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Abstract
The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed.

The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved.

The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force

microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.
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Introduction
Multifrequency dynamic atomic force microscopy [1] is a

powerful technique to retrieve quantitative information on ma-

terials properties such as the elastic constants and the sample

chemical environment with a lateral resolution in the nanometer

range. In this context the energy dissipation is a fundamental

aspect of the tip–sample interaction, allowing to quantify

compositional contrast variations at the nanoscale [2]. The

applied forces and the energy delivered to the sample are rele-

vant for the imaging and the manipulation of soft materials in a

variety of environments [3]. The study of the nanomechanical

properties of the cell, the development of sensitive nanome-

chanical devices, the characterization of mobile nanoparticles

are all tasks that require a control of the force and energy

involved in the tip–sample interactions [4].

Recently we introduced a wavelet cross-correlation (XWT)

technique in atomic force spectroscopy to reconstruct complex

force dynamics in the tip–sample impact regime, when higher

cantilever modes are simultaneously excited [5]. The XWT

analysis allows to retrieve the displacement, velocity and accel-

eration of the tip simultaneously for each flexural eigenmode

upon impact. In the present work we build on that results to

study in greater details the tip–sample force interactions sepa-

rately for each mode and in particular the energy dissipation.

Since the dissipative interactions are important in character-

izing the compositional contrast of the sample at the nanometer

scale [6], the possibility of measuring the interactions of

each mode separately opens new channels to study the surface

composition.

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Results and Discussion
Wavelet analysis and experiments
This section is partially based on the time-frequency analysis

outlined in our previous work [5]. Wavelet analysis allows to

follow the spectral content of a signal h(t) that evolves in time

by projecting (convoluting) the signal over a set of oscillating

functions with zero mean and a limited support (wavelets)

that are obtained by the translations (or delays, d) and dilations

(or scaling, s) of a mother wavelet Ψ(t) [7]. The temporal

convolution of the signal with the wavelets at all possible scales

and delays constitute the wavelet transform (WT) of the signal

Wh(s,d) [7]. Scaling is connected to frequency, delays to time.

The signal spectrum Wh(s,d) is a frequency–time representation

that gives a measure of the local, i.e., at the point (s,d), resem-

blance of the signal and the wavelet. In wavelet analysis the

basis can be chosen among an infinite set of functions that are

mathematically admissible, in this work we use the complex

Gabor wavelets [8,9].

To cross-correlate two time signals h(t) and g(t) in the

frequency–time plane, we first take the wavelet spectrums

of the signals Wh(s,d) and Wg(s,d), and then form the

cross-wavelet (XWT) spectrum as Whg(s,d) = Wh(s,d) Wg*(s,d),

where * denotes the complex conjugate. The wavelet

coefficients can be represented in the polar picture as

Wh(s,d) = |Wh(s,d)|exp(Φh(s,d)), where |Wh(s,d)| is the wavelet

amplitude, and Φh(s,d) is the absolute phase. Both power and

phase pertain to the “point” (s,d) in the frequency–time plane.

The important point in the XWT is that the relative phase

difference between the two time series at the specified

time–frequency point (s,d), can be retrieved as

where Φh(s,d) is the phase of h, Φg(s,d) is the phase of g, <>

represents a smoothing operator,  and  are the real and

imaginary parts, respectively.

Now we briefly recall the concept of phase carpet [5,10]. To

analyze the phase evolution of the oscillating mode of a

cantilever and, consequently, of the signal that is generated by

the beam deflection method of choice, we need, as a reference,

an oscillating function with a known phase at the same

frequency of the mode under investigation. If the modes are

more than one at the same time, we need a reference function

for each one of them. A natural reference function for phase

analysis is the sinus cardinalis function (sinc), defined as

where a is a shape parameter that controls the width of the func-

tion centered at time t0, and A is the peak amplitude. To under-

stand the usefulness of the sinc function as a phase reference,

consider the following identities:

(1)

where ω = 2π/T. These identities show that as the shaping factor

a tends to zero, the sinc function tends to a Dirac delta function

that can be expressed as an infinite sum of cosines of increasing

frequencies all with phases equal to zero at time zero. From

Equation 1 an approximate relation can be derived to express

the sinc as a sum of cosines:

(2)

(3)

where the approximation improves as N increases. The time

width of the sinc function is related to the shaping parameter.

