion – or additional repulsion – may occur at finite distance.

Continuous short-range repulsive forces are not used here.

Doing so would complicate the definition of contact and thus

contact radius, which has remained controversial for systems

without hard-wall or hard-disk interactions [20-23]. Lastly, the

equations to be solved would become very stiff and thus the

simulation inefficient if the hard-wall constraint was replaced

by potentials with large curvature.
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In the context of the squeeze-out of fluids, the MD and the

exponential model might not be physically meaningful for small

ratios of g/z0: when one flat solid is placed on top of another flat

solid with an infinitesimally small external load (in the absence

of a fluid), the two solids would repel, although they “cannot

know”, away from a contact line, that a fluid wants to penetrate.

Nonetheless, the exponential model has been used in early study

of squeeze-out of fluids [12]. Forces between two (flat) surfaces

in the Gauss and the VDW model are zero either for intimate

mecanical contact or at infinite separation.

Dimensional analysis
In this section, I present a simple dimensional analysis of the

contact problem. The result of the analysis is a meaningful set

of units, which, in similar form, has already been established by

Maugis [9]. However, in the present analysis, units are not

motivated from the solutions but rather straight from the begin-

ning, i.e., by the expressions defining the model. This is why

Maugis’ and the present units differ by dimensionless prefac-

tors, which, however, always turn out close to unity. In the

subsequent derivation, it is not necessary to know the precise

functional dependence of the finite-range forces.

Assume we know the solution u0(r) minimizing Vtot for a given

set of parameters defining our model, i.e., u(r) solves the

contact problem for a specific set of values for E, R, FN, Δγ,

and z0. It is then possible to “recycle” the shape of the function

u0(r) to solve a different problem defined by different parame-

ters E′, R′,  Δγ′, and . Specifically, if each individual

summand of  is identical to the equivalent term in

Vtot[u(r)] (up to a multiplicative constant, which can be set to

one), then  minimizes  given that u0(r) mini-

mizes Vtot[u(r)].

The transformation,  in which in-plane

coordinates are scaled as r′ ≡ sr and normal coordinates are

scaled as z′ = tz leaves the shape of the solution unchanged. Of

course, z(r) and thus g(r) must be transformed the same way as

u(r). Therefore, the radius of curvature of the “new” tip is

R′ = s2R/t.

Let us investigate how one has to alter each individual term

contributing to  so that it matches its equivalent in

Vtot[u]. (i) The hard-wall repulsive energy Vfr is unproblematic.

It disappears for the old and the new solution, because of the

limit zr → 0, i.e., . (ii) To recycle the Vfr calculation,

we need to set  = tz0. Keeping in mind that A′ = s2A, where

A = L2 is the original integration domain, it follows that

 = s2(Δγ′/Δγ)V[u]. (iii) For the calculation of the elastic

energy, it is useful to keep in mind that q′ = q/s and that

A′ = s2A. This means that  (The

integer indices enumerating the wave vectors are identical for

the original and the new domain.) (iv) Lastly, the load-related

energy becomes  In summary, we can

recycle our solution with the following substitutions

(13)

(14)

(15)

(16)

(17)

Let us first consider the case of no external force, FN = 0, so

that we investigate the “intrinsic” system properties. If we use E

as the unit of pressure, which is done until further notice, all

three remaining parameters defining the system can be

expressed to be of unit length, i.e, R, z0, and Δγ/E. Wether a

potential should be classified as short- or long-ranged can only

depend on a non-dimensionalized interaction length. This

means that z0 has to be expressed in the two remaining units of

length (R and Δγ/E) such that the dimensionless ratio

(18)

remains unchanged under a scaling transformation.

Let us now chose the radius of curvature as the unit of length,

or, alternatively, consider only those scaling transformations

that leave R constant. This can be achieved by setting t = s2,

which maps an infinite parabola (x → z = x2) onto itself

(sx → s2z). I note in passing that such a transformation might

not be meaningful for a scaling analysis of the contact

mechanics of randomly rough surfaces, which will be presented

elsewhere.

Inserting the relevant equalities from Equation 13–Equation 17

reveals that choosing α = 2/3 leaves the expression in

Equation 18 constant. As a consequence, the range of influence

of the adhesive term is best quantified by the term

(19)
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where μT is known as Tabor coefficient – up to a dimensionless,

multiplicative constant. It remains invariant under all scaling

transformation in Equation 13–Equation 17 leaving the radius

of curvature unchanged.

From Equation 19 one can see that we need to send z0 → w2/3z0

in order to keep the Tabor coefficient constant when changing

Δγ/E at constant R to wΔγ/E. This in turn implies a transforma-

tion of x → w1/3x for the in-plane coordinates, because R is

supposed to remain unchanged. It follows that ac(FN = 0) →

w1/3ac(FN = 0) and thus ac  (|Δγ|/E)1/3. The unit of ac can be

fixed by multiplying the r.h.s. of this proportionality with R2/3.

Otherwise the proportionality coefficient can only depend on

μT, and of course, on the sign of Δγ. Therefore, we can write

(20)

such that the r.h.s. of the equation only depends on the Tabor

coefficient and the functional form of the surface interaction.

Since we have not used the explicit functional form of our

default surface interaction (other than that it depends only on a

single length scale), the conclusions drawn in this section

extends to any choice for Vfr considered in this work.

To include finite loads into the analysis, note that the ratio

FN / |Δγ |R  does not change under the transformation

Equation 13–Equation 17. This allows us to express a properly

undimensionalized contact radius as a dimensionless function of

a properly dimensionless load

(21)

From this last equation, it also becomes clear that the pull-off

(or the squeeze-out) force is proportional to |Δγ|R, i.e., by iden-

tifying the value of FN/|Δγ|R at which the function ac,T takes its

minimum value. Therefore, it is most meaningful to normalize

the force with ΔγR, unless, of course, Δγ = 0.

The approach is validated in Figure 3. It shows the spatial

dependence of the gap for two different parameterizations.

Small deviations, which are not visible to the naked eye, occur.

They are due to finite-size and discretization effects. For

example, the ratio ac/L is not exactly zero and takes different

values for different values of s for a fixed number of points used

to represent the elastic surface.

Figure 3: Scaled gap g(r) as a function of scaled distance from origin r
for two different parameter realizations related through the scaling
transformation Equation 13–Equation 17. Parameters used are
E = L = μT = 1, FN = 1·10−4/w and Δγ = 0.64·10−4/w. The surface is
discretized into 512 × 512 elements. Circles s = 1 with w = 1 →
z0 = 0.0016, crosses w = 1/2 → z0 = 22/3 · 0.0016. For the second data
set, this implies a scaling factor of t = 22/3 for variables linear in normal
coordinates and thus s = 21/3 for variables proportional to in-plane
coordinates. The units on the normal side of the axes are in “absolute”
units, i.e., L = 1. The units on the opposite axes correspond to those
that remain invariant under a scaling transformation. The dotted line is
drawn to guide the eye.

