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Abstract
We use regular solution theory and implement a three-gradient model for a liquid/vapour system in contact with a complex surface

topology to study the shape of a liquid drop in advancing and receding wetting scenarios. More specifically, we study droplets on

an inverse opal: spherical cavities in a hexagonal pattern. In line with experimental data, we find that the surface may switch from

hydrophilic (contact angle on a smooth surface θY < 90°) to hydrophobic (effective advancing contact angle θ > 90°). Both the

Wenzel wetting state, that is cavities under the liquid are filled, as well as the Cassie–Baxter wetting state, that is air entrapment in

the cavities under the liquid, were observed using our approach, without a discontinuity in the water front shape or in the water

advancing contact angle θ. Therefore, air entrapment cannot be the main reason why the contact angle θ for an advancing water

front varies. Rather, the contact line is pinned and curved due to the surface structures, inducing curvature perpendicular to the

plane in which the contact angle θ is observed, and the contact line does not move in a continuous way, but via depinning transi-

tions. The pinning is not limited to kinks in the surface with angles θkink smaller than the angle θY. Even for θkink > θY, contact line

pinning is found. Therefore, the full 3D-structure of the inverse opal, rather than a simple parameter such as the wetting state or

θkink, determines the final observed contact angle.
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Introduction
Wetting of surfaces is a key feature for many applications. The

wetting properties of a surface depend on both the material and

the surface topography. A famous example is the surface of a

lotus leaf: Although the material of the leaf is hydrophilic (con-

tact angle on a smooth substrate θY < 90°), the structured sur-

face is hydrophobic (apparent contact angle θ > 90°) [1].

Recently, different surface structures have been designed and

fabricated from hydrophilic materials that show hydrophobic

contact angles [2-10]. An example is an inverse opal as

schematically shown in Figure 1. Our group recently reported
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an increase of θ from ca. 80° to ca. 110° for an inverse opal of

polypyrrole [10].

Figure 1: Schematic representation of the three wetting states on an
inverse opal, A) impregnated state, B) Wenzel state, C) Cassie–Baxter
state.

Our study is targeted to obtain (close to) molecular level insight

in the wetting features of such surfaces using a simplistic

modelling toolbox based on regular solution theory. To under-

stand the increase in θ, which is observed at macroscopic length

scales, details about the microscopic scale should be considered.

For the simplest case in which a water droplet wets the struc-

tured surface on a microscopic level with its preferred angle θY

(see Figure 1B), the apparent contact angle, θW is given by [11]

(1)

with r the roughness of the surface (true contact area/projected

area). This is called the Wenzel state, and it always magnifies

the underlying wetting properties: θ decreases for hydrophilic

materials and increases for hydrophobic materials. As the struc-

tured surfaces of interest, which are composed of a hydrophilic

material, show an increase in θ, this implies that the droplet in

these systems cannot be in the Wenzel state, or that the assump-

tion of this model, namely that the parameter r captures all fea-

tures of a surface topography relevant for the final droplet

shape, is too simplistic.

A possible explanation of the increase in θ on structured sur-

faces, is air entrapment [12,13]. Air acts as hydrophobic patch

(θY for the water/air interface is 180°), and these patches lower

the average surface energy of the surface (see Figure 1C)

[14,15]. The resulting apparent contact angle for this so-called

Cassie–Baxter state is then given by [16]

(2)

with Φs the fraction under the droplet that is in contact with the

solid and (1 − Φs) the fraction under the droplet in contact with

air. This approach thus defines the solid as a new material with

a different effective surface energy on a macroscopic scale, and

does not entail details about the droplet shape close to the sur-

face structures on a microscopic level.

Another explanation of the difference in θ for a structured and

unstructured surface of the same material is contact line pinning

[17-20]. The three-phase contact line is hereby immobilized.

Apart from chemical heterogeneities (which will not be dis-

cussed here), pinning occurs for a simple 1D system when the

contact line encounters a kink in the surface, indicated with

angle θkink in Figure 2. If θY < θkink, the angle of the droplet

with respect to the surface should exceed θY in order to wet the

surface after the kink (dotted area in Figure 2), and the droplet

is thus pinned.

Figure 2: Surface structure induced contact line pinning in 1D: pinning
occurs when θY < θkink (dotted area). The two θY indicate the contact
angle on the surface before and after the droplet has reached the kink.

However, pinning cannot result in any arbitrary shape. The

mean curvature J of the liquid/vapour (L/V) interface of a

droplet, is related to the pressure difference across the L/V

interface, ΔP, and the interfacial tension γ according to the

Young–Laplace equation [17]:

(3)

ΔP and γ can be considered constant for a droplet (neglecting

small curvature corrections, the deformation due to gravity and

the near surface contributions expressed in the disjoining pres-

sure), thus J should also be constant [13]. This implies that if

the surface structure induces a curvature in one direction due to

pinning, this should be compensated by the opposite curvature

in the perpendicular direction. Hence, if structuring of a surface

induces a noticeable curvature of the droplet parallel to the sur-

face, this should lead to deformations of the droplet perpendicu-

lar to the surface. As the latter curvature is coupled to the

apparent contact angle, which is commonly measured perpen-

dicular to the surface, we notice contact angle variations.

The feature of hydrophilic surfaces showing hydrophobic con-

tact angles is, for reasons mentioned above, often linked to

re-entrant angles of the surface structures [21,22]. An addition-

al argument besides pinning, is that the liquid/air interfacial area
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should increase upon penetration of the liquid, creating more

liquid/vapour interface [13]. This may imply that air entrap-

ment occurs, even for hydrophilic materials [12,23].

Since it is difficult to observe local curvatures in the three phase

contact line experimentally [18,24,25], in this study we turn to

‘experiments in silico’. The present study is targeted to obtain

insight in the wetting features of surfaces of hydrophilic materi-

als that show hydrophobic contact angles and to differentiate

between air entrapment and contact line pinning using a model-

ling approach.