Choosing the distance between the zero crossings on either side

of the peak (Δt) as the time width gives Δt = 2π a. The Fourier

transform is a rectangle function that extends from zero to a cut-

off frequency fc = 1/a and that has phase nearly equal to zero at

all frequencies. The cross-correlation of the wavelet transform

of the signal with that of the sinc function allows to obtain a

phase reference for every oscillation frequency that composes

the signal in the neighborhood of the sinc peak. Note that the

XWT rapidly tends to zero off the peak of the sinc function

because its amplitude decreases rapidly. WT and XWT are

particularly useful in assessing impact phenomena. As an

example we will examine the jump-to-contact transition of a

cantilever on a graphite substrate.

The deflection of a rectangular silicon cantilever is monitored

through a beam-deflection system as the cantilever tip ap-

proaches a freshly cleaved surface of highly oriented pyrolytic

graphite (HOPG) without any external excitation. The experi-
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Figure 1: Synthesis of the wavelet retrieval method. (A) Schematic diagram of the modal shapes of the cantilever flexural modes. (B) The time evolu-
tion of the relaxation oscillations after the cantilever jump-to-contact transition. (C) The wavelet analysis of the relaxation oscillations. The numbers
refer to the excited flexural modes of the cantilever, schematized in (A). Note that the fundamental mode does not oscillate because after the lever
remains statically bent after the jump-to-contact. The slope of the arrows arranged in a vertical row superposed on the wavelet spectra measures the
local phase difference between the signal and the reference sinc function at time zero. The phase difference has been calculated through wavelet
cross-correlation, as explained in the text. Arrow pointing right: 0°; up: 90°; left: 180°; down: −90°. The areas, in which edge artifacts may distort the
picture, are delimited by a lighter shade. (D) A reconstruction (red-dotted line) of the relaxation oscillations (continuous black line) obtained by the
superposition of damped harmonic oscillators as detailed in the text. This figure is based on adapted versions of Figures 5a, 6, and the inset of Figure
2 in [5].

ment is conducted in air, at room temperature (296 K) an a rela-

tive humidity of 55%. The temporal trace has been recorded

with a digitizing oscilloscope with a vertical resolution of

8-bit, an analog bandwidth of 250 MHz, and a maximum

sampling rate of 1 GSample/s. The average dimensions of the

rectangular silicon cantilever are 40 × 456 × 2 μm3 with a

nominal tip radius of 10 nm. The elastic constant of the first

free flexural mode was measured by the Sader method [11] to

be k1 = 0.15 ± 0.03 N/m. A rms thermal amplitude of about 2 Å

is measured at room temperature [12]. The cantilever

approaches the graphite surface at constant velocity of

0.817 nm/ms. The inverse optical lever sensitivity (InvOLS)

[13] has been measured as the inverse slope of the linear contact

part of a standard force measurement [14] that was made on the

graphite substrate.

The following steps, synthetised in Figure 1, allow to recon-

struct the evolution of a multi-mode excitation of a cantilever,

after a jump-to-contact transition [5]. 1) Single out the time

period of interest, i.e., the neighborhood of the impact moment,

Figure 1B. 2) Take a WT of the signal and individuate the

excited modes that contribute to the dynamics, Figure 1C.

3) Each flexural mode is schematized as a damped harmonic

oscillator (DHO), whose equation of motion is

(4)

where i is the mode index, zi is the oscillation amplitude, γi is

the damping coefficient and  the resonance frequency

[15]. Assuming as initial conditions zi(0) = , , and

, the solution is well approximated by an exponentially

decaying amplitude oscillating at the resonance frequency:

, where γi = 2/τi.

