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Abstract
In order to simulate electrochemical reactions in the framework of quantum chemical methods, density functional theory, methods

can be devised that explicitly include the electrochemical potential. In this work we discuss a Grand Canonical approach in the

framework of density functional theory in which fractional numbers of electrons are used to represent an open system in contact

with an electrode at a given electrochemical potential. The computational shortcomings and the additional effort in such calcula-

tions are discussed. An ansatz for a SCF procedure is presented, which can be applied routinely and only marginally increases the

computational effort of standard constant electron number approaches. In combination with the common implicit solvent models

this scheme can become a powerful tool, especially for the investigation of omnipresent non-faradaic effects in electrochemistry.
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Introduction
In October 2012 the workshop “Elementary reaction steps in

electrocatalysis: Theory meets experiment” was held in

Reisensburg, Germany. Alongside exquisite experimental work

on electrochemistry, numerous prominent contributions

displayed the range of modern developments and applications

of theory in electrochemistry. This included the application of

solid state approaches [1-4], investigations on the role of the

solvent [5-9] or simulations including explicit dynamics of reac-

tants [10]. Furthermore, several contributors presented work in

which cluster models were applied in the framework of elec-

tronic structure theory in order to assess the properties of

nanoparticles, nanostructures or interfaces [11-15].

Today, several approaches are available for modelling the full

details of the electronic structure in electrochemical

phenomena. The most common approach is to describe faradaic

processes by using a thermodynamic scheme in which reaction

energy differences are corrected a posteriori by the number of
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electrons transferred times the electrochemical potential the

simulation is supposed to refer to [16-19]. This allows to

monitor the changes in the system behavior depending on the

electrochemical potential without having to include the electro-

chemical potential of the electrons in the calculation explicitly.

As a consequence, this “pure thermodynamic” approximation,

which is often also referred to as “computational hydrogen elec-

trode” [16], and which we previously denoted as “constant

charge approach” [13], allows to use the results of a single elec-

tronic structure calculation for all potentials [20,21]. Further-

more, this approach is also very convenient for periodic

boundary calculations as in this case the models are restricted to

a neutral unit cell.

However, there are several electrochemical phenomena for

which it is clear that the explicit inclusion of the electrochem-

ical potential is vital, namely the broad family of non-faradaic

processes. This induces potential induced or lifted surface

reconstructions [22] or the prominent non-faradaic electrochem-

ical modification of catalytic activity (NEMCA) effect [23].

Only in recent years, attempts have been made to go beyond the

pure thermodynamical approximation, explicitly including the

electrochemical potential into the electronic structure calcula-

tion by means of adding or removing fractions of electrons or

the introduction of electric fields included explicitly or via

counter charges. For this reason, the effect of the explicit

inclusion of the electrochemical potential in the electronic

structure calculation for phenomena from electrocatalysis

has yet to be quantified, and it is currently still open to debate if

the pure thermodynamic approach is sufficient for certain

processes.

Generally, electronic structure methods can roughly be divided

in two subcategories, i.e., methods that treat the system within a

unit cell by using periodic boundary conditions and methods

that restrict the description of the system to the finite model

chosen. In this work, we focus on finite systems approaches

from quantum chemistry for treating electrochemical

phenomena. These methods, especially in the framework of

density functional theory (DFT), have in recent decades been

applied for a broad variety of problems related to electrochem-

istry. This includes for example cluster models, that are applied

to model reactions on surfaces [18,19,24], it includes the calcu-

lation of molecular properties to understand the redox prop-

erties of organic molecules and it includes the simulation of

small to medium sized nanoparticles to explore their stability

and the role of their atomic and electronic structure in electro-

catalysis.

In a recent publication we have presented a constant potential

scheme for calculating the electronic structure of a system at a

given electrochemical potential [25]. This scheme is the

quantum chemical equivalent to an approach by Alavi et al.