Macroscopic approaches such as solving the Young–Laplace

equation [26,27], minimizing the availability [28], or using ge-

ometry and energy [12] to find the droplet shape, do not take

molecular details into account, and often require the contact

angle as input parameter. Furthermore, air entrapment and coa-

lescence [29] cannot be obtained by solving the Young–Laplace

equation, and surfaces with re-entrant curvatures give impos-

sible solutions [29]. Phase field methods [29], molecular dy-

namics (MD) [23,30-32], and mesoscopic lattice-Boltzmann

(LB) models [33-37] are a viable option for this problem, but

are challenging because wetting on complex structures involves

multiple length scales [38] and the time needed to converge to a

solution can be long [31,38].

In this paper we focus on the very well known regular solution

theory, which is frequently used throughout the field of physi-

cal chemistry, but not so often applied for studying wetting on

complex surface topologies in three dimensions. Our models

can be solved using a surprisingly simple algorithm (e.g., a

Pikar iteration) on a desktop PC in a few minutes CPU time.

However, similar to some of the theoretical approaches

mentioned above, there are limitations with respect to the size

of the systems that realistically can be considered. Albeit these

limitations can easily be lifted by a factor of ten when the equa-

tions are solved using modern supercomputer facilities (which

we here did not do). Here we focus on equilibrium and meta-

stable states, which allows us to consider both advancing as

well as receding contact angles. Even though the regular solu-

tion model is very well known, we will start by giving some

backgrounds and highlights of the regular solution model. This

gives us an opportunity to fix some of our parameters in the

system. We then present the model and study the wetting of

inverse opal structures.

Results and Discussion
Regular solution theory
The start is a lattice model wherein the sites with linear length b

are arranged in a cubic lattice geometry, that is, each cell has

Z = 6 neighbours. Let there be M sites in the system and thus

the volume is given by V = Mb3. Sites are either filled by a sol-

vent molecule, or the site is empty. The latter sites are said to be

vacant and the number of vacant sites is NV. The remaining

sites are filled by solvent and hence there are N = M − NV

sites filled. It is assumed that the solvent molecules only

interact with each other when they occupy neighbouring

sites and in this setting it is common to introduce the dimen-

sionless Flory–Huggins interaction parameter, which is an

Archimedean-like parameter needed for unlike contacts:

(4)

A positive value means that LL contacts and VV ‘contacts’ are

favoured over LV ones and this implies a tendency towards

demixing. When we assume random mixing (mean-field

approximation) we can evaluate the mixing interaction energy

in the system by Umix = NχφV, where we ignored boundary

effects and φV = NV/M is the volume fraction of vacancies. The

entropy of mixing can be evaluated when we assume once more

that the sites are randomly filled by solvent. The total number of

ways to arrange the fluid and the vacancies is given by 

and the mixing entropy is found by Smix = −kB·lnΩ =

−kB(N · ln φ  + NV · ln φV) with φ  = N /M  and kB  the

Boltzmann constant. The free energy of mixing is given by

Fmix = Umix – T·Smix. Introducing the dimensionless free energy

density f = Fmix/(Mb3kBT) wherein the thermal energy kBT and

the volume V are used to reduce the free energy, we obtain the

well-known regular solution free energy density:

(5)

with φ + φV = 1. The first two terms are negative and promote

the mixing of the solvent and vapour. The last term drives the

demixing. The critical conditions are found by setting the

second and third derivatives of the free energy density

(Equation 5) with respect to the volume fraction of liquid to

zero. From such analysis it is found that there is a solubility

gap as soon as χ > χcr = 2. By symmetry the critical density

φcr = 1/2.

Liquid/vapour interface
Very famous is the extension of the regular solution theory to

the description of the L/V interface. In the footsteps of van der

Waals [39] we like to find the density profile across a L/V inter-

face φ(z). Here z is a (lattice) coordinate running perpendicular

to the interface. We set z = 0 at the interface and consider a

lattice model with layer numbers z = −M, −(M − 1),…,−1, 0,

1,…, M − 1, M. The boundary layers −M and M are taken large
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Figure 3: A) Examples of volume fraction profiles across a liquid/vapour interface found numerically by exact minimisation of Equation 6, with the
interaction parameter χ = 2.05 and χ = 2.2 as indicated. B) Width of the interface (W), density difference between the two phases (Δφ) and dimension-
less surface tension (γ) as function of Δχ = χ − 2 in double logarithmic coordinates.

enough so that the interface is not perturbed. We generalise

Equation 5 and define a dimensionless free energy F as follows

(6)

where it is understood that the mean-field approximation is now

applied along lattice layers. The angular brackets in the last

term indicate that in the interaction term “curvature” informa-

tion is included, which is needed to evaluate the number of

liquid–vacancy contacts in the presence of density gradients. In

continuous language, we need to introduce

(7)

in the interaction term, which on a lattice and in a one-gradient

functional of Equation 6, translates to a local averaging

operation:

(8)

The target is to find the best volume fraction profiles that opti-

mise the free energy F. Results are summarised in Figure 3.

Two volume fraction profiles are presented in Figure 3A, which

were found numerically by minimizing Equation 6, for two

values of χ, not far from but above χcr = 2. We have set the

liquid phase at negative values of z, whereas the vapour is at

positive z. The position of the interface is set at z = 0 found by

searching for φ = 0.5 (in three-gradient results we will find the

interface by the same criterion). The profiles follow very accu-

rately the tanh dependence (see Figure 3A for numerical

results). We note that for χ = 2.2 used below, these results

deviate from the analytical predictions. Far from the interface

the volume fraction profile levels off to the binodal values. The

difference in volume fractions between the binodal values, here

defined by Δφ = φ(−M) − φ(M), is indicated in Figure 3A. The

width W of the interface is numerically found by intersection of

the tangent line at z = 0 with the binodal value. We can eval-

uate the surface tension γ, which is given in units kBT/b2,

numerically, as discussed in section S1 of Supporting Informa-

tion File 1.

In Figure 3B we prove that near the critical point (i) the surface

tension, (ii) the width of the interface and (iii) Δφ as found by

our numerical solution accurately obey scaling relations with

respect to the difference to the critical point Δχ = χ − 2.

