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Abstract

Background: The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result,
human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing
methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrich-
ment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with
lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models
following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expres-
sion profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene
expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO,), carbon black (CB) or carbon nanotubes
(CNTs) to determine the disease significance of these data-driven gene sets.

Results: Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species
(ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to
chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxi-
city induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-
fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflamma-
tory, oxidative stress and DNA damage responses than nano-TiO; particles.

Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially
fibrogenic. In addition to identifying several previously defined, functionally relevant gene sets, the present study also identified
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two novel genes sets: a gene set associated with pulmonary fibrosis and a gene set associated with ROS, underlining the advantage

of using a data-driven approach to identify novel, functionally related gene sets. The results can be used in future gene set enrich-

ment analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.

Introduction

Metadata analysis that leverages genomics data has become
increasingly popular as more experiments populate publicly
available data repositories such as the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and Euro-

pean Bioinformatics Institute (EBI; https://www.ebi.ac.uk/

arrayexpress/). A systems biology approach through meta-
analysis has the potential to reveal relationships and insight on
resulting phenotypes that may not be possible to detect through
the analysis of any individual experiment [1-12].

Conventional molecular approaches for the study of organismal
response to toxicant exposures or diseases involve the study of
one gene or a few genes at a time, whereas biological response
is driven by a group of genes. Thus, when normal function of a
specific biological process is perturbed, alterations and enrich-
ment in the expression of a subset of co-functioning genes asso-
ciated with that biological process are observed. Toxicoge-
nomic tools such as gene expression profiling have become a
widely used strategy for investigating the genome-wide changes
relating to molecular mechanisms underlying many complex
responses and diseases. The fact that genes interact with each
other and are expressed in functionally relevant patterns implies
that gene-expression data can be grouped into functionally
meaningful gene sets across a subset of conditions [13-32]. The
analysis of such predefined gene sets is a powerful alternative to
individual gene analysis [13]. However, derivation of mean-
ingful and relevant gene sets from the thousands of genes
showing expression changes following exposure to toxicants is
challenging.

Gene set data analysis, a computational technique which deter-
mines if a predefined set of genes exhibit statistically signifi-
cant differential expression between two or more experimental
conditions (time, dose, tissue, etc.), relies on the knowledge of
annotated pathways relevant to the underlying physiology or
biology being investigated. A survey conducted by Huang et al.
[33] identified 68 different gene set enrichment tools. These
methods are applied to manually and computationally curated
[29] gene sets to identify enriched functional groupings of
genes. These gene set enrichment tools include DAVID [21,22],
EASE [34], GoMiner [35], MAPPFinder [36], Onto-express
[37] and others, which consist of controlled descriptions of gene
functions that are frequently used to define gene sets. Other
tools, such as pathway databases including Gene Ontology [38],
KEGG [39], BioCyc [40], TfactS [41], CTD [42], and BioCarta

(http://www.biocarta.com), have also been applied in gene set

analysis. Despite the number of tools available, the effective
identification of functional groups of genes relevant to the
underlying physiology across several conditions still remains a
challenge. As a result, these tools continue to be refined and
improved.

