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Abstract
The use of data mining techniques in the field of nanomedicine has been very limited. In this paper we demonstrate that data mining

techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers

using their chemical and structural properties. We present predictive models developed using 103 PAMAM dendrimer cytotoxicity

values that were extracted from twelve cancer nanomedicine journal articles. The results indicate that data mining and machine

learning can be effectively used to predict the cytotoxicity of PAMAM dendrimers on Caco-2 cells.
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Introduction
In silico approaches, such as data mining and machine learning,

have been very successful in medicinal chemistry and are

commonly used to guide the design of small pharmaceutical

compounds [1]. In contrast, although nanomedicine is a rapidly

growing field [2], there have been only a few attempts to use

data mining techniques in this field. For instance, Liu et al.

analyzed a number of attributes of a variety of nanoparticles in

order to predict the 24 hour postfertilization mortality in

zebrafish [3]. Horev-Azaria and colleagues used predictive

modeling to explore the effect of cobalt–ferrite nanoparticles on

the viability of seven different cell lines [4]. Sayes and Ivanov

used machine learning to predict the induced cellular membrane

damage of immortalized human lung epithelial cells caused by

metal oxide nanomaterials [5].

As discussed in a previous paper [6], there are a very limited

number of databases compiling the properties of nanomedical

relevant compounds. We speculate that this has seriously

limited the use of data mining techniques in the field of

nanomedicine. However, in the above referenced publication,

we demonstrated that natural language processing (NLP) tech-

niques can be effectively used to automatically extract nanopar-
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ticle property information from the original literature. Here we

argued that this development opens the possibility to explore

the use of data mining and chemometric techniques to guide the

design of new, more effective treatments using nanoparticles. In

this paper we apply the methods of data mining and machine

learning to predict the cytotoxicity of poly(amido amine)

(PAMAM) dendrimers.

Cytotoxicity was the selected criterion because it is of key

concern for the nanoscience and nanomedicine community

[7,8], considering that high cytotoxicity is a definitive cause for

eliminating a material for potential human applications. Reli-

able prediction of cytotoxicity using in silico approaches pos-

sesses the potential for high payoff in nanomaterial develop-

ment, allowing the concentration of scarce development

resources to be directed towards the synthesis and testing of

promising materials with expected low levels of toxicity. Cyto-

toxicity can be determined by a gamut of in vitro toxicity assays

focusing on a number of cellular parameters including cell

viability, oxidative stress, genotoxicity, and inflammatory

response [9]. In this paper, we focus on the cell viability to

characterize cytotoxicity [10].

PAMAM dendrimers are good candidates for a data mining

methodological study because they are well documented and

have the potential to be highly useful as delivery vectors [11].

These nanoparticles are composed of a central core that is

surrounded by concentric shells, thus resulting in their well-

defined, highly branched structure [12,13]. The generation of

the dendrimer is determined by the number of concentric shells

that surround the core of the structure. These polymeric

nanoparticles can easily be tailored for specific applications.

Benefiting from their characteristic scaffold structures, they

have been demonstrated to be suitable carriers for a number of

diverse bioactive agents, improving the solubility and bioavail-

ability of poorly soluble ones [14,15]. These particular nanopar-

ticles are also promising for use in the treatment of cancer,

including oral formulations. In spite of all the desirable prop-

erties of dendrimers, there is a significant setback for their use

in biomedicine due to their potential toxicological effects,

which depend on the structure that is used. It has been shown

that cationic PAMAM dendrimers can have surface charge-,

generation-, and concentration-dependent toxicity [16-19].

The goal of this research is to demonstrate that data mining

methods like the ones used here can be a presynthesis step to

identify nondesirable PAMAM dendrimers that have a substan-

tial probability of high toxicity. It would thus be possible to

eliminate them from the early stages of the synthetic develop-

ment pipeline with reasonable confidence. This technique is not

meant to replace cytotoxicity assays in the laboratory, but rather

to augment these methods. This method will bolster existing

cytotoxicity assays by providing the ability to determine rele-

vant compounds with low cytotoxicity and to eliminate weak-

candidate PAMAM dendrimers from synthesis and confirma-

tory testing. This work also illustrates a proof of concept that

data mining and machine learning can be applied to PAMAM

dendrimers to predict their biochemical properties. This result

could potentially be expanded to other nanomaterials in the

future.