Interestingly, near the critical point there is an analytical route

to optimise the free energy F [40]. In short, near the critical

point the density of the liquid (and thus also for the vacancies)

is never far from the critical value. Introducing an order param-

eter φ = φ – 0.5, we can write F as a function of the order pa-

rameter and then Taylor series expand the logarithms up to the

fourth order in the order parameter. As a result we obtain a

Landau free energy in terms of the order parameter. An

Euler–Lagrange optimisation then leads to the famous tanh-

profile already known by van der Waals. We do not go into

these details and mention that fully in line with the numerical

results presented in Figure 3B the scaling exponents as found by

this analytical route are in line with the numerical results: For

the surface tension the (mean field) value is −3/2, it is 1/2 for

the width of the interface, while the difference in densities of

the two phases vanishes with an exponent −1/2 [40].
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Our aim is to present results that are relevant for the water/

vapour system. Of course a symmetric lattice model falls short

in this respect, because it assumes that as much water will be in

the vapour phase as free volume will be in the water phase. The

symmetry can only be broken in a more elaborate model

wherein water is more realistically represented. We mention

that such an approach is (at least in principle) possible, but here

we choose not to go into such complications. We know that at

ambient temperatures the water/vapour system is not near criti-

cal. Indeed it is very far from critical. Hence it is necessary to

choose a sufficiently high χ value. In a lattice model it is

advised to keep the width of the interface larger than the size of

a lattice site (i.e., W > b). In the other limit one experiences

many so-called lattice artefacts, which may frustrate the analy-

sis of the shape of a droplet on top of a structurally complex

surface. For this reason we choose here χ = 2.2 for the liquid/

vapour interactions, unless stated otherwise. For this value the

width of the interface W is approximately 8 in units b. As the

width of an air-with-water interface is just a few angstroms

[41], we may infer that when the water/vapour system is the

target of our calculations, the corresponding value of b is a

value less than an angstrom. Again we accept deviations from

the air/water system and advice to consider the value of b to be

in the order of a few angstroms (say 0.2 nm). The fraction of

liquid in the liquid-rich phase for χ = 2.2 is about 0.7515, and

the fraction of liquid in the vapour-rich bulk phase has the

binodal value φ# = 0.2485. Again these values differ dramati-

cally from our experimental system of water in air at 100% rela-

tive humidity. Finally, the interfacial tension in this system is

given by γ = 0.03326 in units kBT/b2, which translates with

b = 0.2 nm to 3.422 mN/m. This value is smaller than the

known value for water. All these differences with respect to our

experimental system are accepted as we search only for

scenarios. For ease of reference we may call the liquid-rich

phase “water” and the vacancy-rich phase “vapour”.

Droplet on an unstructured solid
Still using the one-gradient approach, it is possible to study

wetting phenomena using the regular solution model. We need

remarkably few modifications in the system. The only issue is

that we need to introduce a substrate. To do so, we first specify

the lattice coordinates z = 0, 1, 2,…, M, and introduce a surface

component S as a boundary condition, that is, we choose

φS(0) = 1 and φS(z) = 0 for all z > 0. The liquid and the vapour

are allowed to be in the half-space z > 0. We have in principle

two new interaction parameters χLS and χVS by introducing a

“third” component.

Without losing generality we can set χVS = 0, and keep χS = χLS

to specify the preferential adsorption of the liquid component

on the surface. A negative value means that the solvent has a

preference to sit next to the surface over the vapour. At χS = 0

we expect a contact angle of 90°. Hydrophobic surfaces are

modelled when χS > 0. We will mostly restrict ourselves to

hydrophilic surfaces, thus to χS < 0.

In the case of a L/V system next to a surface the regular solu-

tion free energy assumes the form

(9)

where it is understood that the last term is only non-zero when

z = 1, where it assumes the value .

There are several routes to study wetting. Our preference goes

to study so-called adsorption isotherms. Of course we need a

solubility gap and thus χ > 2 (we use a value of 2.2 throughout).

Next, we consider a specific value of χS < 0 and specify a given

amount of solvent  in the system. We solve

the self-consistent field equations and obtain the optimised den-

sity profile φ(z). Far from the surface, the density profile

converges to the bulk value φb. The adsorbed amount (surface

excess) of liquid is found by:

(10)

We focus on how the adsorption isotherms, Γσ(φb), behave near

the bulk binodal φ#. When upon the approach of the bulk

binodal the adsorbed amount simply increases and diverges at

the binodal value, we have a complete wetting situation and the

contact angle is zero. Alternatively, the isotherm crosses the

binodal at a finite value of the adsorbed amount, that is, for an

amount Γ# = Γσ(φb) < ∞. We refer to this first crossing as the

“microscopically thin film” adsorbed at the surface S. By means

of a van der Waals loop the isotherm then returns to the binodal

and approaches the infinite adsorbed amount upon the final ap-

proach towards the bulk binodal. We refer to this adsorbed

amount as the “macroscopically thick film” on the surface. Such

situation is typical for partial wetting states, where the macro-

scopically thick film represents the situation under a drop, and

the thin film is found far away from the drop where a gas-like

film resides on the substrate. As for each solution along the iso-

therm we have the surface tension accurately available from the

self-consistent field (SCF) solution, we can find the contact

angle from Young’s law:
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(11)

where all interfacial tensions are computed for systems in which

the chemical potential is that corresponding to the bulk binodal.

The value of γthin is found from the first crossing of the binodal,

and γthick is the surface free energy in the system when there is

a very thick adsorbed layer at the surface. Hence, we can obtain

contact angle information without explicitly generating

droplets. In passing we mention that for not too small droplets

the contact angle as obtained by a three-gradient analysis (as

used below) gives identical contact angles as the ones that

follow from Equation 11, which used information from one-

gradient regular solution models.

The contact angle of a liquid droplet θY is calculated for various

adsorption strengths χS and for different strengths of interaction

between liquid and vapour χ (Figure 4). The more negative χS,

the more favourable the interaction between S and L, and the

more the droplet spreads, resulting in smaller θY. Eventually,

the liquid prefers to wet the solid completely, i.e., θY = 0°. At χ

near the critical value of 2, the droplet enters the complete

wetting regime (θY = 0°) already for very low values of the sur-

face affinity χS. For strong segregations the interfacial energies

increase and we need larger adsorption energies to enforce

wetting.

Figure 4: Contact angle of liquid on flat solid, θY as function of the
interaction parameter of the liquid with the solid, γS, for three different
values of the interaction parameter of the liquid with the vapour, γ.