Nanomaterials (NMs) are materials manufactured on the
nanoscale (1-100 nm) and are the building blocks of nanotech-
nology. On the nanoscale, materials exhibit unique size-asso-
ciated properties (optical, magnetic, mechanical, thermody-
namic, electrical, etc.), which are harnessed for use in various
commercial applications [43]. Current applications of NMs
include therapeutic applications (e.g., nanomedicine, drug
delivery, diagnostics), agriculture, manufacturing, electronics,
cosmetics, textiles, and environmental remediation and protec-
tion. Although NMs are synthesized from their corresponding,
known, bulk chemical substances, owing to their distinct size-
associated properties, their biological or toxicological behavior
are often different from their analogous bulk compound.
Because of their smaller size and large surface area, NMs are
known to have increased ability to interact with cellular
membranes, they can easily cross cellular barriers and penetrate
deeper regions of tissue (such as the highly vascularized
alveolar regions of lungs), and they exhibit increased toxicolog-
ical activity as compared to the corresponding bulk material or
comparatively large particles [43]. A variety of conventional
toxicology tools have been assessed using both in vitro and in
vivo models for their suitability and applicability for toxicity
testing of NMs. However, these tools are single-endpoint-based
or targeted in nature, investigate only one type of response at a
time, and lack detailed mechanistic information [44]. Given the
rate at which nanotechnology is growing, and the limitations of
the currently available toxicological testing tools, it is esti-
mated that it will take several decades and millions of dollars to
complete the assessment of NMs of various sizes, shapes and
surface coatings that require immediate assessment [45]. There-
fore, more efficient toxicity testing and prediction tools are
needed to provide a comprehensive overview of the biological
activities of NMs to rapidly screen the toxicological potential of
NMs.

Over the last few years, genome-wide expression analysis tools

have been used as an alternative approach to comprehensively

investigate the toxicological response induced by various
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classes of NMs and to identify the properties of NMs that are
responsible for eliciting adverse effects. We have previously
used transcriptomics profiling tools to investigate the under-
lying mechanisms of toxicity induced by nanoparticles of tita-
nium dioxide (nano-TiO;) [46-48] and carbon nanotubes
(CNTs) [49,50] of various sizes and properties. This work iden-
tified the properties of nano-TiO, that influence their inflammo-
genic potential [51]. These studies have generated a large repos-
itory of gene expression data that reflect the diversity of
NM-induced biological response across a variety of experi-
mental conditions. However, the challenge lies in the effective
use of these data to discern individual or networks of genes

Table 1: Publically available datasets.

GEO accession;  Platform

reference

Lung disease = GSE4231 [57]

UCSF 10Mm Mouse v.2 Oligo Array (GPL1089); UCSF GS
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conferring adverse outcomes of regulatory importance or

disease phenotypes.

In the present study, we used a meta-analysis approach like that
described by Turcan et al. [20] to identify functionally related
biclusters of genes showing similar expression profiles, derived
from publicly available gene expression data sets describing
specific lung diseases (Table 1). One advantage of biclustering
is that genes in the same cluster do not have to behave similarly
over all experimental conditions. Unlike classical clustering
techniques, biclusters can overlap with each other. This is ideal
for mining functionally related gene sets as genes can be asso-

Disease model/nanomaterial

Lung inflammation models

models Operon Mouse v.2 Oligo Array (GPL3330); UCSF 11Mm
Mouse v.2 Oligo Array (GPL3331); UCSF 7Mm Mouse v.2
Oligo Array (GPL3359)
GSE6116 [58] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Biomarkers to predict female
mouse lung tumors
GSE6858 [59] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Model of experimental asthma
GSE8790 [60] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Cigarette smoke-induced
emphysema
GSE11037 [11] Agilent-011978 Mouse Microarray G4121A (GPL891) Emphysema
GSE18534 [61] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Mouse small cell lung cancer
model
GSE19605 [62] lllumina MouseRef-8 v2.0 expression beadchip (GPL6885) Lung carcinogenesis
GSE25640 [63] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Pulmonary fibrosis
GSE31013 [64] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Spontaneous lung tumors
GSE40151 [65] Affymetrix Mouse Genome 430 2.0 Array (GPL1261) Idiopathic pulmonary fibrosis
GSE42233 [66] lllumina Mouse WG-6 v2.0 expression beadchip (GPL6887) Lung cancer
GSE52509 [67] lllumina MouseRef-8 v2.0 expression beadchip (GPL6885) COPD
NM studies GSE29042 [68] GPL4134 Agilent-014868 Whole Mouse Genome CNT: MWCNT-7