Results and Discussion
Five different analyses were performed to classify a dendrimer

as toxic or nontoxic using different combinations of molecular

descriptors and experimental conditions. The first analysis

utilized all the molecular descriptors available in MarvinSketch

(see Experimental section and Table S1 in Supporting Informa-

tion File 1). The second analysis involved an automatic feature

selection method in which the molecular descriptors that were

used had a nonzero rank according to the ChiSquaredAttribute-

Eval method in Weka (see details in the Experimental section).

The ChiSquaredAttributeEval method determines the rank of an

attribute by calculating the chi-squared statistic with respect to

the class [20]. The third analysis used only the molecular

descriptors selected by expert advice (see details in the Experi-

mental section): molecular weight, atom count, pI, and molec-

ular polarizability. The fourth analysis included the same mole-

cular descriptors used in the second analysis in addition to the

experimental concentration (i.e., the amount in mM of PAMAM

dendrimer added to the human colon carcinoma Caco-2 cells

culture during the cytotoxicity analysis). The final analysis

independently assessed the performance of our best method by

randomly splitting the dataset into a training set, including 83 of

the values, and a test set, including 20 of the values in the

dataset.

The results for the first, second, and third analyses performed to

classify dendrimers as toxic/nontoxic are presented in Table 1,

Table 2, Table 3 and in Supporting Information File 1, Tables

S2–S4. The tables list the average precision, recall, F-measure,

and mean absolute error for the toxicity class prediction for all

classifiers considered here. The tables also contain the accuracy

value for the percentage of correctly classified instances. For all

analyses, all classifiers consistently had an accuracy at or above

60.2%.

For the first analysis, Table 1 and Table S2, the J48 and the

filtered classifiers show the best results in the 10-fold cross-

validation with an accuracy of 74.8%, while bagging, locally

weighted learning (LWL), and naive Bayes Tree (NBTree)

performed the best with an accuracy of 77.7% in the leave-one-

out cross-validation (Table S2). The results from the automatic
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Table 1: Results from the 10-fold cross-validation listed by classifier for the first analysis including all molecular descriptors. See Equation 1–4 for the
definition of precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.654 0.660 0.655 0.3370 66.0%
SMO 0.738 0.738 0.725 0.2621 73.8%
J48 0.789 0.748 0.750 0.3077 74.8%
Bagging 0.746 0.738 0.740 0.3211 73.8%
Classification via regression 0.734 0.738 0.730 0.2978 73.8%
Filtered classifier 0.789 0.748 0.750 0.3077 74.8%
LWL 0.775 0.738 0.741 0.2966 73.8%
Decision table 0.678 0.660 0.664 0.3878 66.0%
DTNB 0.691 0.670 0.674 0.3490 67.0%
NBTree 0.696 0.670 0.674 0.3511 67.0%
Random forest 0.736 0.718 0.722 0.3077 71.8%

Table 2: Results from the 10-fold cross-validation listed by classifier for the second analysis including the automatically feature-selected molecular
descriptors. See Equation 1–4 for the definition of precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.654 0.660 0.655 0.3370 66.0%
SMO 0.738 0.738 0.725 0.2621 73.8%
J48 0.789 0.748 0.750 0.3077 74.8%
Bagging 0.746 0.738 0.740 0.3211 73.8%
Classification via regression 0.734 0.738 0.730 0.2978 73.8%
Filtered classifier 0.789 0.748 0.750 0.3077 74.8%
LWL 0.775 0.738 0.741 0.2966 73.8%
Decision table 0.678 0.660 0.664 0.3878 66.0%
DTNB 0.691 0.670 0.674 0.3490 67.0%
NBTree 0.696 0.670 0.674 0.3572 67.0%
Random forest 0.736 0.718 0.722 0.2988 71.8%