In this paper we aim to mimic a polypyrrole surface for which

the water contact angle of a smooth surface is about θY = 80°.

As we already selected χ = 2.2, we will be in the correct contact

angle regime when we set the adsorption energies around

χS = −0.2. Below we will always mention the strength of

adsorption.

Liquid condensation in parallel slit
The surface structure of an inverse opal consists of close to

spherical cavities. In such structures we should anticipate the

occurrence of capillary condensation or, alternatively, capillary

drying. For this reason we use the regular solution model to

study classical capillary condensation. To this end we consider

a system that contains two surfaces. One at z = 0 and another

one at z = D + 1. Hence φS(z) = 0 for z = 1, 2,…, D and unity

elsewhere. Now our regular solution free energy is given by

(12)

In this case the last term automatically accounts for the

interactions with the surfaces, as it is non-zero for z = 1 and

z = D. More specifically, F has two surface contributions

χSφ(1)/6 + χSφ(D)/6.

As there are two interfaces, we anticipate the adsorption of the

liquid onto both surfaces simultaneously. We want to record the

adsorbed amount in the slit as a function of the (dimensionless)

chemical potential (μ = ln φb) of the liquid component. One

complication arises because in layers z = 1,…, D, the bulk

volume fraction may not be reached and we cannot simply

“pick up” this value from the profiles. As explained in section

S1 of Supporting Information File 1, the SCF protocol gives (as

output) the volume fraction of a reference system that is in equi-

librium with the molecules in the slit. This reference value is

used to compute the isotherms. In Figure 5A we present an ex-

ample for a slit distance D = 10 (in lattice units) and our default

interaction parameters χ = 2.2 and χS = −0.3. Recall that under

these conditions the surfaces are preferentially solvated by the

liquid, and θY is 68°. In such situations there is a large van der

Waals loop in the adsorption isotherm (cf. Figure 5A). The

Maxwell construction can be used to find where, in equilibrium,

the step in the isotherm should take place. In line with the

hydrophilic character of the surfaces we find the step in the sub-

saturated region. In Figure 5A the grey vertical line represents

the bulk binodal value. The step takes place at a lower chemi-

cal potential (local binodal) than that corresponding to the bulk

binodal. We define Δµ as the difference in ln φb between the

local and bulk binodals as indicated in Figure 5A.

It is important to consider the isotherm in slightly more detail.

After the jump in the isotherm the adsorbed amount only

marginally increases further: the isotherm continues into the

supersaturated region and as the system increases the bulk

volume fraction, in the limit of very high concentrations the
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Figure 5: A) Adsorption amount Γσ of the liquid component as a function of the volume fraction of liquid in the vapour φb in lin–ln coordinates (x-axis
is chemical potential), in a slit with surfaces that are a distance D = 10 apart and have an adsorption energy χS = −0.2. The metastable branches are
dashed. The unstable part is dotted. The chemical potential µ# is indicated as the grey vertical line. The solid vertical line is placed at the chemical
potential where a step in the isotherm takes place (local binodal). This step is found by the Maxwell construction, that is by the equal area argument
(the two shaded regions have the same area). The difference in chemical potential Δµ between the place of the step and the binodal is indicated. The
vertical dotted lines are placed at chemical potentials corresponding to the spinodal points. B) The chemical potential where the step in the isotherm
(compared to value of the bulk binodal) Δµ takes place (at equilibrium) as function of χS for slit distances D =10, 20 and 40 as indicated. The
solvent–vacancy interaction is set to χ = 2.2. The label A on the curve for D = 10 corresponds to the condition used in panel A.

excess should go down again to become zero in the limit of φb

to 1.

The most interesting feature of the isotherm is the presence of a

loop. Associated to the loop there are two spinodal points.

These spinodal points are located at the turning points of the

isotherm. There are two regions of metastability, namely be-

tween the local binodal and the first turning point. This spin-

odal point is found in the region of supersaturation. The other

metastable region is found between the turning point in the sub-

saturated region and the local binodal in the top region of the

isotherm. In the isotherm the metastable branches are indicated

by dashed line parts. When in the absence of strong fluctua-

tions the bulk volume fraction is increased, the slit may not nec-

essarily change its contents at the local binodal, but instead

remains dry up to – in the extreme case – the spinodal point is

reached, and the slit is filled with liquid following the dashed

line. Inversely, when the slit is wet, and the bulk concentration

is reduced, the drying does not necessarily take place at the

local binodal, but enter the other metastable branch. Again the

drying must take place before or at the lower spinodal point

(following the other dashed line). Hence in dynamical situa-

tions a hysteresis loop may be followed where the steps at the

spinodal are indicated by the vertical dotted lines. The spinodal

points have important roles in the advancing or receding con-

tact line calculations (see below). Even though the van der

Waals loop in the isotherm is due to the mean-field approxima-

tion, it is found that in real life experiments the system also may

be trapped in metastable states very much alike those found in

the mean-field model.

In Figure 5B we report that the difference between the local and

the bulk binodal in confined spaces is a function of the affinity

of the solvent for the substrate. When χS is more negative the

Δµ increases to more negative values. Indeed when χS > 0, that

is for hydrophobic surfaces, the local binodal occurs at supersat-

urated solutions. With increasing D the local binodal shifts

towards the bulk binodal.

Curved L/V interfaces: Kelvin and Laplace
Macroscopic droplets (with negligible curvature) cannot be

generated using our method. As the system size is limited, our

drops have L/V interfaces that are typically strongly curved.

The thermodynamics of curved interfaces is well understood,

but there are several complications. One of the issues is that the

location of the interface is somewhat arbitrary. On top of this

the interfacial tension in curved interfaces cannot uniquely be

computed. It depends on the notion of the position of the inter-

face. There exists a choice of the position of the interface, the

so-called surface of tension, for which a small notional change

of the radius does not influence the value of the surface tension.

For this special case the Laplace equation simplifies to

Equation 3, and the value of the interfacial tension does not

deviate much from the planar value.