The normal displacement can be nondimensionalized in a

similar fashion as the contact radius, except that it needs to be

rescaled with the factor w2/3 rather than with w1/3. This is why it

must obey

(22)

where all terms on the r.h.s. of the equation are again dimen-

sionless, while those on the l.h.s. are allowed to have units.

Thus, displacements and gaps are best represented in units of

R1/3(|Δγ|/E)2/3, while contact radii are more meaningfully

expressed as multiples of R2/3(|Δγ|/E)1/3. As a result, numbers

turn out of order unity when data is represented in these units,

unless FN approaches the pull-off threshold or distinctly

exceeds ΔγR.

I conclude this section by summarizing the units used in this

work and discuss some of the consequences arising from it:

Specifically, the following units are used for:

(23)

(24)
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(25)

(26)

This list includes a “new” unit of normal stress or pressure, [p],

which must be chosen proportional to [FN]/[x]2 rather than to E

so that the regular definition of pressure applies. As noted

above, E drops out of the definition of the unit for the normal

force, implying that pull-off or squeeze-out forces cannot be

functions of E. Instead they must equal R|Δγ| times dimension-

less expressions that can only depend on μT, and, of course, on

the functional form of the interaction potential. In our units, the

well-known ac(FN,E*,R,Δγ) relations can be simplified to

(27)

(28)

Hertzian contact mechanics is obtained in either limit for

FN >> 1. Finally, note that Maugis’ choice for units slightly

differs from ours in that he used πΔγ rather than Δγ in

Equation 23–Equation 26 and 3E/4 instead of E. The conver-

sion between Maugis’ and our system is summarized in

Equation 43–Equation 46.

Numerical analysis
Different methods can be used in the numerical solution of

Equation 11. For the present study, Green’s function molecular

dynamics (GFMD) [24] as described in [25] was employed. The

only modification is the implementation of conservative surface

forces acting in addition to the boundary condition g(r) ≥ 0.

Moreover, the results in this work were produced with a serial

code with typical run times of a few minutes. I refer to the

literature for more details on GFMD [24,25]. Irrespective of the

employed code or method, particular precautions, which are

worth discussing, need to be taken into account when including

adhesion or finite-range repulsion.

When simulating Hertzian contact mechanics, one needs to

ensure that the discretization of the lattice Δa satisfies Δa << ac.

Of course, methods based on spatially varying grids only need

to obey that relation near the contact line. In addition, one wants

ac to be much less than the size of the simulation cell, at least in

Fourier-based methods, such as GFMD. One then has the

sequence of inequalities Δa << ac << L. In Hertzian contact

mechanics, this is easy to achieve: choosing the discretization

such that Δa/ac = 1/32 and ac/L = 1/8 already gives accurate

results for the contact area, that is, to within less than 0.1%

error if the contact area is determined through a fit of the radial

pressure profile.

When including adhesion, an additional length enters, namely

that associated with the adhesive zone. The additional adhesive

radius or skin aa then needs to be taken into consideration.

When the Tabor coefficient is very small, aa becomes large, and

one needs aa to lie within the simulation cell. A new series of

inequalities is obtained: Δa << ac << aa << L. If the normal

stress changes smoothly with the gap, i.e., for long-range adhe-

sion, the forces couple predominantly to large wavelength

modes. This then results in a simple offset force, as is well

known from DMT theory. However, numerical demands can

become significant when ac disappears continuously with

decreasing load as in the DMT scenario. The condition ac << aa

then becomes difficult to satisfy.

In the opposite case of a large Tabor coefficient, aa is very

small, potentially much smaller than ac. We still need to resolve

the adhesive zone sufficiently well, because the stress has to be

smooth on the given discretization. One thus obtains the series

of inequalities a << aa << ac << L. In either limit of large or

small Tabor coefficient, another inequality needs to be satisfied

in addition to those for Hertzian contact mechanics.

While the contact area converges reasonably quickly as the

respective inequalities are obeyed, the center-of-mass displace-

ment d, which corresponds to  or u(r → ∞) only converges

slowly. The reason is that the displacement field induced at a

given point due to an external force only decays with the

inverse distance from that point, i.e.,

(29)

where c is a load- and system-dependent constant. Outside of

the adhesive zone, this relation can be used, in principle, to

extrapolate from finite r to infinite r, i.e., by determining c and

d from two measurements taken sufficiently far outside the

adhesive zone. In practice, this turns out problematic, because

the periodic boundary conditions suppress the 1/r corrections

near the boundaries.

For Hertzian contacts, it is still possible to use a slightly modi-

fied (empirical) correction

(30)

where X and M denote the (symmetry) points (L/2,L/2) and

(L/2,0) relative to the position of the center of the tip. The same
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extrapolation scheme also appears to give quickly converging

estimates for the normal displacement for adhesive contact,

which is demonstrated in Figure 4.

Figure 4: Negative elastic displacement −u(r) (as defined in Figure 1)
of a tip with R = E = 1 pressed against a rigid substrate at a positive
load of FN = 1.5625 for a work of adhesion Δγ = 1 and a Tabor coeffi-
cient μT = 1 resulting in an exponential decay length of z0 = 1. In each
case, the system is discretized into 512 × 512 grid points, but different
sizes are used, i.e., L = L0, L = 21/3L0, L = 22/3L0 with L0 = 9.8825. Part
(a) shows a larger domain including the shape of the tip in form of a
dashed line. Part (b) shows a smaller domain and includes a higher-
resolution estimate of the displacement at infinite radius R through the
extrapolation 6uX − 5uM.

It is worth discussing Figure 4. At the given load, the contact

radius is ac ≈ 2.30, while it would have been ac ≈ 1.05 without

adhesion. The displacement curve has a peak at r = 2.52 and

adhesive effects remain non-negligible all the way up to r ≈ 4.

At that distance the gap starts to be greater than 5z0, which

means that the adhesive attraction is less than e−5 times the

value in the contact and its immediate periphery. For distances

exceeding r = 4, an infinitely large system would then show the

displacement given in Equation 29. The periodic boundary

conditions suppress this scaling rather strongly, yet, for radii as

small as r = 10, accurate estimates for d∞ can be achieved

through Equation 30.

Simulations could be made more efficiently by exploiting the

radial symmetry of the system. This would allow one to reduce

sums over two indices (e.g., q1 and q2) to that over one index.

However, less is gained than it first might seem. To get a good

resolution of the contact area, the one-dimensional (1D) calcu-

lation require greater ratios for ac/a than two-dimensional

setups. The reason is that the resolution of the contact area in

1D and in 2D both scale with 1/N, where N is the number of

grid points in the contact. For example, when representing a

contact in which for the given discretization 5a < ac < 6a in a

2D system, then ac is allowed to take the values 

  and  The maximum distance

between two radii thus is Δamax = 0.28 so that the resolution is

Δac/a ≈ 5/0.28. To match this in a 1D model, one would need

18 grid points rather than five. Since we need to cover a

(square) area of (2ac)2 in 2D, we thus have a computational

overhead of a little more than a factor of 4 compared to 1D.