[26], that focused on constant electrochemical potential

schemes in the framework of periodic boundary condition DFT

calculations. Based on the possibility to calculate the electronic

structure of a finite system after adding or removing fractions of

electrons, various quantities like the Fermi level (in that case

the HOMO energy) or the numerical derivative of the energy

with respect to the number of electrons can be used to associate

a specific charge state of the system with its electrochemical

potential. This, however, necessitates a complex computational

scheme, for which several calculations have to be carried out in

combination with an interpolation scheme that is far from the

convenience of a black box application inherent to standard

electronic structure calculations.

In the literature, only very few examples for constant potential

schemes in the framework of quantum chemical approaches can

be found: Bureau and Lécayon [27] describe the basic princi-

ples for devising an algorithm in which the target quantity is the

chemical potential rather then the number of the electrons. After

discussing the necessity and possibility to carry out constant-μ

calculations, the authors lay out the theoretical underpinning in

the framework of linear response theory and variational DFT

schemes. They describe a variational procedure in which the

Kohn–Sham equations are solved in the framework of a Grand-

Potential approach with a variable number of electrons and a

fixed μ. Finally, a scheme is proposed, in which a series of stan-

dard calculations with a given number of electrons are carried

out and for each fixed electron number the chemical potential is

evaluated afterwards. While this approach is conceptually

simple, the computational effort can be immense if larger

systems like nanoparticles are investigated [25]. Shiratori et al.

[28,29] presented a scheme for carrying out constant-μ calcula-

tions based on a finite temperature Grand Canonical ansatz.

They propose to optimize the wave function parameters explic-

itly including the chemical potential of the electrons, keeping

the number of electrons variable through the SCF cycles. While

this approach seems a promising solution for an algorithm to

calculate the electronic structure of a system at a given poten-

tial, it has some pitfalls as we shall discuss in the following

sections. Furthermore, Bonnet et al. showed that it is possible to

calculate the properties of a system for a given potential in the

framework of ab-initio molecular dynamics [30]. In this work,

we present an algorithm that allows to calculate the electronic

structure for a given system not with a fixed number of elec-

trons, but with a given target chemical potential. We outline the

problems of previously devised schemes and arrive at an algo-

rithm that has the potential for a black-box scheme that can be

applied for systems ranging from small molecules (insulators)

up to metallic nanoparticles.
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Theory
In principle, there are several ways to evaluate the chemical

potential μ for a given system: A rough estimate can be

obtained by the negative of the electronegativity of Pauling and

Mulliken [31], calculated by the ionisation potential (I) and

electronegativity (A) of the system or its approximations by the

orbital energies.

(1)

Furthermore, in calculating the free energy of a system, a

Fermi–Dirac distribution function is applied to obtain the occu-

pation numbers at a given temperature (“Fermi smearing”).

Here, the chemical potential appears as a parameter for the

Fermi smearing in the form of the Lagrangian multiplier for the

number of electrons.

(2)

(3)

By definition, μ is the derivative of the energy with respect to

the number of electrons (Equation 4). Hence, it can be evalu-

ated either analytically (for example as an analytic derivative or

by linear response theory) [27] or numerically by calculating E

for various electron numbers [26].

(4)

At this point the basic difference between a Canonical and a

Grand Canonical Ensemble should be emphasized. In a Canon-

ical Ensemble, a constant number of electrons is assumed for

each micro system, while the chemical potential is an average

over the micro systems. In a Grand Canonical Ensemble the

chemical potential is constant for each micro system and the

number of electrons per micro system is an average. In this

context, constant charge calculations as typically carried out in

electronic structure theory can be attributed to a Canonical

Ensemble ansatz at zero temperature. This can be extended to

finite temperatures (Equation 2) by using a Fermi–Dirac distrib-

ution for the electronic degrees of freedom. This introduces

fractional occupation numbers and the chemical potential of the

electrons as a Lagrangian multiplier that ensures a constant

number of electrons in the treatment. The Grand Canonical ap-

proach differs from this by fixing the chemical potential of

the system while allowing electron exchange with an external

bath.