Table 3: Results from the 10-fold cross-validation listed by classifier for the third analysis including the molecular descriptors selected by experts. See
Equation 1–4 for the definition of precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.762 0.748 0.750 0.2822 74.8%
SMO 0.738 0.738 0.725 0.2621 73.8%
J48 0.789 0.748 0.750 0.3077 74.8%
Bagging 0.731 0.718 0.721 0.3217 71.8%
Classification via regression 0.762 0.748 0.750 0.3230 74.8%
Filtered classifier 0.804 0.757 0.760 0.3061 75.7%
LWL 0.834 0.777 0.778 0.3008 77.7%
Decision table 0.658 0.650 0.653 0.3980 65.0%
DTNB 0.658 0.650 0.653 0.3969 65.0%
NBTree 0.722 0.689 0.693 0.3454 68.9%
Random forest 0.758 0.748 0.750 0.2973 74.8%

feature selection analysis, using the ChiSquaredAttributeEval

and ranker procedures as the attribute evaluator and search

method, respectively, are presented Table 2 and Table S3.

These results do not differ drastically from those observed in

the first analysis, indicating that the use of automatic feature

selection does not improve the classification of toxicity in this
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Table 4: Results from the 10-fold cross-validation listed by classifier for the fourth analysis including the expert-selected molecular descriptors with
cytotoxicity concentration. See Equation 1–4 for the definition of precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.755 0.738 0.741 0.2984 73.8%
SMO 0.738 0.738 0.725 0.2621 73.8%
J48 0.838 0.835 0.836 0.2203 83.5%
Bagging 0.836 0.835 0.835 0.2618 83.5%
Classification via regression 0.742 0.738 0.739 0.3157 73.8%
Filtered classifier 0.804 0.757 0.760 0.3061 75.7%
LWL 0.834 0.777 0.778 0.2995 77.7%
Decision table 0.658 0.650 0.653 0.3980 65.0%
DTNB 0.658 0.650 0.653 0.3969 65.0%
NBTree 0.716 0.689 0.693 0.3347 68.9%
Random forest 0.769 0.767 0.768 0.2483 76.7%

study. Alternative automatic feature selection methods using all

the WEKA recommended pairings of attribute evaluator and

search methods were also tested but did not show any signifi-

cant improvement in classification prediction performance

when using the J48 classifier. These results are presented in

Table S7 in Supporting Information File 1. The classification

using the features selected by expert advice (Table 3 and Table

S4) show that the LWL classifier performed the best with an

accuracy of 77.7% in the 10-fold cross-validation. The leave-

one-out cross-validation (Table S4) had three classifiers that

performed with an accuracy of 78.6% (naive Bayes, bagging,

and classification via regression). There is an increase in accu-

racy across most of the classifiers between the 10-fold and

leave-one-out cross-validations. This is an interesting finding

because Kohavi noted that k-fold cross-validations typically

perform better than leave-one-out cross-validations [21]. This

might be an artifact of the dataset not being exactly 50–50 split

between toxic and nontoxic samples, thus leading to skewness

toward nontoxic predictions.

The decision tree used by the 10-fold and leave-one-out cross-

validation J48 classifiers for the first, second, and third analyses

is depicted in Figure 1. As shown in the decision tree, the

isoelectric point, pI, is the property that is used to classify the

dataset. This property represents the pH at which the net charge

of an ionizable molecule is zero. The decision tree indicates that

if the pI is greater than 12.63, then the dendrimers are toxic.

There are 59 PAMAM dendrimers that are classified as toxic of

which 21 are misclassified. If the pI is less than or equal to

12.63, then the dendrimers are classified as nontoxic. There are

44 PAMAM dendrimers classified as nontoxic of which 2 are

misclassified.

These results indicate that data mining and machine learning

can be implemented to predict the cytotoxicity of PAMAM

Figure 1: Decision tree for both 10-fold and leave-one-out cross-vali-
dation J48 classifier of the first, second, and third analyses. The values
indicated on the branches represent the rule or decision used for
making the classification. The boxes at the bottom represent the clas-
sifications with the number of PAMAM dendrimers classified as such
on the left and the number of exceptions (misclassifications) on the
right.

dendrimers on Caco-2 cells with reasonably high accuracy

using only molecular descriptors. The misclassifications

observed in Figure 1 are much more significant when exam-

ining the dendrimers classified as toxic because almost half of

these dendrimers are actually nontoxic. This constitutes a

substantial quantity of potentially useful dendrimers that are

being ruled out, indicating the necessity for further analysis to

decrease the number of false positives.