From the Laplace equation we know that in droplets with

curved L/V interfaces there is a Laplace pressure. As a conse-

quence the chemical potential of the liquid in a drop is at a

higher chemical potential compared to systems with planar

interfaces. The increased chemical potential is reflected in the

oversaturation of water in the vapour phase; a phenomenon
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named after Kelvin. With oversaturation of the system, which

necessarily occurs in our calculations due to the finite size of

our droplets, one will invariably get closer to the spinodal point

of the capillary condensation process. Hence, oversaturation

may trigger the filling of confined regions by the liquid. Small

droplets cause a stronger oversaturation than larger droplets and

the presence of small droplets may result in a spontaneous

filling of the voids by capillary condensation when this may not

yet occur for larger drops.

The radius specified by the surface of tension RSOT coincides

with the visual inspection of where the interface is for many

systems. Below we therefore do not exactly determine the exact

RSOT and use the Ansatz that the interface position is where the

solvent volume fraction hits the value φ = 0.5.

Three-gradient regular solution model
Let us next extend the regular solution theory to model liquid

drops at a complex surface topology. We consider a three-

gradient coordinate system r = (x, y, z) with x = 1, 2,…, Mx,

y = 1, 2,…, My and z = 1, 2, …, Mz. In contrast to the one-

gradient systems where the surfaces were treated through the

boundary conditions, in three gradient models it is more natural

that the surface component S will occupy lattice sites within the

specified volume. Hence, we will specify all the lattice sites

within the system: the volume fraction of S is unity and the

remainder of the lattice sites are filled by the liquid and vapour

components in the usual way. The regular solution free energy

is straightforwardly generalised and both interactions between L

and V as well as with the surface component S are accounted

for:

(13)

wherein the angular brackets indicate that the free energy

accounts for the “curvature” information in three directions.

The lattice implementation is simply:

(14)

Mirror-like, no-gradient boundary conditions are implemented

in boundary layers in the system. This is implemented by

setting φ(0, y, z) = φ(1, y, z), φ(Mx + 1, y, z) = φ(Mx, y, z), and

similarly for the other boundaries in y- and z-directions. Using

these boundary conditions it is possible to consider a represen-

tative part of the surface, while keeping the computation times

and system volumes to a minimum.

In the calculations there are no assumptions regarding the

effects of the line tension. The model fully accounts for these

effects, but the line tension contributions in our systems were

not explicitly extracted. The most important reason why we did

not do so is that the line tension cannot be uniquely extracted

from the overall grand potential, because a choice for the posi-

tion of the three-phase contact line is required.

Specifying the inverse opal
The regular solution free energy of Equation 13 still requires

detailed information on the distribution of the solid material S

in the inverse opal. The idea is to consider a representative

piece of a substrate that contains spherical cavities in a speci-

fied arrangement (i.e., crystalline ordering with close to hexago-

nal or square packing symmetries). The cut-off height controls

the opening of the cavities as shown in the example of Figure 6.

The parameters that control the surface topology are listed in

Table 1. Below we will use the parameter c = h/d, which is a

fraction at which the cavities were cut and ΦS is the fraction of

the “top” of the surface that is solid.

Figure 6: Schematic side view (z,y)-plane and top view (x,y)-plane of
an inverse opal with two rows of n = 3.5 cavities in a staggered
packing (3.5 cavity volumes are in the system, four cavity positions are
required). The distance between two (m = 2) rows is t. For a hexago-
nal packing the two rows are displaced with respect to each other by a
value , where s is the distance between the cavities. On a
lattice t must be an integer. Reflecting boundaries are applied in all
directions.

The parameters of Table 1 completely specify how many cavi-

ties are present in the computation volume. Let the cavities be
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Table 1: Parameters that determine the structure of the inverse opal.
Even and odd rows of cavities are displaced by half the distance be-
tween the cavities in a row, that is, by s/2. All quantities are given in
lattice units, that is in values of b. Below also the cut-off ratio c = h/d
(to specify which part of the cavity is cut-off) and ΦS (the fraction of the
top of the surface that is solid) is used.

symbol parameter

D diameter of a cavity (integer > 0)
S spacing between two cavities in a row (integer of

order d)
T distance between the two rows (integer of order d)
N ‘number’ of cavities in a row (> 0) may also be

non-integer
m number of rows (integer > 1)
h cut-off height of the solid phase (integer > 0)

numbered by i = 1, 2, 3,…, Nc. In the example of Figure 6 there

are two rows of 3.5 cavities and thus we need i = 1,…, 8 cavity

positions. The input parameters thus specify the coordinates of

the cavities {r1, r2,…,ri,…,rNc}. The cavities in the inverse

opal are placed in rows along the y-direction, the direction per-

pendicular to the rows is the x-direction and the cavities are

positioned at the lowest z-values possible, that is for all cavities

i, riz = d/2 (cavity radius).

The solid phase extends up to a height z = h where h is the

cut-off height. The solution above the inverse opal starts at a

height z > h. The first and last row in the y-direction have their

centres on the boundary that is at y = 1/2 and y = My + 1/2, re-

spectively. This implies that the system size in the y-direction is

My = (m − 1)t, where t is the distance between two rows and m

is the number of rows. The system size in the x-direction is

given by Mx = ns, with n the number of cavities in a row (when

half the cavity is in the system the cavity counts by 0.5), and s

the distance between cavities in a row. In the example of

Figure 6, Mx = 3.5s. The system size in the z-direction should

exceed h sufficiently so that a sessile drop can be on the sub-

strate. In the first row the first cavity is by default with its centre

at x = 1/2, that is, at the lower boundary. The first cavity in the

second row is positioned at x = (s + 1)/2, et cetera.

All non-zero surface densities can now be computed. When for

a coordinate r′ the distance to all of the coordinates {r1,

r2,…,ri,…,rNc} is larger than the radius of a cavity, i.e., d/2 and

when the z-value is less or equal to h, we set φS(r′) = 1 and

φS(r′) = 0, otherwise:

(15)

This solid distribution is fixed during the free energy optimisa-

tion. Of course only the coordinates that are not taken up by S

can be filled with L or V. On the “top” of the solid phase it is of

interest to know the fraction of sites occupied by S. These are

easily evaluated by

(16)

Analytical estimates of Equation 16 are given in section S2 of

Supporting Information File 1. The cut-off height h normalised

by the particle diameter d will be referred to by c:

(17)

Below we will be interested in hexagonally ordered cavities.