Each solution (zi), is generally characterized by four parameters,

the amplitude ( ), the decay constant (τi), the frequency

( f i  = ω i /2π)  and phase ( ) ,  .

4) Retrieve the parameters of each DHO through the WT and

the XWT analysis, Figure 1C. 5) Reconstruct the cantilever

signal as a sum of all DHO, Figure 1D. In particular, the WT

allows to retrieve, for each mode, the amplitude, the decay

constant and the frequency. Further, the XWT analysis retrieves

the phase relative to the sinc function at a specific time, usually

at the beginning of the time period of interest. With this infor-
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mation, following the superposition principle, it is possible to

sum the contributions of the DHO and reconstruct the signal

obtained from the beam deflection apparatus measuring the

cantilever dynamics.

Note that the first free flexural mode does not contribute to the

dynamics that we are analyzing, because it remains bent stati-

cally towards the surface after the jump-to-contact transition.

The excited modes have frequencies that scale nearly as the

second and third free flexural modes (see Table 1) and

contribute to the relaxation oscillations that are seen in Figure 1.

For these reasons the excited modes will be labeled as second

and third mode. The reconstruction of the photodiode signal

does not yet represent the effective displacement of the

cantilever tip because of the characteristics of the beam-deflec-

tion apparatus, which is used in the experiments.

Table 1: Calculated free flexural frequencies [16] and experimental
frequencies of the excited flexural modes given in units of the first free
flexural frequency f1 = 11.7 kHz. The theoretical scaling for the force
constants (ki) is reported for each flexural mode [1].

eigenmode i fi/f1 (theo.) fi/f1 (exp.) ki/k1 (theo.)

1 1 1 1
2 6.27 5.58 39.3
3 17.55 17.73 308

Usually the deflection signal measured from the cantilever does

not relate directly to the tip displacement, this is the case only

when calibrated interferometers are used. Other techniques

monitor the velocity through a Doppler velocimeter or the

bending of the cantilever when using the popular beam-deflec-

tion method. The purpose is to relate the signal measured by the

instrument (and reconstructed by the DHO) to the real tip

deflection. In the beam-deflection method used in this experi-

ment, the measured signal is proportional to the cantilever

bending at the position of the laser spot, usually at the end of

the cantilever. While the InvOLS of the first free flexural mode,

which relates the bending of the cantilever to the deflection of

the tip, is calibrated by using a static force curve, those of the

higher modes are not. For the same tip deflection, the higher the

mode the higher the bending of the cantilever end. This means

that the InvOLS of the first free flexural mode must be

corrected to relate the measured bending that is caused by

higher modes to the corresponding tip deflections. This is done

by means of the optical sensitivities σi reported in Table 2. This

procedure allows to obtain the parameters of the DHO needed

to reconstruct the cantilever deflection mode by mode. The

parameters that are used to reconstruct the excited DHO mode

dynamics, here labeled as the second and third mode, and hence

the total tip deflection are reported in Table 2. Once the deflec-

tions of the second and third modes have been quantified, it is

possible to access the velocity and acceleration of the tip caused

by each flexural mode. We note that the description of the

dynamics by using uncoupled DHO during the jump-to-contact

is justified, because from experiment we do not have any hints

of a non-linear coupling between the modes, and two uncou-

pled DHO are sufficient to reconstruct the detail of the experi-

mental trace. In addition, and contrary to intuition, the second

and third modes are not contact modes. This is proved by their

frequency scaling, which is similar to that of free flexural

modes and differs considerably from that of a pinned cantilever.

For a discussion on this point we refer the reader to [5].