Table 4 presents the results using the best performing classi-

fiers from the previous section of the analysis using the expert-

selected molecular descriptors with the addition of the concen-

tration of dendrimers used in the experiments. No improvement

in prediction was observed when using either the filtered or

LWL classifiers, but the J48 prediction accuracy of the classifi-

cation improved to 83.5%. This substantial improvement in the

accuracy of the J48 classifications (from 74% to 83.5 %) shows

the importance of including the concentration information from

the experimental design in addition to the computed molecular

descriptors to properly classify compounds as toxic or nontoxic.
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Figure 2: Decision tree for 10-fold cross-validation J48 classifier for the fourth analysis including the molecular descriptors expert-selected with the
concentration information of dendrimers used in the experiments. The values present on the branches represent the rule or decision used for making
the classification. The boxes at the bottom represent the classifications with the number of PAMAM dendrimers classified as such on the left and the
number of exceptions (misclassifications) on the right.

The J48 decision tree for the analysis discussed above is

depicted in Figure 2. In this case, the pI, molecular weight, and

cytotoxicity concentration are the discriminators in the classifi-

cation. As can be seen, the feature representing the concentra-

tion of dendrimers used in the experiments is present in the

decision tree for this analysis. The diagram of the decision trees

generated from the J48 classifier illustrates important attributes

used in the accurate prediction of toxicity for PAMAM

dendrimers. The greatest prediction accuracies were achieved

after supplementing the expert-selected features with a

descriptor representing the experimental conditions by

including the concentration under which the cytotoxicity data

was acquired. Figure 2 has the same structure at the top level as

Figure 1: when the pI is less than or equal to 12.63, 44

PAMAM dendrimers are classified as nontoxic with an excep-

tion of 2 that are misclassified. However, when the pI is greater

than 12.63, it leads to other options in the classification of the

remaining PAMAM dendrimers. The decision made at the next

node is determined for a PAMAM dendrimer molecular weight

of ≤6908.8 Da or >6908.8 Da. If the molecular weight is

>6908.8 Da, 24 PAMAM dendrimers are classified as toxic

with four that are misclassified. If the molecular weight is

≤6908.8 Da, there is another option for the molecular weight

being ≤3271.9 Da or >3271.9 Da. The final option can be made

considering the concentration target for the desired application

of the PAMAM dendrimer. In Figure 2, it can be clearly

observed that the number of misclassifications (false positives)

has been significantly reduced due to this further analysis (from

21 in Figure 1, to 5 in Figure 2). Due to the significant decrease

in false positives, the accuracy of the J48 classifier improved.

There was a slight increase in the number of false negatives due

to this further analysis (from 2 in Figure 1, to 5 in Figure 2).

The classification scheme in Figure 2 identifies three clusters of

viable PAMAM dendrimers that have tolerable levels of cyto-

toxicity: those with a pI less than or equal to 12.63; those with a

pI greater than 12.63, but with molecular weights less than or

equal to 3271.9 Da that could be used up to concentrations of

less than or equal to 0.7 mM; and those with a pI greater than

12.63, with molecular weights between 6908.8–3271.9341 Da

that can be used in formulations requiring concentrations less

than or equal to 0.01 mM. When designing novel PAMAM

dendrimers, these guidelines could be used for developing

viable candidates exhibiting low to no cytotoxicity. This

demonstrates the importance of combining experimental condi-

tions with molecular descriptors to achieve the greatest predic-

tion accuracy in the classifiers and to find compounds that may

be viable under more restrictive conditions. Another important

observation is that the properties present in the decision tree

diagrams represent the more general properties of charge, size,
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Table 5: Results from the external validation test set analysis listed by classifier using all molecular descriptors. See Equation 1–4 for the definition of
precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.803 0.650 0.617 0.3426 65.0%
SMO 0.803 0.650 0.617 0.3500 65.0%
J48 0.803 0.650 0.617 0.2776 65.0%
Bagging 0.803 0.650 0.617 0.2953 65.0%
Classification via regression 0.803 0.650 0.617 0.3047 65.0%
Filtered classifier 0.803 0.650 0.617 0.2776 65.0%
LWL 0.955 0.950 0.950 0.2510 95.0%
Decision table 0.803 0.650 0.617 0.4206 65.0%
DTNB 0.803 0.650 0.617 0.4182 65.0%
NBTree 0.803 0.650 0.617 0.2945 65.0%
Random forest 0.803 0.650 0.617 0.2784 65.0%

Table 6: Results from the external validation test set analysis listed by classifier including the molecular descriptors expert-selected with cytotoxicity
concentration. See Equation 1–4 for the definition of precision, recall, F-measure, and mean absolute error and accuracy.