For an optimal hexagonal packing, the distance s between the

particles along a row and the distance t between the rows,

should obey . However, on the lattice only integer

values are allowed. Rounding to closest integer values must be

implemented. For some values of the particle distances s there

is a reasonable value of t, for other distances the error is rela-

tively large. Only values of s which require rounding errors

below 0.15 for the corresponding t value are used.

The parameters in Table 1 can be used to generate a large

variety of inverse opal structures. As long as s > d, we have the

situation that the cavities are isolated. However, the cavities

may become interconnected when s < d. In experimental situa-

tions such overlap of cavities may occur, and then there are

usually small openings connecting the cavities. This is why this

particular parameter setting is allowed.

Example 1: liquid condensation in a weakly
hydrophilic face centred square inverse opal
We first consider a simple inverse opal structure that has cavi-

ties with a diameter d = 31. The distance s between the cavities

is set to 88, and the distance between the rows t = 44. This

implies a face-centred square arrangement of the cavities. The

number of cavities in a row is n = 1, whereas the number of

rows is set to 3. As can be seen from Figure 7, this setting

generates an equal box size in x- and y-directions. As the dis-

tance between the cavities exceeds the cavity diameter, we have

isolated pockets. The surface interaction is set to a slightly

hydrophilic value χS = −0.3.

To compute the adsorption isotherm we start with a low amount

of liquid in the system and then increase this amount step by
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Figure 7: Liquid condensation in hydrophilic inverse opal (d = 31, s = 88, t = 44, m = 3, n = 1, h = 25 (c = 0.8)). A) Excess adsorbed amount of the
liquid component in the system as a function of the volume fraction of the liquid normalised by the binodal value in lin–ln coordinates. The dashed part
represents not the true part of the isotherm but rather connects two states, before the condensation of a pocket and after the condensation. The
dotted, vertical line is at the bulk binodal φ#. The labels along the isotherm refer to the snapshot colour-coded density distributions given in panels B,
C, D. Red is the high-density liquid phase, white is the low-density (gas) phase.

step. In the calculations the outcome of a given calculation

serves as an initial guess for the subsequent calculation. This is

why a system can be trapped in metastable states, similar to the

experimental counterparts.

In Figure 7A we present the adsorbed amount of the liquid com-

ponent Γσ = Γ − V′φb, where V′ is the volume available for the L

and V components, which is V′ = MxMyMz − ΣrφS(r), as a func-

tion of the volume fraction of the liquid component in the bulk.

Here we did not normalise with respect to the available surface

area and thus this amount is proportional to the surface area.

The bulk volume fraction is normalised by the bulk binodal

value. The curve is plotted in lin–ln coordinates. Upon an

increase in the amount of liquid component in the system Γ,

first the vapour phase is gradually saturated with liquid and the

adsorbed excess remains modest: At the surface a gaseous

adsorption layer develops. Then, upon further increase of the

amount, the binodal value is crossed and the system enters the

super-saturation regime. The liquid film remains homogeneous

along the surface, until Γσ ≈ 4000, then a first-order jump in the

isotherm takes place (cf. Figure 7A, dotted line). As can be seen

in Figure 7B, at this stage a droplet formed in the confined

space of the cavity and the curvature on the L/V interface in the

opening is concave, resulting in a negative Laplace pressure

inside the droplet. Since the chemical potential of the liquid

molecules should be the same everywhere, this means that the

vapour phase is under-saturated (see Figure 7A).

The volume fraction of liquid in the bulk φb increases as more

liquid is added and passes the binodal value φ# again. At this

binodal point there is no under- or oversaturation, hence no

curvature of the L/V interface at the opening (not shown). Addi-

tional liquid that is added to the droplet induces a convex curva-

ture on top of the droplet, and the bulk oversaturates up to C in

Figure 7A. The value of Γσ at this point is approximately

10000, and consists of a thin film (Γσ ≈ 4000) and the macro-

scopic droplet (Γσ ≈ 6000). The volume of a sphere with d = 31

is about 15600. Given that the density difference between the

liquid-rich and vapour-rich phase is about 0.5, and that part of

the thin liquid film becomes part of the macroscopic droplet, the

valur of Γσ found at point C is in agreement with what is ex-

pected for a cavity with diameter d = 31.

Additional liquid is subsequently used not to fill the other cavi-

ties, but to increase the volume of the existing droplet

(Figure 7D) and the droplet starts to spread on the substrate.

Below we will follow this process in a slightly different geome-

try. The oversaturation needed for capillary condensation to

occur for the other cavities is in this case not reached. This

means that for this inverse opal, with d = 31, once condensation
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Figure 8: Four examples of droplets on an inverse opal with d = 31, s = 30, c = 0.80, n = 3.5, and χS = −0.3. A,B) Two advancing water fronts with rel-
atively high contact angles; C,D) two receding water fronts with low contact angles. For each panel the left (z, +y), right (z, −y) and bottom images (x,
y) are for different view-points, that is, the left image is taken from the front, the right image is taken from the back, the bottom image is the top-view.
Colour coding: Red is high-density liquid. Blue is low-density gas. White is intermediate density. The snapshots are taken from the calculations of
Figure 9.

has taken place, a droplet grows on top of the filled cavity and

the remaining cavities are not filled via capillary condensation,

but typically rather fill once the central droplet spreads over and

on top of the other cavities (not shown).

Most inverse opals in experiments, which are fabricated using

sacrificial particles, have cavities of hundreds of nanometres or

more [3,10,42-44]. These sizes are much larger than the cavi-

ties considered in the current calculations. Smaller cavities can

fill more easily via capillary condensation (cf. Figure 5B). Since

the impregnating wetting state is not observed even for such

small cavity sizes as used in Figure 7, we conclude that the

impregnating wetting state due to capillary condensation is not

likely to develop for practical inverse opals which are margin-

ally hydrophilic.

In this surface structure, the cavities are not connected, whereas

for some experimentally fabricated inverse opals all cavities

may be interconnected via a small opening. Since the curvature

of the droplet should be constant, the curvature of the

liquid–vapour interface at the small opening is the same as for

the rest of the macroscopic droplet [13], and hence the high

curvature needed for the next cavity to be wetted via this

opening, is not reached. Therefore, a cavity that is filled with

liquid will wet the next cavity via the larger opening at the top,

rather than through this small hole (not shown).