Table 2: Optical sensibilities σi and the damped harmonic oscillator
parameters used for the reconstruction of the tip trajectory [5].

eigenmode i σi
(theo.) (nm)

τi
(μs)

fi
(kHz) (deg)

1 1 — — — —
2 3.4731 0.66 70 65.3 −5.4
3 5.706 0.12 70 207.5 −19.7

Energy dissipation
The energy balance of each decaying mode obtained from

Equation 4 in the time window 0 < t < τ = 200 μs (see Figure 1)

can be written as

(5)

where

i is the index of the mode, ΔKi = 1/2 meq(vi(0)2 − vi(τ)
2) is the

variation of kinetic energy, and ΔUi = 1/2 ki(zi(0)2 − zi(τ)
2) is

the variation of elastic potential energy. The energy balance

described in Equation 5 has terms that depend on the balance of

potential and kinetic energy on the left hand side ( ) and on

the time-integrated dissipative power on the right hand side

( ). We note that the elastic force of the cantilever is a

conservative force that does not contribute to the dissipation.

The dissipative constants γi are parameters that take into

account the influence of the external environment, which is

modeled as a viscous force. Dissipation is intrinsically difficult

to explain microscopically in situations in which the ambient
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Table 3: Total dissipated energy calculated by a balance of potential and kinetic energy ( ) and by integrating the dissipative forces ( ). Quality
factors are derived as Qi = 2 πfi/γi, where the damping coefficient γi = 2/τi, see Table 2). Finally, the elastic constant derived from the theoretical
scaling (ki, see Table 1) and from the oscillator parameters (mc/4 ).

eigenmode i  (eV)  (eV) γi (104 s−1) Qi ki (N/m) mc/4  (N/m)

2 5.97 5.97 2.85 14 5.9 4.4
3 2.00 1.98 2.85 45 46.2 44.5

environment is complex (presence of gas molecules, water

layers, etc.) but interesting since it potentially carries informa-

tion on the tip–sample interactions.

Since the coefficients γi and ki are measured/estimated indepen-

dently, the energy balance described in Equation 5 is a test of

the internal consistency of the model. In our previous work [5],

we took the elastic constants of the higher modes equal to the

values calculated by the scaling from beam theory, see Table 2.

The equivalent mass (meq) of a rectangular cantilever is derived

to be the same for all modes and equal to one quarter of the

cantilever mass (mc), as discussed in [17]. When the energy

balance is calculated by using these parameters in Equation 5, a

discrepancy in the energy balance of the second mode emerges.

The variation of total energy (  = 7.8 eV) does not match the

integrated dissipation (  = 6 eV).

Another way to assess the consistency of the model is to use the

total-force test, which means to compare the total forces acting

on the tip calculated via the inertial mass Fm =  with the

total forces calculated via stiffness and dissipative forces

Fγ = −k2z2 − k3z3 − mγv2 − mγv3. In this case a good match was

obtained [5]. This means that even if the level of agreement in

the total-force test appears to be satisfactory, the more stringent

energy balance test singles out a discrepancy. The reason of the

discrepancy in the energy balance is attributed to a different

degree of interaction of the higher cantilever eigenmodes with

the surface forces. It is well known that a force gradient at the

sample surface modifies the equivalent stiffness of an inter-

acting cantilever, by shifting the resonance frequency to lower

values for attractive interactions [18]. In this case one must

consider that the effective stiffness of the cantilever is not that

of a free cantilever, as is implicitly assumed by using the stiff-

ness scaling from beam theory.

The elastic constant of each mode is connected to the resonant

frequency of the mode as ki = mc/4 , where i is the mode

index. Since in this case the resonant frequency seen in the

wavelet transform, see Figure 1, is that of the interacting

cantilever, one would expect that the cantilever stiffness calcu-

lated by using the equivalent mass and the resonant frequency

Figure 2: Dissipated energy per cycle vs time in each mode
contributing to the dynamics described in Figure 3.

should incorporate the effects of the surface force gradients. In

the present case, the scaling from beam theory of the elastic

constant is respected with good approximation for the third

mode but not for the second, as reported in Table 3. In order to

obtain a good matching with the integrated dissipation, the

equivalent stiffness of the second mode has to be taken equal to

mc/4 . The overall quality of the match of Fm vs Fγ improves

and we obtain a very good agreement of the total variation of

energy ( ) and integrated dissipation ( ) for both modes, as

reported in Table 3.