However, the disadvantage of large 1D systems is that the

number of iterations to find solutions can be much larger than in

2D. Depending on the nature of the solver, the number of itera-

tions scales as a power law with linear system size. In the given

case, where the effective stiffness scales proportional to wave

vector q, one would expect a slowing down with  at least in

simple gradient-based minimization such as steepest descent or

molecular-dynamics. For this reason, no efforts were made to

reduce the dimensionality, although this would have been legiti-

mate for the given problem.

Positive work of adhesion
This section analyzes how the employed models reproduce

established results for adhesive single-asperity contacts in the

limits of large and small Tabor coefficient. This includes an

asymptotic analysis of Maugis’ solution of the Dugdale model,

which in turn leads to modifications of the equations proposed

by Carpick, Ogletree, and Salmeron [1]. The cross-over from

JKR to DMT is investigated as well, in particular at zero load

and near pull-off, allowing one to identify the model for the

surface interaction that is most appropriate for the simulation of

(adhesive) multi-asperity contacts.

Zero external load
An external load of FN = 0 is addressed first. The motivation for

studying this special case is that one can analyze relatively

easily at what Tabor coefficients the DMT and JKR limits start

to predict reasonably accurate values for the contact radii and

displacements in our various models.

We start our analysis with the pressure distribution of the expo-

nential model, which is depicted in Figure 5 for μT = 1/4 and

μT = 4. It behaves very similar to the MD model, which shall

not be shown explicitly. As to be expected, the adhesive load is

spread out for μT = 1/4 to radii clearly exceeding ac (all the

more as each radius r contributes with a weight proportional to

r), while it is rather localized near r = ac for μT = 4. It therefore

seems legitimate to call the (net) pressure profile for μT = 1/4

DMT-like and JKR-like for μT = 4.

The adhesive pressure is calculated from the functional deriva-

tive padh(x,y) = −δVfr/δg(x,y), where Vfr is defined in

Equation 5. This can be evaluated to yield

(31)
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Figure 5: Interfacial pressure on a free, linearly-elastic half space
resting at zero external load on a rigid, adhering, parabolic substrate
for (a) μT = 1/4 and (b) μT = 4 in case of the exponential model. In
each case, the upper and lower grey lines indicate, respectively, the
pressure due to the constraint and that due to adhesion. Contact radii
are indicated by ac. The net pressure is shown by a black line as well
as by small circles representing the actual grid points. Units are
chosen according to Equation 23–Equation 26.

which becomes padh(r < ac) = −Δγ/z0 within the true contact

area. Using Equation 19, one obtains

(32)

Stress or pressure originating from the constraint g(x,y) ≥ 0 is

computed from the elastic Green’s functions.

The well-known qualitative difference for the contact geometry

of systems with large (μT = 4) and small (μT = 1/4) Tabor coef-

ficient is borne out in the radial dependence of the gap g(r).

Specifically, Figure 6 reveals that a small Tabor coefficient

makes g(r) have a positive curvature at r ≥ ac, as in the DMT

solution, while it has a negative curvature at r ≥ ac, indicative of

an adhesive neck, for large μT. Figure 6 also shows that the dis-

placement (defined by the difference between the actual gap and

the gap in an undeformed contact at r >> 1) is smaller for

μT = 4 than for μT = 1/4, although the contact radius is larger

for μT = 4 than for μT = 1/4.

The Gauss model behaves qualitatively different from the expo-

nential model. First, there are no adhesive forces within the

contact, but only outside of it, as shown in Figure 7. Second, at

r = ac, the total pressure disappears in the Gauss model, while it

remains finite in the exponential model. Third, the pressure due

Figure 6: Gap between a rigid, adhesive, parabolic tip and a linearly-
elastic half space for two different Tabor coefficients μT = 1/4 (solid
black line) and μT = 4 (broken black line). The gap z = x2/2 of an unde-
formed half-space is shown in grey for comparison. Arrows indicate
contact radii. Units are chosen according to Equation 23–Equation 26.

Figure 7: Pressure p(r) in the Gauss model at zero load for two
different Tabor coefficients as a function of the in-plane distance r from
the center of the contact. The contributions due to the constraint are
positive, i.e., above the grey line, while the adhesive forces are nega-
tive.

to the constraint has finite slope at r =  in the Gauss model,

while the slope diverges in the exponential model (not shown

explicitly). All these differences arise because the derivative of

vfr(g/z0) remains finite (i.e., with positive sign) in the exponen-

tial model when the gap closes, while  is zero in the

Gauss model.

Another consequence of padh(g/z0) having zero slope in the

limit of g → 0+ is that the gap in the Gauss model closes con-

tinuously rather than with a discontinuity in its first derivative.

This is shown in Figure 8, from where it becomes clear that it is
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difficult to define good measures for the contact radius. In a

linear representation (at low resolution), it seems as if the

contact closes with the typical adhesive neck, i.e., in part (a) of

Figure 8 the gap appears to close at r ≈ 2.415. There, the slope

of g(r) takes its maximum value, in a very similar fashion as in

the JKR limit, or for the exponential model for the same value

of μT = 16. However, when increasing the magnification, one

can see that the contact closes only at r ≈ 1.97. Unfortunately,

the radii where the gap closes to zero, and where g(r) has its

maximum do not approach each other quickly when μT is

increased. Instead, the value of g in the cross-over region in

Figure 8b moves to smaller values as μT increases. Similar

behavior is seen in the VDW model, which is not shown here

explicitly.

Figure 8: Gap g(r) in linear (a) and logarithmic (b) representation as
well as (c) first derivative g′(r) for μT = 16 in the Gauss model (straight
lines). A higher resolution representation of the gap is given in (a) with
a dotted line. The exponential model is shown for comparison in (b).
The two thin grey lines are drawn where the gap becomes zero (left
line) and where the slope of g(r) takes its maximum value.

Zero-load contact radii for different potentials are depicted in

Figure 9 as function of the Tabor coefficient. In the exponential

model, the contact radius approaches DMT and JKR limits in a

very similar fashion as in the MD model. In a later section on

the asymptotic analysis, I find that the MD corrections to the

JKR limit are of order  for large Tabor coefficients while

those to the DMT limit are of order μT for small Tabor coeffi-

cients. The same scaling of the leading-order corrections is

apparently borne out in the exponential model.

Models in which vfr(g/z0) has zero slope in the origin behave

qualitatively different from the MD or the exponential model.

They approach the DMT limit for the contact radius fairly

Figure 9: Contact radius ac at zero external load as a function of the
Tabor coefficient μT for different model interactions: exponential (full
circles), Maugis Dugdale (straight lines), Gauss (crosses), and VDW
(open squares). The upper and lower broken line denote the DMT and
the JKR limits, respectively. In the Gauss and VDW models, two
different definitions are used for ac: The upper symbols refer to the
position where g′(r) reaches a local maximum, while the lower symbols
indicate the points of first gap closure (g = 0).

quickly, i.e., roughly with  However, convergence to the

JKR limit is poor. The latter can be improved by defining the

contact line to be located where g′(r) takes its maximum value.