Droplets on top of the hexagonally ordered
inverse opal
In the remainder of this paper we will focus on close-to-hexago-

nally packed cavities. In principle one can force a water-front to

move along such a surface in an arbitrary direction. Here we

focus on just one of the possible directions.

We consider solvent fronts along the x-direction, which spread

by increasing the volume of the droplet, in the y-direction.

Recalling that mirror-like boundary conditions are imple-

mented in x-, y- and z-directions, in this scenario it suffices to

have just two rows of cavities, that is m = 2. The system is

much larger in the y-direction and we consider n cavities with a

spacing s. For a hexagonal packing of cavities the distance s and

the spacing t between rows are interconnected and we will

mention just one of these parameters. The number of cavities

that are considered in the y-direction is taken sufficiently large

so that there are no boundary effects. The surface is thus suffi-

ciently specified by mentioning the cavity diameter d, the dis-

tance between the cavities s and the cut-off height h, or equiva-

lently c = h/d. Typically, we will initiate the calculation by

means of some initial guess of the SCF. protocol such that a

droplet develops with its symmetry plane along the y = 1/2

boundary.

Example 2: Advancing and receding drop
fronts on a slightly hydrophilic hexagonally
packed inverse opal
In Figure 8 we give representative examples of planar solvent

droplets with their solvent front (on average) along the x-direc-

tion. The drops sit with their symmetry plane at y = 1/2. The

inverse opal is characterised by the cavity diameter d = 31, the

spacing between the cavities in the y-direction s = 30, the cut-

off fraction c = 0.80, and the number of cavities in the y-direc-

tion, n = 3.5. The surface is slightly hydrophilic (χS = −0.3).
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Figure 9: Examples of drop characteristics. A) The standard deviation (measured in x-direction) of the position of the interface Δy′ as a function of the
height above the substrate z − h. The horizontal grey line represents the result on a smooth surface. B) The angle of the liquid/vapour front in the
(z,y)-plane, θ(z) together with the standard deviation of the angle measured in the x-direction plotted as “error” bars. The grey curve is the contact
angle of a similarly sized droplet on a smooth surface. The labels A–D correspond to the snapshots A–D in Figure 8: A,B advancing contact liquid
front; C,D are receding liquid fronts.

The cavities directly under the macroscopic water front are

filled with liquid, while the other cavities remain empty. The

water front is thus in the Wenzel wetting state (Figure 1).

Notice that an additional cavity is filled going from A to B.

Such an event gives discontinuities as discussed below. In B

there is slightly more liquid in the system than in A, but the

height of the drop in A is more than that in B. The liquid in the

cavity is noticed as a volume reduction in the drop. The panels

A and B are taken as examples of the droplet shape in a series

of calculations for which the droplet volume was increased (see

also below in Figure 9).We refer to these as advancing front

lines. The other two panels (C and D) are taken for the situation

that the drop volume was decreased and we refer to this situa-

tion as receding front lines. Three different view positions of

the same drop are given in this figure to illustrate the features

that present themselves in advancing and receding cases. From

the top-view perspective, we see that the solvent front is not

straight. It curves along the cavity openings and the exact shape

of the front strongly “fluctuates” depending on the exact value

of the droplet volume.

In one of the cases the front is at lower y-values at low x-values

and in the other case it is inversed, the lowest y-value is at a

high x-values. In the four cases shown in Figure 8 we see that

the absolute value of differences in the y-position does not

depend much on the advancing or receding modes.

As the three-phase contact line is curved, necessarily the con-

tact angle must vary as well. The contact angles are best viewed

from the side. The top graphs in Figure 8 are images taken from

a “front” or “back” view point. We present both of these to

illustrate that the shape in the (z,y)-plane depends slightly on the

x-coordinate. Clearly, there is a huge difference in the contact

angle between the advancing fronts (very high angles) and the

receding fronts (very low angles). Furthermore, as can be seen

in panel D, the receding droplet remains pinned on top of the

liquid-filled cavity, resulting in a longer contact line as com-

pared to advancing droplets.

For a given snapshot we can evaluate the contact angle θ(x,z) in

the (z,y)-plane by estimating by interpolation the position y′ of

the interface, where the φ(x, y′, z) = 0.5. In other words, the

y′-position of the liquid/vapour interface depends both on x and

z: y′ = y′(x, z). Then the local contact angle of the solvent front

is a function of both x and z:

(18)

which implies that the contact angle can only be computed for

z > 2. The average angle at a height z is found by averaging

along the x-direction:

(19)

while the standard deviation Δθ(z) measured in the x-direction

is given by

(20)

Similarly, the position of the interface y′(x,z), the average posi-

tion of the interface y′(z) and the standard deviation Δy′(z) are

straightforwardly recorded.

In Figure 9A we plot the standard deviations Δy′(z) as a func-

tion of z − h (height above the substrate), and in Figure 9B θ(z)
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Figure 10: Examples of structural features of advancing and receding drop fronts. A) The fluctuations of the position of the liquid front along the
x-direction at a height z = h + 3 as a function of the ΔΓ of the droplet component with an initial amount Γ = 3·106. B) The corresponding average con-
tact angle θ (measured at a height z = h + 3) and the standard deviation (plotted as error bars). The advancing liquid front is given by the solid sphere
data points, the receding ones in solid square data points. The lines are to guide the eye. A discontinuity in the line represents a jump-wise change of
the drops on the substrate. The labels A–D correspond to the snapshots of Figure 8 and the structural data of Figure 9. A and B are along the
advancing branch, whereas C and D are taken from the receding drop fronts. Parameters are similar as in Figure 8 and Figure 9.

together with the fluctuation in the angle Δθ(z) as “error” bars

as a function of z − h for the four droplets already shown in

Figure 8 is plotted.