Microarray 4x44K G4122F

GSE35193 [48]
Microarray 4x44K G4122F
GSE41041 [47]
Microarray 4x44K G4122F
GSE47000 [49]
Microarray
GSE60801 [51]
Microarray 4x44K G4122F
GSE60801 [51]
Microarray 4x44K G4122F

GSE60801 [51]
Microarray 4x44K G4122F

GSE60801 [51]
Microarray 4x44K G4122F

GSE61366 [50]
Microarray

GPL7202 Agilent-014868 Whole Mouse Genome
GPL7202 Agilent-014868 Whole Mouse Genome
GPL10787 Agilent-028005 SurePrint G3 Mouse GE 8x60K
GPL7202 Agilent-014868 Whole Mouse Genome
GPL7202 Agilent-014868 Whole Mouse Genome

GPL7202 Agilent-014868 Whole Mouse Genome

GPL7202 Agilent-014868 Whole Mouse Genome

GPL10787 Agilent-028005 SurePrint G3 Mouse GE 8x60K

CB: Printex 90
TiO9: UV-Titan L181
CNT: Mitsui7

TiO2: NRCWE-025,
NRCWE-030

TiO, Sanding dust: Indoor-R,
Indoornano TiO,

TiOy: Sanding dust
NRCWE-032, sanding dust
NRCWE-033

TiO2: NRCWE 001 (no
charge), NRCWE 002
(positively charged)

CNT: NRCWE-26, NM-401

2440



ciated with more than one biological process. Several studies
[3,52-55] have shown that biclustering is a useful methodology
to uncover processes that are active only over some but not all

experimental conditions [56].

In this study, experiments investigating lung diseases (including
lung inflammation, emphysema, chronic obstructive pulmonary
disease (COPD) or lung cancer) in mice using the whole
genome gene expression tools were obtained from GEO. For
each study, raw data were downloaded from GEO and normal-
ized as described in the methods below. Biological replicates
for each of the experimental conditions were averaged. All
studies were merged together and biclustering was employed.
Through this analysis, ten biclusters representing ten functional
gene sets were identified. Using DAVID [21,22], the biological
functions associated with these biclusters were identified. Next,
we applied these candidate gene sets/biclusters to nine, publi-
cally available, toxicogenomic gene expression studies
(Table 1, published studies from our laboratory) to examine the
toxicity induced by a variety of NMs (nano-TiO,, CB and
CNTs) to determine the disease significance of the altered gene
expression profiles following exposure to NMs. The analysis
was restricted to lung disease models since pulmonary response
following NM exposure is well characterized.

Results and Discussion
Identification of biclusters of genes from lung

disease models

To develop a data-driven view of the mouse lung response
following exposure to NMs, publicly available genomic data
from GEO that describe characteristic features of select lung
diseases were leveraged. Eleven studies encompassing 52
experimental conditions with 8752 common gene symbols were
assembled and specific gene sets were extracted using the
repeated Bimax [69] biclustering method. A total of ten distinct
biclusters were identified. The results of the biclustering are
visually summarized in Figure 1.

Bicluster-1 consisted of studies investigating small cell lung
carcinoma, spontaneous lung tumor, asthma and pulmonary
fibrosis. This bicluster consisted of 19 gene symbols (Clqa,
C3arl, Cde68, Clec4n, Ctsk, Ect2, Fcgr3, Gp2, Igfl, Mmp12,
Ms4a6d, Ms4a7, Pbk, Prcl, Saa3, Shcbpl, Sppl, Timpl and
Ube2c). Submitting these gene symbols into the DAVID func-
tional annotation analysis tool (http://david.abcc.ncifcrf.gov)

resulted in no significant gene ontology (GO). The top three
ranked GO terms based on unadjusted p-values were acute
inflammatory response (p-value = 0.0023), extracellular
region (p-value = 0.0067) and extracellular region part
(p-value = 0.0083). The lung disease models that comprised this

bicluster were the model for human small cell lung carcinoma

Beilstein J. Nanotechnol. 2015, 6, 2438-2448.