(5)

Bureau et al. [27] showed, that the chemical potential and the

corresponding number of electrons obtained by calculating the

free energy of a Canonical Ensemble equals the values that are

obtained by calculating the grand potential (Equation 5) of the

corresponding Grand Canonical Ensemble. Thus, the free

energy and the Grand Potential can easily be converted (Equa-

tion 6).

(6)

By calculating the electronic structure of an oxygen atom for

different fractional numbers of electrons, Vuilleumier et al.

showed that the three approaches yield comparable results for

the calculation of the electrochemical potential [32]. Hence

most of the constant potential schemes are derived from calcu-

lations with a constant number of electrons. An iterative proce-

dure to directly calculate the energy of a system depending on

the chemical potential was for example discussed by Shiratori et

al. [28]: After converging the energy with an initial number of

electrons, the number of electrons is changed by ΔN and a new

value for μ is obtained. This procedure is carried out until a

converged wave function is obtained at the desired value of the

chemical potential. The disadvantage of this approach is that the

number of iterations needed can be fairly high. Thus, the ap-

proach is associated with a considerable computational over-

head.

In principle, an algorithm for the iterative calculation with

varying number of electrons and given chemical potential can

be constructed based on Equation 2. Instead of using the chem-

ical potential as a parameter to guarantee a constant number of

electrons, it is possible to directly insert the aspired potential

and obtain the number of electrons for that given potential. This

is a very convenient way of determining a ΔN: After the new

occupation numbers fi have been obtained for the new number

of electrons, the density matrix is modified by using Equation 3.

(7)

Next, the energy is again converged followed by another modi-

fication of the density matrix until convergence of the number

of electrons (and thus the chemical potential) and the energy is

achieved. However, while this scheme is appealing, the crucial

point is the convergence of the overall scheme. A robust algo-
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Figure 1: Evolution of the number of electrons with the number of iterations for O2 if the potential dependent energy is computed by inserting the
aspired μ into Equation 2.

rithm is essential in any case, for simple systems like molecules

and especially for complex examples like metallic nanoparti-

cles. In Figure 1 the number of electrons with the number of

SCF iterations is monitored if the scheme discussed above is

applied to calculate the electronic structure of the O2 molecule

at an absolute potential of −3.71 V. Note that the absolute

potential of the charge neutral O2 with a bond distance of

1.21 Å calculated at the RI-BP86/def2-TZVP level of theory is

−5.71 V. For all calculations in this paper the following conver-

gence parameters were applied: The energy was converged up

to 10−9 a.u., the maximal density change up to 10−5, RMS

density change up to 10−6 and the DIIS error up to 10−6 a.u.

Furthermore, all calculations have been carried out without

level shift for the virtual orbitals.

After the convergence of the initial charge state with 16 elec-

trons is achieved, the number electrons is slightly increased.

However, in the further course of the calculation the number of

electrons oscillates between the minimum of 0 electrons and the

maximum of 120 electrons. Hence, no convergence is observed,

even for this very simple case.

The origin of this behavior is revealed in Figure 2, in which the

dependence of the potential on the number of electrons is

plotted according to Equation 2. For the red/solid exact curve,

the potential was obtained by Equation 2 from converged calcu-

lations using fractional number of electrons and hence, is the

exact μ(N). The orbital energies εi obtained from calculations

with a N of 15, 16 and 17.5 electrons were used to approximate

μ(N) by Equation 3. The slope calculated numerically by frac-

tional charge states for O2 shows a strong dependence of the

potential on the number of electrons. However, the slope of

dμ/dN calculated by the approximation using Equation 3 is

much smaller (dashed green, blue and black line). This leads to

a drastic overestimation of the change of the charge and causes

erratic steps in the optimization of the charge of the system,

impeding convergence of the algorithm.

A better approximation to obtain dμ/dN is the calculation of a

new density matrix based on the old MO coefficients  but

with a changed number of electrons by using Equation 8. This

new density matrix is used to calculate a new Fock matrix and

an approximated new energy (Equation 9).