Unfortunately, this definition cannot be universally applied, i.e.,

only when μT is sufficiently large to allow for an adhesive neck

to be formed, see also Figure 8. Moreover, in the context of

randomly rough surfaces with complicated contact geometries,

this last definition of contact would not be practicable.

Unlike the contact radius, the normal displacement d does not

suffer from any difficulties to be properly defined. In principle,

this could enable one to ascertain vfr(g) from displacement

measurements without much ambiguity. However, Figure 10

reveals that the functional form of d(μT) is relatively insensi-

tive to the details of the finite-range interaction, at least, as long

as we allow for a redefinition of the Tabor coefficient, such that

all curves superimpose at the distance half way between the

JKR and the DMT limit. This is in agreement with a work by

Tvergaard and Hutchinson [18] who found that Δγ and the peak

stress (which one may losely associate with Δγ/z0) are the basic

parameters for mode I fracture.

Before proceeding to the case of finite load, I wish to comment

on the relatively large numerical (GFMD) uncertainties for the

displacement at large Tabor coefficients. They stem predomi-

nantly from the difficulty to apply the finite-size extrapolation

formula, Equation 30, to gaps having adhesive necks. This

problem would not be present in large-scale simulations of
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Figure 10: Normal displacement d at zero external load as a function
of the Tabor coefficient μT for different model interactions: exponential
(full circles), Maugis Dugdale (straight lines), Gauss (crosses), and
VDW (open squares). The Tabor coefficient was normalized so that all
curves superimpose at the “half-way” distance d = (dJKR + dDMT)/2.
The upper and lower broken line denote the DMT and the JKR limits,
respectively. Numerical uncertainties arise in the limit of large Tabor
coefficients, as indicated by the error bar.

multi-asperity interfaces, because system sizes would automati-

cally be much larger than local contact radii. One may conclude

that the use of the exponential model for the study of adhesive

multi-asperity contacts appears to be appropriate. The MD

model could be used as well, in principle, however, it might in-

duce undesired numerical instabilities due to the discontinuity

of v′(g/z0) at g = z0. The Gauss model can only be taken when

the property of interest is related to the gap but not for the

calculation of contact area. If one wanted to simulate van der

Waals attraction at large μT, one might want to replace the

VDW model in Equation 12 with 1/(1 + g/z0)2. This depend-

ence makes it possible to determine the contact area meaning-

fully in the realm of continuum mechanics while using reason-

able approximations for van der Waals interactions at large dis-

tance.

Finite external load
In most experiments, the Tabor coefficient is kept constant and

the normal load is changed. As a result, one obtains the normal

displacement d(FN) as a function of the normal load FN. In

some cases, i.e., for sufficiently large contact radii, an estimate

of the contact radius, ac(FN), can be obtained as well. One

might be tempted to believe that knowing such curves allows

one to deduce the surface forces. Here, I want to investigate to

what degree such an inversion is possible by studying the sensi-

tivity of the functions d(FN) and ac(FN) to the functional form

of the surface interactions. Figure 11 shows the contact radius

as a function of the normal load. One can see that the exponen-

Figure 11: Contact radius ac as a function of load FN for the exponen-
tial and the MD model using different Tabor coefficients, ranging from
μT → ∞ (JKR, top) to μT = 0 (DMT, bottom). For the Gauss and VDW
models, only μT = 1 is shown. Their ac(FN) curve is similar to that of
the Maugis and the exponential model for μT = 1/4. Color coding:
μT = 4 (red), μT = 1 (green), and μT = 1/4 (blue).

tial model and the MD model agree very closely, that is, curves

almost superimpose for a given Tabor coefficient. This makes it

essentially impossible to discriminate between these two forms

of interaction experimentally. Likewise, the Gauss and VDW

models also coincide for the same Tabor coefficient despite

their significant differences at large gaps. Interestingly, the

μT = 1 curve for VDW and Gauss (both having finite slope

potentials at g = 0) is akin of the μT = 1/4 curves for the MD

and the exponential model (both having zero-slope potentials at

g = 0). This confirms the trend reflected in Figure 9: Surface

potentials with zero slope at g = 0 make the results move toward

the DMT limit.

In contrast to the ac(FN) dependence, the normal displacement

curve d(FN) predominantly depends on the Tabor coefficient.

Now, all μT = 1 curves resemble each other closely, inde-

pendent of the slope of the surface potential at zero gap. As for

the normal displacement, all curves are reasonably close to the

JKR limit. Even the μT = 1/4 curve lies closer to the JKR than

to the DMT line. This is consistent with the results shown in

Figure 10, which show that the DMT limit for d(FN) is only

reached at extremely small Tabor coefficients. Figure 12 reveals

that it is possible to adjust the free parameters of the MD model

to fit d(FN) curves for a broad variety of surface interactions.

However, one should abstain from deducing contact areas based

on such fits, as this can result in non-negligible errors. For

example, if we only knew the contact area from Maugis’ solu-

tion, we would be ill-advised to conclude from Figure 12 that

the contact area for the μT = 1 Gauss model should lie roughly

half way between those of the μT = 1 and μT = 4.
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Figure 12: Normal displacement d as a function of load FL for the
exponential and the MD model using different Tabor coefficients,
ranging from μT = 0 (DMT, top) to μT → ∞ (JKR, bottom). For the
Gauss and the exponential model, data is only shown for μT = 1. Color
coding: μT = 4 (red), μT = 1 (green), and μT = 1/4 (blue).

Comparison to other models and asymptotic
analysis
Maugis proposed an analytical solution for the relation between

contact radius ac and normal load FN in the Dugdale model. It

requires the elimination of an auxiliary variable, m, through the

self-consistent solution of two coupled non-linear equations.

Once ac and m are found, the displacement d can be readily

calculated as well. Using tildes to indicate variables in Maugis’

unit system, the relevant equations read:

(33)

(34)

(35)

where the functions f(m), g(m), h(m), and j(m) are defined as

(36)

(37)

(38)

(39)

(40)

(41)

and

(42)

In each but one (straightforward) case, behavior of the func-

tions for m approaching unity or infinity has been included.

They become useful in the limit of large and small Tabor coeffi-

cients, respectively.

Conversion back to our unit system can be done using:

(43)

(44)

(45)

(46)

To overcome the need of having to find the self-consistent solu-

tion to Maugis’ equations, Carpick, Ogletree, and Salmeron

(COS) [1] proposed a simple and thus elegant analytical

formula for the ac(FN) dependence

(47)

Schwarz [2] later recognized that the COS description is exact –

given proper parameterization – if the interaction between the
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surfaces results from the superposition of an infinitesimally

short-ranged and an infinitely long-ranged contribution.