(GSE18534), spontaneous lung tumor (GSE31013), experi-
mental asthma (GSE6858), active pulmonary fibrosis
days 7, 14, and 21 (GSE40151) and pulmonary fibrosis
(GSE25640).

The second bicluster consisted of twenty gene symbols
(4632434111Rik, Ccna2, Cenbl, Cenb2, Cdc20, Cdca8, Cldn4,
Hells, Kif22, Mad2l1, Megf10, Melk, Msrl, Mx1, Plk4, Psatl,
Rad51, Rrm2, Sprrla and Uhrfl) with lung disease models such
as a model for human small cell lung carcinoma, spontaneous
lung tumor, chemical-induced lung carcinogenesis model from
GSE6116 (1,5-naphthalenediamine; NAPD) and pulmonary
fibrosis. Using DAVID, many GOs and Kyoto Encyclopedia of
Genes and Genomes (KEGQG) pathways were found significant
(FDR p-value < 0.05). Ten of the twenty gene symbols
from this bicluster were elements of the cell cycle GO
(FDR p-value = 4.9 x 1079) and five were part of the KEGG
pathway (FDR p-value = 2.5 x 107%).

The bleomycin injury and the bacterial infection models
(GSE4231), as well as lung disease models related to
pulmonary fibrosis, constituted the third bicluster. This bicluster
contained 17 gene symbols (Aifl, Ccl2, Ccl9, Cer5, Cdknla,
Chll, Cxcl9, Cyp7bl, Ereg, Fcgrl, Mt2, Retnla, Stn, Sfrpl,
Slc26a4, Socs3, and Tnc). Nine of the seventeen gene symbols
are part of the extracellular region GO (FDR p-value = 0.0056).
Other significant GO terms included chemokine receptor
binding (FDR p-value = 0.017), extracellular region part
(FDR p-value = 0.021) and chemokine activity (FDR
p-value = 0.032).

The fourth bicluster contained gene symbols associated with
chromatin binding (Arid4b, Atrx, Cnot6, Ezh2, Glmn, Hifla,
Ncl, Npm1, Ofd1, Sdccagl, Ssb, Tfrc, Tpp2, Ttc3, Z{p386)
(FDR p-value = 0.019). This bicluster contained lung disease
models associated with chemical exposure to known lung
carcinogens (NAPD, N-1-naphthyl)ethylenediamine dihydro-
chloride (NEDD), 2,3-benzofuran (BFUR)) (GSE6116), a
model for human small cell lung carcinoma, spontaneous lung
tumor and cigarette smoke-induced emphysema (GSE8790).
Many of the gene symbols found in this bicluster are transcrip-
tion factors involved in the gene expression regulation and are
associated with one form of cancer or another.

The fifth bicluster consisted of 35 gene symbols
(1700019G17Rik, Aplm2, Argl, Atic, Cdc6, Ckmtl, Cldn7,
Ddit4, Fetub, Galnt2, Gatm, Grb7, H1f0, Hdacl1, Ildrl,
Mapk13, Mcm2, Mcem5, Mem6, Mrps15, Nup50, Pgls, Plek2,
Psmd8, Rbp4, Rfc4, Rgl3, Rrsl, Serpinel, Sh3yll, Slc25al3,
Slc39all, Spata5, Tkl, and Tmprss4). The lung disease models
that formed this bicluster included the model for human small
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Figure 1: Heatmap of the gene symbols obtained from the bicluster data analysis. The distance metric used for the cluster analysis was 1-correlation

estimated using Spearman correlation with average linkage.

cell lung carcinoma, spontaneous lung tumor, cigarette
smoke-induced emphysema and two chemical exposures,
2,2-bis(bromomethyl)-1,3-propanediol (BBMP; lung
carcinogen) and 4-nitroanthranilic acid (NAAC; which resulted
in no observed tumors). DNA replication for the GO
term (FDR p-value = 4.1 x 1073) and KEGG pathway (FDR
p-value = 4.1 x 1073) were significant. The only other

significant GO term was DNA replication initiation (FDR
p-value = 0.028). A few genes showed association with matrix
degradation, inflammation and energy metabolism.