(8)

(9)

In Figure 3 the dependence of the potential on the number of

electrons is plotted for O2 by using this new approximation.

Similar to Figure 2, the red/solid curve corresponds to the

numerically calculated μ(N) (Equation 4) of converged calcula-
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Figure 2: Change of the absolute potential for O2 depending on the number of electrons, calculated numerically and approximated by Equation 3, res-
pectively.

Figure 3: Chemical potential of the O2 molecule, plotted against the number of electrons, calculated numerically and approximated by recalculation of
the Fock matrix, respectively.

tions using a fractional N. Using the MO coefficients of the

converged calculations with a N of 15.0, 16.0 and 17.5 elec-

trons, approximated energies were calculated by using Equa-

tion 9. The approximated values of μ were obtained by numer-

ical differentiation and are plotted with dashed lines. As can be

seen, the approximation based on the recalculated Fock
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Figure 4: Scheme for a potential dependent calculation of the free energy.

matrices yields a much better approximation for the exact slope

than the approximation based on the Fermi smearing formula.

Moreover, the approximated slope is always larger than the

exact dμ/dN, circumventing the overestimation of the change

with the number of electrons that was observed in the previous

approximation.

As the function E(N) exhibits a quadratic dependence on the

energy, its derivative can easily be evaluated by a three-point

scheme. For this purpose, the Fock matrix and the corres-

ponding energy is calculated for three different points using the

MO coefficients obtained for the current number of electrons.

Assuming a quadratic form, an approximation for ∂2E/∂N2 is

obtained, which is then used to predict the number of electrons

for the target chemical potential. Note that as a consequence,

the computational costs of an iteration step approximately

triple. However, it is not necessary to calculate a new number of

electrons in every iteration, as several tests on smaller and

larger model systems show that it is sufficient to converge the

SCF equations to a certain extend by using a fixed number of

electrons and only to adjust it every few iterations depending on

the degree of convergence. Based on this, the scheme shown in

Figure 4 was applied to a testset of molecules.

The potential obtained in this way is the absolute potential with

the electron at rest in the vacuum as reference. It can be related

to the experimentally achieved potential by a constant shift

using the Trasatti scheme [33]. It should be noted that in actual

applications, for which constant potential calculations will yield

different numbers of electrons for the same system in different

states, reaction enthalpies need to be calculated by adding the

corresponding e·U correction, as discussed in a previous work

[25].

Some final remarks about the validity of the overall scheme

should be made at this point. The scheme presented here is a

Grand Canonical Ensemble DFT approach that relies on a

proper response of the system with respect to change in the

number of electrons. It can be argued that typical functionals

might not be well suited for this purpose. In molecular systems,

for example, ionization potentials and electron affinities are

often not well reproduced. DFT yields a continuous function of

μ over N, though a step function is expected. Furthermore, the

use of fractional electrons in the description of the system, as

inherent to this approach, is not consistent with the ideas of

quantized charge transfer in a real molecular system of isolated

active sites on a surface. However, metallic systems at finite

temperature with high or infinite density of states and small or

vanishing bandgap, show a continuous change of the potential

with the number of electrons. Furthermore, in the framework of

a Grand Canonical approach the treated system is in contact

with a bath of electrons, which models the situation of a

subsystem in contact with a conducting environment. Thus,

while limited in applicability, the approach is well suited for the

treatment of metallic nanoparticles on conductive supports or

within cluster approaches to model surface reactions. The

developed algorithm has been implemented in the ORCA [34]

programme package.
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Figure 5: Convergence of the number of electrons with the SCF iterations for different systems. Note that the calculation for the charge neutral mole-
cules with fixed number of electrons for O2 converges within 7, for C6H6 within 13, for Pt4 within 73 and for Pt10 within 177 SCF iterations, respective-
ly.