However, in the given context of one intermediate-range poten-

tial, I will treat the COS equation as a guessed approximation

containing the correct functional form in the limits of large and

small μT.

The primary COS equation (Equation 47) is designed such that

the contact radius at zero load ac(0,μT) as well as the pull-off

force Fp(μT) can be reproduced exactly. However, approxima-

tions to their dependence on μT had been provided as well,

because no closed-form expression are available. A free para-

meter remains, α(μT), which can be used to minimize devia-

tions from the exact solution. At large loads, one recovers the

well-known ac   scaling, however, not necessarily with

the correct prefactor. Another property of the COS approxima-

tion is that it does not necessarily contain the correct value of

the contact radius at pull-off. Thus, despite predicting the

contact radius fairly well, the COS contact radius is not exact in

the limit of very large and very small (i.e., pull-off) normal

loads. These deficiencies can be improved when parameter-

izing the COS equation in a slightly different fashion, e.g.,

(48)

with

(49)

This set of equation ensures that ac converges to the exact value

when FN → ∞ and FN → −Fp. The parameter α(μT) can then be

adjusted to either yield the correct zero-load contact radius, or

to minimize the deviation between approximation and the exact

Maugis solution by some other mean. Note that the factors 3/4

in Equation 48 and 4/3 in Equation 49 have to be replaced by

unity when working with Maugis’ unit system.

I wish to note that including the correct asymptotics in the

ac(FN) expression does not necessarily improve the fits in the

range from slightly above the pull-off force at negative loads to

several times the absolute pull-off force. This is demonstrated in

Figure 13. Moreover, convergence to the correct ac(FN)

dependence at large loads is rather slow even when using

Equation 49.

It is also possible to constrain the COS relation for the contact

radius such that it contains the correct pull-off force and contact

radius as well the correct zero-load radius. In either case, rela-

Figure 13: Relative errors in per cent for the contact radius ac for
μT = 1 at (a) negative and (b) positive load. The full line indicates the
error when using Equation 48, while the dot-dashed line is based on
Equation 47. In both cases, the parameter α(μT ) was adjusted to mini-
mize the deviation from Maugis solution in the domain −Fp < FN < 2Fp.

tive errors are small, i.e., ≤1% even for μT ≈ 1, where one is

relatively far away from both the DMT and the JKR limit.

Zero load: The asymptotic analysis is readily done for zero

loads, because the variable m can be directly eliminated in that

case. As a result, one obtains

(50)

and

(51)

From the last two equations, one can see – as in Figure 9 and

Figure 10 – that the JKR limit is quickly reached as the Tabor

coefficient increases. However, convergence to the DMT limit

with decreasing  is rather slow. It is particularly slow for

the normal displacement. E.g., to have a maximum error in

ac(FN = 0) and d(FN = 0) that is of order 1% with respect to a

desired limit, it is sufficient to work with  ≈ 10 for JKR, but

one needs  ≈ 10−4 to approach the DMT limit with similar

accuracy. The latter is not problematic for the simulation of

multi-asperity contacts, as the system is large by default.

However, for single-asperity contacts, large deviations from

μT = 1 (on a logarithmic scale) are difficult to handle in single-
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asperity contact simulations for reasons discussed in the nu-

merical-analysis section.

Knowing the asymptotic behavior of 

and  with respect to  allows one to

incorporate it in empirical equations for these two quantities.

The following equations are found to achieve this and to

provide excellent approximations to Maugis’ solutions:

(52)

(53)

Two coefficients in each of the last two equations (c1, c2 and c5,

c6) can be constrained to reproduce the correct asymptotics (and

thus be obtained analytically). Two fit parameters remain for

contact radius and one for the displacement. The relative errors

from the pertinent fits are shown in Figure 14. Compared to an

already quite accurate empirical relation proposed by Carpick et

al. for , see Eq. (12b) in [1], the new Equation 52 and

Equation 53 contain the correct asymptotics and reduces the

maximum relative error from 1.5% to 0.3%. The data shown in

Figure 14 were obtained with the following numerical values:

c1 = 4/5, c2 = −1.285, c3 = 4/5, c4 = −0.435, c5 = −3/2,

c6 = 0.1845, and c7 = 6.71.

Figure 14: Relative errors in per cent for (a) contact radius and (b)
normal displacement at zero normal load. Full lines refer to a fit based
on Equation 52 and Equation 53 containing the correct asymptotic
limits. The dotted line reflects an empirical fit based on the COS equa-
tions.

Asymptotic behavior near pull off: The structure of the COS

approximation, Equation 47, and its modified form,

Equation 48, indicates that the critical behavior near pull off

satisfies  where κ must be either κ = 1/3

as in the DMT limit, or κ = 1/2 as in the JKR limit. However,

nothing in the self-consistent solution of Maugis indicates that

the exponent κ changes discontinuously from one value to the

next as the Tabor coefficient reaches or passes through a crit-

ical value. In fact, representing the data from Figure 11 in terms

of Δac(ΔFN), as done in Figure 15, shows that κ changes con-

tinuously from 1/3 to 1/2 as μT increases from 0 to infinity.

Figure 15: Excess contact radius Δac = ac − ap as a function of the
excess load ΔFN = FN + Fp for different values of the Tabor coefficient
ranging from μT = 0 (DMT, top) to μT → ∞ (JKR, bottom). Here ac and
ap denote the contact radius at an arbitrary load FN and the pull-off
load Fp, respectively. Deviations between the Maugis solution and the
exponential model are particularly obvious for the μT = 1 data set.
Color coding: μT = 4 (red), μT = 1 (green), and μT = 1/4 (blue).

An analysis for the normal displacement, similar to the one

presented in Figure 15 but not shown explicitly here, exhibits a

similar trend. The exponent describing Δd = d − dp as a func-

tion of ΔFN = FN + Fp crosses over continuously from the DMT

to the JKR limit as μT increases. However, there is not a one-to-

one relation between μT and κ. In particular the data sets for

μT = 1 show relatively large differences between the exponent

in the MD model (κ ≈ 0.469) and the exponential model

(κ ≈ 0.435).

The insights obtained from Figure 15 can be used, in principle,

to further modify the COS approximations, e.g., by replacing

the square-root in Equation 48 by some other power or likewise

by changing the square-root and the exponent 2/3 on the r.h.s.

of Equation 47 in an appropriate fashion. When doing so, the

modified version of Equation 48 does not only converge to the

correct value at pull-off. It can also be parameterized to yield
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the correct asymptotics near pull-off. This results in a further

reduction of the mean or overall error by a little more than a

factor of two with respect to those shown in Figure 13,

however, at the expense of one additional fit variable. Since the

main new aspect of this study is concerned with negative work

of adhesion and, moreover, both original and modified COS

equations are already quite accurate, a more detailed analysis of

the adhesive single-asperity contact is not pursued in this work.