Classifier Precision Recall F-measure Mean absolute error Accuracy

Naive Bayes 0.918 0.900 0.900 0.1868 90.0%
SMO 0.803 0.650 0.617 0.3500 65.0%
J48 0.918 0.900 0.900 0.1768 90.0%
Bagging 0.888 0.850 0.849 0.2408 85.0%
Classification via regression 0.803 0.650 0.617 0.3678 65.0%
Filtered classifier 0.803 0.650 0.617 0.2776 65.0%
LWL 0.955 0.950 0.950 0.2467 95.0%
Decision table 0.803 0.650 0.617 0.4206 65.0%
DTNB 0.803 0.650 0.617 0.4182 65.0%
NBTree 0.803 0.650 0.617 0.3082 65.0%
Random forest 0.888 0.850 0.849 0.2187 85.0%

and concentration, which have been hypothesized to be the pri-

mary causes of cytotoxicity in Caco-2 cells [22].

Table 5 and Table 6 show the data from the external validation

study that was performed to further validate the results

presented above. For this study, the dataset was randomly split

into a training set consisting of 83 cytotoxicity values, and a test

set consisting of 20 cytotoxicity values from the original

dataset. Table 5 presents the results from the analysis of this test

set using all of the molecular descriptors. For all but one of the

classifiers, the predicted accuracy was 65.0%, which is slightly

lower than the values obtained for the cross-validation analysis,

but the LWL classifier performed very well with an accuracy of

95.0%. This is an interesting finding considering that the

highest performance of this classifier in the first four analyses

was 77.7%. Table 6 shows the data from the analysis of the test

set using only the expert-selected features as well as the cyto-

toxicity concentration data. Again, the LWL classifier

performed with an accuracy of 95.0%, thus no improvement

was observed in the classification ability of this algorithm

between all molecular descriptors and the expert-feature-

selected molecular descriptors with cytotoxicity concentration

data. There are two algorithms that exhibited a large improve-

ment between Table 5 and Table 6, namely, the naive Bayes

and J48 algorithms. Both of these algorithms improved from a

prediction accuracy of 65.0% to 90.0%, which is substantially

higher than the values obtained in the cross-validation studies.

These results indicate that data mining and machine learning

can be implemented to accurately predict the cytotoxicity of

PAMAM dendrimers on Caco-2 cells. According to Figure 2,

the results also indicate that the properties such as charge, size,

and the desired concentration of the PAMAM dendrimers in the

formulation are the important properties in the prediction of

cytotoxicity on Caco-2 cells. We believe that the methods used

in this work can be expanded to analyze and predict many other

biochemically relevant properties of not only unmodified

PAMAM dendrimers but also for surface-modified PAMAM
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Figure 3: Simplified workflow diagram for the method used in this study.

dendrimers. This method will bolster existing cytotoxicity

assays by providing the ability to determine relevant com-

pounds with low cytotoxicity for synthesis and confirmatory

testing. This thereby reduces the search space necessary for

developing biomedically relevant PAMAM dendrimers. This

work not only demonstrates a proof of concept that data mining

and machine learning can be applied to PAMAM dendrimers to

predict the biochemical property of cytotoxicity, but also indi-

cates that further studies including much larger data sets are

necessary to develop reliable and robust classification methods

that can be apply to a broader set of compounds, cell cultures

and experimental designs.