Calculations on test systems
Using the new scheme, the above mentioned calculation for

oxygen at a potential of −3.71 V was repeated. As shown in

Figure 5, already the first approximation of the final number of

electrons is fairly good (solid red curve). This is the case, even

if a huge deviation of the requested chemical potential from the

initial chemical potential exists. For O2 at an extreme absolute

potential of −25.71 V good convergence on 14.4 electrons is

achieved within six updates of the number of electrons (dashed

green curve). This is just one update more, compared to the

calculation at −3.71 V.

The new scheme was tested for further examples like small

organic molecules and metallic clusters (Figure 5). For all

examples fast convergence of the number of electrons for the

given potentials was achieved. For benzene, calculated at the

RI-BP86/aug-ccPVTZ level of theory, convergence of the

absolute potential and the energy was observed after 55 itera-

tions. For the metal clusters Pt4 and Pt10, calculated at the

RI-BP86/def2-TZVP level of theory, convergence was observed

after 92 (−4 V) and 238 SCF iterations, respectively. Standard

calculations for small molecules like oxygen or benzene using

fixed number of electrons converge within 10–20 SCF itera-

tions. If the calculations are carried out at fixed potential, the

number of SCF iterations is approximately quintupled.

However, systems with increasing metallic character, such as

platinum clusters, show a slower convergence for a fixed

number of electrons (50–70 iterations). For these systems, the

number of SCF iterations approximately doubles if the calcula-

tion is carried out at fixed potential. This can be compared to a

previous work [25] in which the energy of platinum clusters at a

given potential was determined by an interpolation scheme.

There, it is necessary to calculate the energy of the system at

least for three different numbers of electrons in order to obtain a

result for a given potential. In total, this amounts to (at least)

threefold computational effort and hence the computational

effort is reduced by using the new scheme.

One important aspect to note is the correlation between the

calculated energy and the convergence of the absolute potential.

Depending on the convergence criterium for the potential, the

number of electrons N is also only converged with a certain

error. For example, if the energy of O2 is calculated at μ = −4 V,

starting with 16 or 15 electrons, respectively, the final number

of electrons differs by 3.6·10−5, if the potential is converged to

10−3 V. However, as the energy strongly depends on the

number of electrons, this leads to a deviation of 0.01 kJ/mol in

the final energies.

For systems such as metallic structures, for which μ(N) has a

smaller slope than for oxygen, the resulting error in N for a

given potential is larger, and hence the error of the calculated
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energy increases. For instance, if the energy of a Pt4 cluster is

calculated at 1000 K over a potential range of −16 V to 4 V,

with an initial charge of 0 and −1, respectively, the final ener-

gies for the same potential can differ by up to 5.0 kJ/mol, if the

potential is converged up to 10−3 V. While for most purposes

this error can be controlled by choosing the appropriate conver-

gence criteria and consistent starting points for the calculation,

the user should be aware of this behavior.

Conclusion
In this work, an SCF iteration scheme to calculate the elec-

tronic energy of a system at constant electrochemical potential

in the framework of a Grand Canonical Ensemble DFT ansatz is

presented. In contrast to common DFT calculations, that are

carried out at a constant number of electrons N, the energy is

calculated for a fixed electrochemical potential with a variable

fractional number of electrons.

While earlier approaches require the calculation of the energy

for different N [25-27], in the scheme presented here, the opti-

mization of N is incorporated in the SCF iterations of the energy

calculation. For this purpose it is decisive to find a good

approximation for dμ/dN in order to obtain a good guess for the

final N. The simple approach of estimating the correct N by

inserting the requested μ into the Fermi–Dirac distribution func-

tion used in finite temperature DFT leads to an oscillatory

behavior of N during the SCF iterations. A much better and still

computationally simple approximation of Nfinal is obtained by

numerical evaluation of dμ/dN, recalculating the Fock matrix

for different values for N during an additional update step. This

way, a robust and efficient algorithm is obtained to carry out

constant potential calculations in the framework of quantum

chemical approaches.

Whether this model can be routinely applied in the computation

of faradaic and non-faradaic electrochemical processes has to be

subject to careful benchmarks, which is work in progress and

will be published in forthcoming articles.
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