Negative work of adhesion
For repulsive contacts, Δγ < 0, there is obviously no finite

contact radius at zero normal load FN = 0+. The repelled rigid

tip simply “hovers” at (infinitely) large distance over an unde-

formed elastic manifold. This is why it is not possible in this

case to conduct a zero-load analysis similar to that presented for

adhesive contacts. Since Maugis’ solution has not yet been

extended to repulsive contacts, we are not in a position to

compare our data to analytical solutions for negative Δγ. One of

the consequences is that the asymptotic analysis must be based

on GFMD data, except for μT → 0, for which normal forces

couple predominantly to long-wavelength modes so that the

Hertz-plus-offset approximation (DMT) should be accurate.

Given the close similarity between the exponential and the

Maugis–Dugdale model as well as that between the Gauss and

the VDW model seen in the last section, the attention is

restricted to one potential in each class, i.e., the exponential and

the Gauss model.

We start our analysis with the contact radius dependence on

load. In analogy to the context of wetting fluids, one may call

the force at which a finite value of ac becomes unstable upon

lowering the load the spontaneous wetting force Fsw. The force

above which ac can no longer be zero is called the squeeze-out

force Fsq. If the transition from contact to non-contact is con-

tinuous Fsw = Fsq, otherwise Fsw < Fsq. Results are shown in

Figure 16.

As is the case for attractive interactions, the contact radius at

small loads can be sensitive to both the Tabor coefficient and

the choice of the potential. Specifically, the exponential model

always shows a continuous transition from finite to zero contact

radius (at least for the values of μT investigated here), while the

Gauss model has either a continuous transition below a critical

Tabor coefficient  ≤ 1 or a discontinuous transition for

μT >  The discontinuity of the contact radius for Gauss

potentials and sufficiently large Tabor coefficients implies that

two solutions may coexist, i.e., one where the two surfaces are

separated and one where they touch. However, once FN exceeds

a second threshold force Fsq(μT), i.e., the squeeze-out force,

only one solution survives, that is, the one with finite contact

radius. This can be seen in analogy to adhesive contacts with

Figure 16: Contact radius ac as a function of normal force FN for the
exponential (full symbols) and the Gauss (open symbols) model. Lines
connect data points (not all shown explicitly). In the case of μT = 4
(Gauss model), an arrow indicates where the ac = 0 solution becomes
unstable for increasing FN. Color coding: μT = 4 (red), μT = 1 (green),
and μT = 1/4 (blue).

Figure 17: Contact radius ac as a function of normal force FN in the
vicinity of the spontaneous wetting force Fsw. Symbols reflect numeri-
cal results while lines are fits according to Equation 54. They termi-
nate at ac(Fsw). In the case of μT = 1, an arrow indicates where the
ac = 0 solution becomes unstable with increasing FN.

μT > 0, where two solutions coexist in a finite interval of forces

−Fp ≤ FN ≤ 0.

As for the ac(FN) relation near pull-off in the case of positive

work of adhesion, the excess contact radius, ac − asw, depends

as a power law on the excess force, FN − Fsw, for FN ≥ Fsw:

(54)

Fits to the ac(FN) relation are shown exemplarily for two values

of μT in Figure 17. Details about the fits to the presented as well
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as additional data are summarized in Table 1. As for attractive

contacts, it is found that κ changes continuously from

κ(μT → ∞) = 1/2 to κ(μT → 0) = 1/3. For small μT , Hertz-plus-

offset behavior is reached as evidenced by the observation that c

and Fsw approach (3/4)1/3 and 2π, respectively. However, Fsw

as well as Fsq quickly increase with μT for μT ≥ 1. This latter

behavior is different from that of the pull-off Fp force for attrac-

tive surfaces, which only varies between 1.5π and 2π in the

present unit system. Since the increase of both Fsw and Fsq is

much faster in the exponential model than in the Gauss model,

one can conclude that the exponential model converges more

quickly to the continuum model than the Gauss model.

Table 1: Results of fits to the data shown in Figure 16. The last digit
may not be significant.

model μT asw Fsw Fsq c κ

Gauss 1/16 0 6.30 6.30 0.91 0.333
1/4 0.01 6.43 6.44 0.86 0.34
1 0.25 8.00 8.40 0.56 0.46
4 0.66 47.3 86 0.30 0.50

exponential 1/16 0 6.38 6.38 0.62 0.35
1/4 0 6.89 6.89 0.68 0.44
1 0 13.85 13.85 0.46 0.48
4 0 339 339 0.28 0.49

As in the case of adhesive interactions, the normal displace-

ment seems less sensitive to both the choice of the potential and

the Tabor coefficient than the contact area, unless normal loads

are very small, i.e., at loads similar in magnitude or smaller than

the squeeze-out load for μT = 1. This is demonstrated in

Figure 18. It reveals that information on the (effective) near-

range surface interactions at small separation are difficult to

obtain from experimentally measured load-displacement curves.

I conclude this section with an analysis of the gap profile for

repulsive contacts. At large loads, different Tabor parameters

and functional forms for finite-range repulsion yield gap

profiles that are indistinguishable at small magnification, see

Figure 19a. Differences become nevertheless significant at high

resolution near the center of the contact. Particularly remark-

able is the data set for the Gauss model with μT = 4 and its

bistability revealed in Figure 19b. For an increasing force, no

contact has formed at FN = 7.5. However, when reaching

FN = 7.5 from above, contact is formed for radii r < ac ≈ 1.73.

In the latter case, the gap then quickly increases within Δr ≈ 0.1

to an almost constant value of order 1/μT for r ≥ ac, as if one

had a single confined layer of liquid. For radii r > , the

gap assumes the “macroscopic” behavior. Here,  ≈ 4 is

the contact radius that one would ascertain from the analysis of

Figure 18: Displacement d as a function of normal force FN in the
vicinity of the spontaneous wetting force Fsw. Symbols reflect numeri-
cal results. The lines, which connect many data points not explicitly
shown, are drawn to guide the eye. The two thick grey lines reflect the
square of the contact radius in the Hertz and DMT approximation, re-
spectively. Color coding: μT = 4 (red), μT = 1 (green), and μT = 1/4
(blue).

Figure 19: Gap g(r) as a function of the lateral distance from the origin
r for a large load FN = 60 (a) and (b) as well as for an intermediate load
FN = 7.5 (c). In each case, surfaces repel each other. Graph (b)
contains the same data as (a) but has higher resolution. Color coding:
μT = 4 (red) and μT = 1 (green).

the gap with low resolution, e.g., via graphical inspection of

Figure 19a.

At small loads, the sensitivity of the gap profile on the details of

the model become even more apparent. This result, which can

be seen in Figure 19c, is expected, since the elasticity of the tip

is no longer relevant. Instead, the force-displacement curve is
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Figure 20: Contact geometry for a Gauss model with finite-range repulsion. Arrows indicate the direction of normal load FN (thick arrow) and that of
the finite-range repulsion (thin arrows) acting in addition to a hard-wall constraint. No adhesive forces between the surfaces are considered.

predominantly determined by the effective surface interactions,

as shown clearly by the μT = 4 data sets in Figure 18. They ex-

hibit, to leading order, a FN  exp(−d/ζ) relation in the expo-

nential model, and a FN  exp(−d2/ζ2) relation for the Gauss

model, where ζ is inversely proportional to μT.