Having a general consistence regarding the energy conserva-

tion, we can correctly estimate the dissipated energy per cycle

in each eigenmode, which is obtained as the difference between

the maximum elastic energy stored in successive cycles, shown

in Figure 2. As expected the energy dissipated per cycle in the

two eigenmodes contributing to the cantilever dynamics decays

exponentially. The quantification of the dissipation per mode

evidenced a rather gentle interaction, with a total energy

released from the tip of the order of 8 eV during the impact,

considering that typical tapping mode interactions release ener-

gies per tap on the order of several tens of eV [19]. Moreover,
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Figure 3: 3D-representation of the main observables describing the tip dynamics during the jump-to-contact transition. (A) deflection–velocity , (B)
deflection–force and (C) velocity–force phase-spaces evolving in time. (D) Force vs velocity vs displacement phase-space representation.

the maximum energy released in a single cycle during the

impact does not exceed 1.2 eV for the second mode and

130 meV for the third mode. The energy is released by eigen-

modes characterized by different oscillations frequencies, thus

opening the possibility to resonant energy transfer to samples or

(nano)structures endowed with mechanical resonances at the

eigenmode frequencies.

Finally, Figure 3 shows the evolution of the instantaneous

deflection (z), force (F) and velocity (v) as a function of

time in various 3D representations and a comprehensive repre-

sentation of the phase-space of the motion. The spiraling trajec-

tories are connected to and are a visual representation of the

dissipated energy. Figure 3A is a representation of the displace-

ment–velocity phase-space evolving in time. Figure 3B and

Figure 3C are connected to the total instantaneous work (F · dz)

and power (F · v), respectively, done on the tip during its dis-

placement dz from time t to time t + dt. Figure 3D is a represen-

tation of the phase space parameters F, v, z.

Conclusion
The present work demonstrated the possibility to access the

dissipated energy per cycle of each excited flexural mode

excited during a jump-to-contact transition. The rationale is

based on the reconstruction of the tip dynamics in the

time–frequency space by a cross-correlation wavelet technique.

Furthermore the instantaneous displacement, velocity and accel-

eration of a cantilever tip that impacts onto a graphite surface

were reconstructed. The prospect of analyzing the dissipated

energy of every single mode participating in a few cycle inter-

action during an impulsive tip–sample interaction will be of

impact in many respects. An additional implementation of scan-

ning probe imaging, which comprises the analysis presented

here for every pixel, will add spatio-temporal imaging capabili-

ties for each excited mode. Under a technical stand point,

tip–sample interactions of only few cycles duration reduce the

acquisition time and allow for a multiparameter analysis. The

latter will increase the physical information gained by the

tip–sample interaction. Nonlinear interactions are extremely

sensitive to small changes in the tip–sample interactions. Their

exploitation will therefore improve the sensitivity to composi-

tional contrast and/or chemical environment. The methodology

presented here will be beneficial to other fields that exploit

impulsive force phenomena. Impulsive displacement fields in

nanostructures, which are generated by ultrafast acoustic tech-

niques, have recently been suggested in applications that range

from mass-sensing [20] to nanometrology of thin films and

embedded nanostructures. These applications are based on

elastic multi-mode excitations that last few oscillations [21]. In

this context the present analysis will enlarge the space of para-

meters to be exploited for the sensing action. Moreover, the

techniques outlined in this work will find applications in a

variety of fields of interest for nanotechnology. Few-cycle AFM

will be useful to characterize the mechanical contact properties

of nanostructures produced by femtosecond laser ablation [22],

while wavelets techniques will be of relevance in inspecting the

time dynamics of oscillatory modes and their phase relations in

picosecond acoustic measurements.
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