The sixth bicluster consisted of models for human small cell

lung carcinoma, cigarette smoke-induced emphysema and
chemical exposures BFUR, NAPD and NEDD. DAVID annota-
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tion analysis of the 23 gene symbols (Atm, Bazlb, Bclafl,
Ccarl, Dek, Dhx9, Epb4.113, F5, Hgf, Kif5b, Mierl, Pgm2l1,
Plcb4, Ppil4, Rabepl, Smcla, Stk3, Syncrip, Tcergl,
Ugcg, Usp9x, Zfml, and Z{p292) showed that this group of
genes was primarily involved in the acetylation process (FDR
p-value = 0.0056). Many GO terms related to the regulation of
apoptosis were present in the results obtained by DAVID
analysis. However, these results were not statistically signifi-
cant after the FDR adjustment.

The seventh bicluster contained lung disease models related to
pulmonary fibrosis only. DAVID analysis of the gene symbols
included in this bicluster (Ccl3, Cd200r1, Chodl, Clec5a,
Col24al, Cxcl10, Emrl, Fxyd4, Gpnmb, Haver2, Igj, I11rn,
Mmp10, Slc37a2, Sytl2, Tgml, TIr8, Trem2, Wfdc12, and
Zranb3) showed association with pulmonary fibrosis but no
significant gene sets were derived. This bicluster can poten-
tially serve as a candidate gene set for pulmonary fibrosis.

The eighth bicluster consisted of models for bacterial infection,
Th2 response (GSE4231), asthma (GSE6858) and pulmonary
fibrosis (GSE25640) with sixteen gene symbols (C1gb, Ch25h,
Clec4a2, Ctss, F7, Fcgr2b, Itgam, Itgb2, Lgmn, Lpxn, Ly86,
S100a4, Serpina3g, Serpina3n, Slc7a2, and Tbxasl). These
gene symbols resulted in three significant GOs: response to
wounding (FDR p-value = 0.0037), defense response
(FDR p-value = 0.0063) and inflammatory response (FDR
p-value = 0.0045).

The ninth bicluster consisted of the down-regulated gene
symbols (Actcl, Cfd, Ckm, Ckmt2, Cox7al, Cox8b, Csrp3,
Eno3, Fmo3, Myh6, Myll, Myl7, Pln, Ponl, Smpx, Sultldl,
Tnncl, and Tnni3) and included a bacterial infection model, a
model for human small cell lung carcinoma, spontaneous lung
tumor, an asthma model and a pulmonary fibrosis model. These
gene symbols were significantly associated with KEGG
pathway cardiac muscle contraction (FDR p-value < 0.0001)
and GO terms such as myosin complex (FDR p-value = 0.02)
and regulation of system process (FDR p-value = 0.0015).

The tenth bicluster resulting from the analysis of the genes that
were 2-fold down-regulated consisted of lung inflammation and
disease models such as the bacterial infection model, a model
for human small cell lung carcinoma, the study on spontaneous
lung tumor, an asthma model and pulmonary fibrosis. This
bicluster consisted of seventeen gene symbols (Aldh3al, Bmpo6,
Cyplal, Cyp4bl, Eng, Fmol, Fmo2, Gprl55, Igfbp6, Mapt,
Ndrg2, Omd, Pcolce2, Pgam2, Scube2, Slc7al0, and Tnxb).
These genes were associated with a variety of functions
including fatty acid metabolism; however, DAVID functional

annotation analysis of these gene symbols resulted in no

Beilstein J. Nanotechnol. 2015, 6, 2438-2448.

statistically significant results to known annotated gene sets.
However, several of these genes are associated with reactive
oxygen species (ROS), which may not be a well-established
gene set.