Conclusion
The principle new aspect of this work is the continuum-

mechanics based analysis of single-asperity contacts with finite-

range repulsion acting in addition to short-range hard-wall

repulsion. The analysis is based on the concept of the Tabor

coefficient and the repulsion is assumed to arise due to the pres-

ence of a strongly wetting fluid. As for attractive single-asperity

contacts, it is found that the contact area or the displacement on

the normal load depend, to a large degree, not only on the

surface energy but also on the Tabor coefficient μT. Moreover,

for μT exceeding a critical value, there may exist a range of

loads in which two (meta)stable solutions coexist, i.e., one in

which the surfaces touch and one in which a thin gap between

the two surfaces remains. When the value for the load is

increased above a threshold, the latter solution becomes

unstable and the gap disappears. However, in order to obtain

this kind of behavior, which is reminiscent of the squeeze-out of

a wetting fluid, the finite-range interactions between the

contacting surfaces have to be tailored correctly. Using a

surface interaction vfr, whose derivative increases monotoni-

cally as the gap g approaches zero, such as vfr  exp(−g/z0),

only one stable solution exists for any given normal load.

Conversely, when the distance–force dependence is multi-

valued, as is the case for a vfr   relation,

squeeze-out and spontaneous wetting can be rationalized and

thus be modeled in the realm of continuum mechanics – in

terms of transitions between (meta)stable solutions. These tran-

sitions (similar to instabilities in the Prandtl model [26], in

which a particle is dragged with a weak spring through a

sinusoidal potential) can occur for solvated tips on surfaces,

for example, if the effective tip–surface interactions has

zero slope when the surfaces touch, as is the case for

vfr  . In reality, the far-field potential may

even be oscillatory and evidenced by the squeeze-out of many

subsequent layers. Such behavior has been recently observed

and linked to the (damped) long-range oscillatory behavior of

the density correlations in high-density liquids [15,19].

An interesting consequence of short-range repulsion is that the

contact geometry can look similar to that of an adhesive neck.

This is shown in Figure 19b for the (μT = 4) Gauss model and

decreasing load. To improve the visualization, a similar gap

geometry is shown again in Figure 20 together with a profile of

the finite-range repulsion.

A secondary aspect of this work is devoted to the analysis of

how to best reach well-defined asymptotic behavior in numeri-

cal simulations of adhesive contact mechanics. It is found that

the DMT limit is approached quickest when using attractive

potentials whose first derivative disappears as the gap goes to

zero, at least if the contact area is the variable of interest.

However, these potentials approach the JKR limit only at a rate

of 1/μT for large μT and the contact area becomes difficult to

define once μT ≥ 1. Thus, one is better off using potentials with

finite slope in the small-gap limit. They converge in a well-

defined fashion with  to the JKR limit for large Tabor

coefficients. This is supposedly the more relevant limit for

adhesive surfaces with self-affine fractal roughness. For the

modeling of repulsive surfaces, the situation is more compli-

cated. Formally, the JKR limit is again reached more quickly

with models that have finite slope at zero gap. However, these

models do not allow one to model the hysteretic response of a

confined fluid that results whenever the squeeze-out force

exceeds the spontaneous wetting force.

A by-product of this work is a minor modification of the

phenomenological description of single-asperity contact

mechanics by Carpick, Ogletree, and Salmeron [1]. The COS

equations can be parametrized to contain the correct asymptotic

behavior for JKR and for DMT limits and also for the superpo-
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sition of extremely short- and long-range interfacial interac-

tions, as shown by Schwarz [2]. However, they still have a few

formal shortcomings for intermediate-range potentials. For

example, the original interpolation of the contact-area-on-load

dependence for finite Tabor coefficients recuperates neither

Hertzian contact mechanics at large loads with correct prefac-

tors nor the correct contact radii in either DMT or JKR limit at

zero normal loads. In this work, I propose to enforce those

limits exactly including the correct asymptotics for

ac(µT,FN = 0) at μT = 0 and μT → ∞. By doing so, the

maximum error of the ac(FN = 0,μT) curve could be reduced

from 1.2% to less than 0.3%. A shortcoming of both the origi-

nal and the new, modified COS equations is that they both

assume an asymptotic behavior near pull-off (FN → −Fp)

according to (a − ap)  (Fp + FN)κ, where the exponent takes

the JKR value κ = 2/3 for any non-zero Tabor coefficient. The

modified COS equations could thus be improved further if one

incorporated the new finding that κ crosses over continuously

from 2/3 (exact for JKR) to 1/2 (exact for DMT). However, this

does not seem useful in practice. Extreme accuracies (5 digits

and more for ac and FN) would be needed in measurements to

deduce ap and κ to within one or two digits. Such an accuracy is

difficult to achieve both experimentally and numerically. More-

over, the surface energy is not very well defined at small scales,

because its precise value depends crucially on roughness down

to the atomic scale, see, e.g., [27]. Thus, from a practical point

of view, both the original and the modified COS equations are

quite reasonable, all the more because the geometry of real tips

can deviate quite substantially from a parabola.

This work is concluded with an assessment of what values for

μT one might expect in AFM or SFA experiments. To come up

with a ballpark estimate, the following “typical values” shall be

assumed: Δγ = 40 mN (Δγ can, of course, be close to zero, but

much higher, e.g., for two equally charged surfaces in the

context of electrochemistry), E = 5 GPa (in between soft matter

and ceramics), z0 = 10 Å (size of an OMCTS or molten salt

molecule), R = 1 μm (in between AFM and SFA, precise value

not very important, as third root is taken). These numbers lead

to μT = 0.4, which is close to the interesting “cross-over”

regime. Thus, real contacts may span a broad range of values

for μT. Comparison between theory and experiment may be

difficult, in particular because atomic-scale roughness (or even

sub-atomic roughness arising from electron orbitals) leads to

complicated slip-boundary conditions and slow kinetics.

However, given a well-motivated form for the effective inter-

action between two flat surfaces, it may yet be possible to ratio-

nalize and to model, at least on a semi-quantitative level, the

interactions of curved surfaces in the presence of a strongly

wetting fluid within the presented Tabor-coefficient based

framework. Particularly appealing systems may be found in

tribo-electrochemical applications, where the surface interac-

tions can be tailored in a quasi-continuous fashion.

Acknowledgements
MHM thanks Sissi de Beer for useful discussions and valuable

literature hints. The author furthermore thanks Bo Persson for

the request to add adhesion to Green’s function molecular

dynamics, which ultimately motivated this work.

References
1. Carpick, R. W.; Ogletree, D. F.; Salmeron, M. J. Colloid Interface Sci.