Conclusion
In this study, classification methods for predicting the Boolean

classification of cytotoxicity in Caco-2 cells treated with

PAMAM dendrimers were introduced. The results indicate that

data mining and machine learning can be used to predict the

cytotoxicity of PAMAM dendrimers on Caco-2 cells with good

accuracy. In the classification method explored here, it was

observed that the properties regarding charge, size, and concen-

tration of the PAMAM dendrimers are the most important prop-

erties in the prediction of cytotoxicity and cell viability of

Caco-2 cells treated with PAMAM dendrimers. To the authors’

knowledge, these results are the first application of data mining

and machine learning to predict the cytotoxicity of PAMAM

dendrimers on Caco-2 cells using a classification method.

Experimental
The overall workflow of the analysis reported in this paper is

presented in Figure 3. The details of the different processes are

given in the following subsections.

Nanoparticle selection
The PAMAM dendrimers selected for our study included gener-

ations 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 compounds that have

been used for transepithelial transport. The full-generation

PAMAM dendrimers (generations 0, 1, 2, 3, and 4) are amine-

or hydroxy-terminated dendrimers. The half-generation

PAMAM dendrimers (generations 1.5, 2.5, 3.5, and 4.5) are

carboxyl-terminated dendrimers. For more general property

information on the full- and half-generation PAMAM

dendrimers, see Table S4 in Supporting Information File 1,

which includes the property information for the PAMAM

dendrimers analyzed in this study. The toxicity studies used

here correspond to assays of these compounds on the human

colon carcinoma Caco-2 cell line. The publications containing

property data for the nanoparticles selected for this study were

gathered from nanomedicine articles available in Scopus and

PubMedCentral using the search terms “PAMAM dendrimers

AND cytotoxicity AND Caco-2 cells”. In order for the

PAMAM dendrimer cytotoxicity values to be considered rele-

vant for extraction, both cell viability and treatment concentra-

tion information had to be available in the publication. From

this literature corpus, 103 PAMAM dendrimer cytotoxicity
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values were extracted to be included in this study [23-34].

NanoSifter [6], followed by manual revision, was used to

extract the cell viability and cytotoxicity treatment concentra-

tion information from the journal articles in the corpus

described above.

Chemical structure rendering and molecular
descriptor calculation
The structures of the PAMAM dendrimers were manually

constructed using MarvinSketch by ChemAxon [35,36]. There

were a total of 10 PAMAM dendrimer structures created for this

study. They included generations 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, and

4.5 PAMAM dendrimers. These models include both amine-

terminated (full-generation) and carboxyl-terminated (half-

generation) structures, as well as one hydroxy-terminated struc-

ture (full-generation but hydroxy-terminated). The molecular

descriptors for each molecule were calculated using plugins

built into MarvinSketch [36]. The list of the 51 molecular

descriptors calculated for each molecule is given along with

their corresponding definitions in Supporting Information

File 1, Table S1. Among these molecular descriptors, there are

42 structural properties (two mass-related, six atom-count-

related, seven bond-count-related, four ring-size-related,

13 ring-count-related, and ten other structural properties)

and nine chemical properties (five charge-related and four

hydrogen-bonding-related properties).

Data preparation and preprocessing
The data, consisting of the molecular descriptors calculated for

all of the molecules considered here and the corresponding cell

viability and cytotoxicity data, was uploaded into WEKA [20]

to perform the machine learning and data mining analysis using

classification methods to discern between toxic and nontoxic

compounds. In order to assign a categorical value to each

dendrimer cytotoxicity data point, the threshold was estab-

lished at a cell viability value of 90% (i.e., compounds were

considered nontoxic at a certain concentration of PAMAM

dendrimer nanoparticles if 90% of the Caco-2 cell population

survived after the intervention). Because there is statistical vari-

ation in cell viability studies, nontoxic materials can have a few

percent above or below 100% cell viability. Hence, the

threshold of 90% was set arbitrarily to take into account the

usual variability in this type of study.