Application of biclusters to classify

NM-induced lung response

Next, gene set enrichment analysis (GSEA) [29] using the
bicluster-method-derived genes sets was conducted on the nine
publically available studies [47-51,68] that examined
NM-induced pulmonary toxicity. These results are presented in
Figure 2. Bicluster-3 (genes associated with chemokine activity
reflecting pulmonary inflammation) was enriched for most of
the NMs. These results are in alignment with other studies in
the literature that have shown pulmonary inflammation to be the
predominant response following exposure to a variety of NMs.
Bicluster-7 was the other significant cluster that was enriched in
most of the experiments related to CNTs and CB. This cluster
consisted of gene symbols showing strong association with
pulmonary fibrosis. CNTs are well known to induce pulmonary
fibrosis [50]. Although exposure to CB was not shown to cause
lung fibrosis at the tested doses [48], studies have shown that
CB exposure enhances bleomycin-induced lung fibrosis [70].
These results suggest that both carbon-based NMs may perturb
similar biological processes and functions and factors in add-
ition to the altered expression of a few genes in the gene set

may contribute to the initiation of lung fibrosis.

Conclusion

In this study, we examined the applicability of a data-driven ap-
proach to identify gene sets from the comprehensive gene
expression data using a biclustering method. The results showed
that the lung response to NM exposure predominantly reflects
responses observed following bacterial infections and
bleomycin injury models that involve acute inflammation. The
combined biclustering and gene set enrichment analysis also
identified CNT and CB as potentially fibrogenic NMs.
Although several genes sets associated with acute DNA
binding, cell cycle, apoptosis, and ROS response that were
specific to different disease models were also observed to be
perturbed following exposure to NMs, the implication of such
perturbation was not clear from this analysis. In addition the
identification of several previously defined, functionally rele-
vant gene sets, the present study also identified two novel genes
sets: Bicluster-7 (consisting of genes associated with pulmonary
fibrosis) and Bicluster-10 (consisting of genes associated with
ROS), underlining the advantage of using a data-driven ap-
proach to identify novel, functionally related gene sets. The
results can be used in future gene set enrichment analysis
studies involving NMs or as features for clustering and classi-

fying NMs of diverse properties.
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Figure 2: Gene set enrichment results of the NM datasets. Barplots of the —log1o(p-value) from the GSEA are presented for each of the NM studies.
The studies are ordered in the barplots as follows: TiO,: UV-Titan L181, NRCWE-025, NRCWE-030, Sanding Dust Indoor-R, Sanding Dust Indoor-
nano, Sanding dust NRCWE-032, Sanding dust NRCWE-03, NRCWE 001 (No charge), NRCWE 002 (positively charged); CNT: Mitsui7, NRCWE-26,

NM-401, MWCNT-7; CB: Printex 90.

While powerful, data-driven meta-analysis approaches have
several limitations. One important limitation is that the analysis
is conditional on the subset of studies selected from the public
data repositories such as GEO and EBI. Also, the experiments
available in these repositories may not be representative of the
population. For example, there are other mouse models of lung
diseases that were not included in the present study due to lack
of publicly available data or failure to meet the criteria set by
the present study (time points, mouse strain, microarray plat-
forms used).

The analysis is also limited to the gene symbols that were

consistently investigated across the various microarray plat-

forms from the different studies included in the analyses.
Furthermore, the bicluster analysis is conditional to the two-fold
change cut-off employed to create the binary matrix for the
Bimax algorithm and the choice of the Bimax parameters.
Modifying the fold cut-off to 1.75- and 1.5-fold, an additional
28 (23 up and 5 down) and 100 (89 up and 11 down) biclusters
were identified. However, the interpretations were derived from
the 2-fold cut-off as it provides the most conservative approach.
The biclusters were stable when varying the minimum
number of rows and when varying the minimum number of
columns. Here, additional clusters were identified when these
parameters were reduced and clusters were eliminated when

these parameters were increased. Changes to any of the above
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could impact the final results and therefore the interpretation of
the data.