1999, 211, 395–400. doi:10.1006/jcis.1998.6027
2. Schwarz, U. D. J. Colloid Interface Sci. 2003, 261, 99–106.

doi:10.1016/S0021-9797(03)00049-3
3. Grierson, D. S.; Flater, E. E.; Carpick, R. W. J. Adhes. Sci. Technol.

2005, 19, 291–311. doi:10.1163/1568561054352685
4. Hertz, G. J. Reine Angew. Math. 1881, 92, 156.

doi:10.1515/crll.1882.92.156
5. Derjaguin, B. V.; Muller, V. M.; Toporov, Yu. P. J. Colloid Interface Sci.

1975, 53, 314–326. doi:10.1016/0021-9797(75)90018-1
6. Johnson, K. L.; Kendall, K.; Roberts, A. D.

Proc. R. Soc. London, Ser. A 1971, 324, 301–313.
doi:10.1098/rspa.1971.0141

7. Tabor, D. J. Colloid Interface Sci. 1977, 58, 2–13.
doi:10.1016/0021-9797(77)90366-6

8. Muller, V. M.; Yushenko, V. S.; Derjaguin, B. V. J. Colloid Interface Sci.
1980, 77, 91–101. doi:10.1016/0021-9797(80)90419-1

9. Maugis, D. J. Colloid Interface Sci. 1992, 150, 243–269.
doi:10.1016/0021-9797(92)90285-T

10. Barthel, E. J. Phys. D: Appl. Phys. 2008, 41, 163001.
doi:10.1088/0022-3727/41/16/163001

11. Hughes, B. D.; White, L. R. Q. J. Mech. Appl. Math. 1979, 32,
445–471. doi:10.1093/qjmam/32.4.445

12. Vinogradova, O. I.; Feuillebois, F. J. Colloid Interface Sci. 2003, 268,
464–475. doi:10.1016/j.jcis.2003.09.002

13. Persson, B. N. J.; Tosatti, E. J. Chem. Phys. 2001, 115, 5597–5610.
doi:10.1063/1.1398300

14. Müser, M. H. Phys. Rev. Lett. 2008, 100, 055504.
doi:10.1103/PhysRevLett.100.055504

15. Fisher, M. E.; Wiodm, B. J. Chem. Phys. 1969, 50, 3756–3772.
doi:10.1063/1.1671624

16. Chandra, N.; Li, H.; Shet, C.; Ghonem, H. Int. J. Solids Struct. 2002,
39, 2827–2855. doi:10.1016/S0020-7683(02)00149-X

17. Turon, A.; Dáviall, C.; Camanho, P.; Costa, J. Eng. Fract. Mech. 2007,
74, 1665–1682. doi:10.1016/j.engfracmech.2006.08.025

18. Tvergaard, V.; Hutchinson, J. W. Int. J. Solids Struct. 1996, 33,
3297–3308. doi:10.1016/0020-7683(95)00261-8

19. Hoth, J.; Hausen, F.; Müser, M. H.; Bennewitz, R.
J. Phys.: Condens. Matter 2014.
Accepted.

20. Luan, B. Q.; Robbins, M. O. Nature 2005, 435, 929–932.
doi:10.1038/nature03700

21. Mo, Y. F.; Turner, K. T.; Szlufarska, I. Nature 2009, 457, 1116–1119.
doi:10.1038/nature07748

22. Shengfeng, C.; Robbins, M. O. Tribol. Lett. 2010, 39, 329–348.
doi:10.1007/s11249-010-9682-5

23. Eder, S.; Vernes, A.; Vorlaufer, G.; Betz, G. J. Phys.: Condens. Matter
2011, 23, 175004. doi:10.1088/0953-8984/23/17/175004

http://dx.doi.org/10.1006%2Fjcis.1998.6027
http://dx.doi.org/10.1016%2FS0021-9797%2803%2900049-3
http://dx.doi.org/10.1163%2F1568561054352685
http://dx.doi.org/10.1515%2Fcrll.1882.92.156
http://dx.doi.org/10.1016%2F0021-9797%2875%2990018-1
http://dx.doi.org/10.1098%2Frspa.1971.0141
http://dx.doi.org/10.1016%2F0021-9797%2877%2990366-6
http://dx.doi.org/10.1016%2F0021-9797%2880%2990419-1
http://dx.doi.org/10.1016%2F0021-9797%2892%2990285-T
http://dx.doi.org/10.1088%2F0022-3727%2F41%2F16%2F163001
http://dx.doi.org/10.1093%2Fqjmam%2F32.4.445
http://dx.doi.org/10.1016%2Fj.jcis.2003.09.002
http://dx.doi.org/10.1063%2F1.1398300
http://dx.doi.org/10.1103%2FPhysRevLett.100.055504
http://dx.doi.org/10.1063%2F1.1671624
http://dx.doi.org/10.1016%2FS0020-7683%2802%2900149-X
http://dx.doi.org/10.1016%2Fj.engfracmech.2006.08.025
http://dx.doi.org/10.1016%2F0020-7683%2895%2900261-8
http://dx.doi.org/10.1038%2Fnature03700
http://dx.doi.org/10.1038%2Fnature07748
http://dx.doi.org/10.1007%2Fs11249-010-9682-5
http://dx.doi.org/10.1088%2F0953-8984%2F23%2F17%2F175004


Beilstein J. Nanotechnol. 2014, 5, 419–437.

437

24. Campañá, C.; Müser, M. H. Phys. Rev. B 2006, 74, 075420.
doi:10.1103/PhysRevB.74.075420

25. Dapp, W. B.; Lücke, A.; Persson, B. N. J.; Müser, M. H.
Phys. Rev. Lett. 2012, 108, 244301.
doi:10.1103/PhysRevLett.108.244301

26. Prandtl, L. Z. Angew. Math. Mech. 1928, 8, 85–106.
doi:10.1002/zamm.19280080202

27. Jacobs, T. D. B.; Ryan, K. E.; Keating, P. L.; Grierson, D. S.;
Lefever, J. A.; Turner, K. T.; Harrison, J. A.; Carpick, R. W. Tribol. Lett.
2013, 50, 81–93. doi:10.1007/s11249-012-0097-3

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.5.50

http://dx.doi.org/10.1103%2FPhysRevB.74.075420
http://dx.doi.org/10.1103%2FPhysRevLett.108.244301
http://dx.doi.org/10.1002%2Fzamm.19280080202
http://dx.doi.org/10.1007%2Fs11249-012-0097-3
http://creativecommons.org/licenses/by/2.0
http://www.beilstein-journals.org/bjnano
http://dx.doi.org/10.3762%2Fbjnano.5.50

	Abstract
	Introduction
	Results and Discussion
	Definition of the model
	Alternative interaction models
	Dimensional analysis
	Numerical analysis

	Positive work of adhesion
	Zero external load
	Finite external load
	Comparison to other models and asymptotic analysis

	Negative work of adhesion

	Conclusion
	Acknowledgements
	References