Prediction of toxicity using classification
methods
Five different analyses were performed to classify a dendrimer

as toxic or nontoxic using different combinations of molecular

descriptors and experimental conditions. The first analysis

utilized all the molecular descriptors. The second analysis

involved an automatic feature selection using the ChiSquared-

AttributeEval and ranker method built into WEKA, where only

molecular descriptors with a nonzero rank were included in this

analysis. The molecular descriptors with a nonzero rank were

H-bond acceptor sites, pI, logP, Harary index, refractivity, bond

count, molecular polarizability, rotatable bond count, atom

count, logD, aliphatic bond count, chain bond count, chain atom

count, aliphatic atom count, exact mass, molecular weight,

Wiener index, Randic index, Szeged index, Wiener polarity,

Platt index, H-bond donor count, hyper Wiener index, H-bond

donor sites, and H-bond acceptor count. The third analysis used

only molecular descriptors selected by expert advice: molecular

weight, atom count, pI, and molecular polarizability. In this

paper we refer to selected by expert advice as the properties that

an experienced researcher in nanocarriers, Dr. Ghandehari,

expected to be relevant to predict toxicity based on his own

knowledge derived from work is his lab and literature prece-

dents. The fourth analysis included the same molecular descrip-

tors as the ones used in the second analysis and the experi-

mental concentration, i.e., the amount in mM of PAMAM

dendrimer added to the Caco-2 cells during cytotoxicity

analysis. The fifth analysis was an external validation study in

which we randomly selected 20 cytotoxicity values from the

original dataset of 103 to create a test set. The remaining

83 cytotoxicity values were used as the training set.

In this work we used the following classifiers: naive Bayes,

sequential minimal optimization (SMO), J48, bagging, classifi-

cation via regression, filtered classifier, LWL, decision table,

decision table/naive Bayes (DTNB), NBTree, and random

forest. We wanted to explore many modeling methods to

provide a wide landscape of available techniques. Since the

computational cost is low, there is no strong argument to limit

this exploration. Naive Bayes is a Bayesian classifier that uses

posterior probability to predict the value of the target attribute

[37]. That is, by using a given input attribute, the classifier

attempts to find the target attribute value that maximizes the

conditional probability of the target attribute. SMO is a support

vector machine classifier that globally replaces all values and

transforms nominal attributes into binary ones [38]. By default

it normalizes all attributes. J48 is a decision tree classifier,

which is based on the C4.5 algorithm [39]. This method starts

with large sets of cases which belong to known classes, then

cases are analyzed for patterns that allow for reliable discrimin-

ation of classes. The patterns are represented as models, either

in the form of decision trees or sets of if/then rules that can be

used to classify new cases. Bagging is a hybrid classification

method that creates classes and reduces variance by bagging

classifiers [40]. Classification via regression performs its classi-

fication by binarizing each class and building one regression

model for each class [41]. The filtered classifier is an arbitrary

classifier that runs on data passed through an arbitrary filter
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[20]. LWL uses an instance-based algorithm to assign instance

weights [42]. The decision table is a simple decision table

majority classifier [43]. DTNB is a decision table/naive Bayes

hybrid classifier. During the search, the algorithm determines

the need to divide the attributes into two disjoint subsets: one

for the decision table, the other for naive Bayes [44]. NBTree is

a decision tree/naive Bayes hybrid classifier that builds a deci-

sion tree with naive Bayes classifiers at the leaves [45]. All the

calculations were performed using WEKA [20].

Two different cross-validation [46] schemes were performed for

each classifier. The first one was a 10-fold cross-validation in

which the dataset was divided into 10 parts or folds [20].

During each classification run, nine of the folds were used as a

training set and one was used as a test set and the results were

averaged over the ten runs. The second cross-validation scheme

used here was the leave-one-out cross-validation [20]. As this

cross-validation method states, one sample is left out as the test

set, and the rest of the dataset is the training set. This method

runs this through as many iterations as there are samples in the

dataset.

The predictions determined by WEKA were evaluated and

determined to be true positive, false positive, or false negative

by manual inspection. The precision, recall, and F-measure

were calculated using the following equations:

(1)

(2)

(3)

(4)

In these equations, TP is true positive, FP is false positive, FN

is false negative, and β is the weighting applied to the relation-

ship between precision and recall. The precision and recall were

weighted evenly, so β = 1 [6]. The precision, recall, and

F-measure of each classifier were calculated for each classifica-

tion (toxic/nontoxic). Each measure for each classification

(toxic/nontoxic) was then averaged. The average value for the

precision, recall, and F-measure were recorded. For mean

absolute error, fi is the prediction, yi is the true value, and n is

the number of calculated absolute errors.
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