Experimental

Lung disease models

The data were obtained from the GEO. The accession numbers
for the studies [11,57-67] used in the exploration of novel gene
sets are presented in Table 1. These data sets cover a variety of
lung diseases and lung injury outcomes, including different lung
inflammation models, emphysema, chronic obstructive
pulmonary disease and experiments studying lung cancer
and lung tumors. Several different microarray platforms
including the Illumina expression beadchip were used in
these studies. The analysis was restricted to lung disease models
since pulmonary responses following exposure to NMs are well
characterized.

Data processing and normalization

The log, transformation was applied to all signal intensity
measurements. For the two color microarray studies, the
LOWESS normalization method [71] using the R statistical
software environment [72] was applied. For studies using the
Affymetrix GeneChips®, the RMA normalization was applied
using the justRMA function in the affy [73] R package. Quan-
tile normalization was applied for studies that utilized the Illu-
mina beadchip. This was done using the lumiN function in the

lumi [74] R package.

Probes with technical replicates were then averaged using the
median. The data for each study was then merged to its appro-
priate annotation file to obtain the gene symbol. Probes with the
same gene symbol were then averaged using the median. The
experimental conditions with biological replicates were aver-
aged using the median. The median was used as it is a robust
estimate of the central tendency.

For each experimental condition, the data was further normal-
ized by centering to the matched control. The control samples
were then removed from the data set. The remaining data is
presented relative to the control, equivalently the log, of the
fold change (estimated using medians) for all the studies. The
data were then merged across studies using the gene symbol.
The mining the log) of the fold changes was done in an attempt
to minimize the cross-platform differences. However, platform
differences may exist through compression of the fold-change
values [75].

Biclustering

The biclustering data analysis was conducted in R using the
biclust [69] package. The repeated Bimax [56] method was
selected for this analysis. Bimax uses a simple data model that

Beilstein J. Nanotechnol. 2015, 6, 2438-2448.

assumes two possible states for each expression level, no
change and change with respect to a control experiment. For
this analysis, two binary matrices were constructed: one matrix,
consisting of zeros and ones, where the ones indicated genes
that were 2-fold up-regulated and a second matrix, where the
ones identify genes that were 2-fold down-regulated.

The option for the minimum number of rows for the Bimax
method was set at 15. The minimum number of columns (which
represent the experimental conditions) was set as 5 and the
maximum number of columns was set as 15. This resulted in
8 biclusters from the binary matrix representing the up-regu-
lated genes and 2 biclusters were identified for the matrix repre-

senting the down-regulated genes.

NM-induced lung response data sets

The data sets examining differential gene expression in mouse
lung exposed to CB, nano-TiO; or CNTs were compiled from
GEO. Since this is a proof-of-concept study, the investigation
was limited to those NMs for which lung toxicological response
is well characterized. Also, the genomics datasets with multiple
doses and post-exposure time points were considered in the
analysis. The GEO accession numbers for these studies are
presented in Table 1. These studies utilized the two color
Agilent microarray reference design [76]. The data were
LOWESS normalized and probes with technical replicates were
averaged. The annotation file containing the gene symbol was
merged with the expression data and probes with multiple gene
symbols were averaged using the median expression.

Gene set enrichment

As the NM-induced lung response data sets contained multiple
doses, the test statistic from the Attract [19] approach was used.
Using this method, the overall F-statistic for the dose effect was
estimated for each gene. The F-statistics were then log,-trans-
formed. A two sample t-test (assuming unequal variances) was
then conducted, comparing the mean of the log, F-statistics
within the bicluster to the mean of the log, F-statistics for all
genes. The observed t-statistics and p-values are reported in
Figure 2.
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