It is natural to expect that when the drop characteristics are

considered further away from the surface that the influence of

the surface is gradually reduced. This is why the Δy′(z) is a de-

creasing function of z. Again, as noticed already from the snap-

shots, the value of Δy′(z) does not depend much on the

advancing or receding modes of wetting. That is why the four

curves in Figure 9A are nearly the same. We refrain from trying

to provide further comments about the differences. Similarly,

far from the surface the angles become independent on x. That

is why in Figure 9B the “error” bars diminish in size when z − h

is increased. Indeed very close to the substrate z − h < 4 the

fluctuations are very large, that is about 50% of the value of θ.

We already noticed that the advancing contact angles are much

larger than the receding ones. Figure 9B gives the numerical

values more accurately: The advancing angles are on average

larger than 90°, whereas the receding angles are about 45°, very

close to the angles found for the unstructured surface (grey

line). Interestingly, the average contact angle in the advancing

mode can go through a small local maximum at a height

z − h = 3. Such an effect hints to the presence of a foot on the

droplets. However, at this height the fluctuations are large and

we are hesitant not to over-interpret the results.

It is clear that, if we want to compare droplets and see trends,

we need to reduce the outcome of the computations. That is

why from hereon we will focus on the properties of the droplets

on a height of z − h = 3 (as indicated by the arrow in Figure 9).

At this height above the substrate the “foot” is not disturbing

too much, while the structure of the surface is still well notice-

able. We thus define (if not mentioned otherwise) the fluctua-

tions of the liquid front measured as the standard deviation

along the x-direction as Δy = Δy′(h + 3), and the average con-

tact angle of the drop θ = θ(h + 3), as well as the fluctuations

Δθ = Δθ(h + 3).

The calculations of Figure 8 and Figure 9 were started with an

initial amount of liquid Γ = 3·106. More liquid is added to the

system and these molecules are consumed by the drop. Hence

the drop volume increased. Typically we performed ten liquid

addition steps and for each of these new profiles are calculated

to obtain an advancing angle. The amount of the liquid is subse-

quently stepwise decreased to check for hysteresis and to obtain

a receding angle. The structural properties of the drops are re-

corded during this cycle and the results were collected in

Figure 10.

The starting point of the calculations is not extremely well

defined in terms of advancing or receding states. The initial

guess takes the system in this case close to an advancing situa-

tion: the contact angle θ is rather high. Typically this initial

drop is disregarded from our averaging (see below). Upon step-

wise increase of the drop volume (closed spheres) Δy decreases

from 5.5 to 4.0 while the contact angle θ increases gradually

until point A is reached. The contact line did not move upon

adding the liquid: The contact line is arrested as the contact line

cannot be placed on top of a (water filled) cavity [45]. Then

with a small increase the system jumps from A to B. Above we

saw that in this event one extra cavity is filled with liquid. At

this event the contact line de-pins jump-like in an event that

may be referred to as a de-pinning transition [19]. In

Figure 8A,B we see that the three-phase contact line has the

opposite curvature in the x-direction. At this de-pinning event

the average contact angle jumps downward to θ ≈ 90° (cf.
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Figure 10B) and Δy jump-like increases from 4.0 to 5.5 (cf.

Figure 10A). The contact angle close to the surface and directly

in front of the cavity that fills up, switches thereby from θ > 90°

to θ ≈ 90° (cf. Figure 8A,B). These increased contact angles

with respect to θY (68° for χS = −0.3) are hereby found for a

hydrophilic surface without air entrapment. The system may

experience more of such events when more and more liquid is

added. After another four additions of volume we were close to

the initial condition and the advancing contact line calculations

were stopped.

For receding water fronts (Figure 8C,D), computed by taking

liquid out of the system (the squares in Figure 10), we first

retrace a part of the advancing curve, that is, the four latest

volume additions were undone and the same results were recov-

ered. However, as soon as the volume of the drop is decreased

compared to point B we follow a different route. We do not

jump to point A, but rather follow the trend downward for the

average contact angle θ (cf. Figure 10B) while also the fluctua-

tions Δy decrease. Close to the initial volume the contact angle

is found to be close to the value on the smooth surface θ = θY.

At this point the curvature of the dependence Δy(ΔΓ) changes.

Further reduction of the volume of the drop leads to a local

minimum of Δy, while the contact angle drops significantly

below the value of θY. Then point C is reached (cf. Figure 8C).

Now the receding front is pinned on top of a liquid filled cavity.

The low contact angle on top of the cavity, clearly visible for

the right-hand site of droplet Figure 8C, is explained by the fact

that the liquid wets a surface of the same material (namely the

liquid in the cavity). During receding, the water front is thus

pinned at the liquid/liquid surface with a local θ of 0°. The

cavity remains filled after the droplet has retracted from the

cavity (see cavity on the right-hand site of droplet D) which

occurs once again step-wise. During this de-pinning step the

three-phase contact line rearranges its curvature again (cf.

Figure 8C,D). At this de-pinning transition the value of Δy in-

creases jump-like, while the average contact angle decreases

somewhat. Upon further reduction of the drop volume the Δy

increases further while the contact angles remain low.

The traces of Figure 10A,B imply a hysteresis: The curves for

adding and reducing volume only overlap when no de-pinning

transition has occurred in between the addition or removal

steps. The contact line of the advancing droplet experiences a

surface consisting of solid and vapour, whereas the contact line

of the receding angle experiences a surface consisting of

solid and liquid. The true receding angle is only visible for

values of ΔΓ between −5·104 and −7·104 (last three data points)

and is about 35°. If the surface can be regarded as consisting of

a solid with a liquid, then the contact angle can be calculated

using [15]

(21)

with the fraction of solid on the top of the substrate ΦS = 0.43

(for c = 0.8). The contact angle according to this calculation

(40°) is in agreement with the contact angle we find here. For

these last droplets, high values of Δy are found. The contact line

is in these cases pinned on the farther edge of a water-filled

cavity (see Figure 8D).

Trends in the shape of advancing water
fronts
In the remainder of this paper we will focus on advancing con-

tact angles. Referring once again to the results of Figure 10B,

we typically initiated calculations with the drop near the lower

boundary on the y-axis in such a way that the resulting drop

shape assumes properties of an advancing one. Then, as in

Figure 10B ten subsequent increases of the amount of the liquid

component were implemented. The average contact angle θ

(along the x-direction and at z = h + 3) were again averaged

over these ten droplets to obtain . Typically one or more

de-pinning events were accepted in this averaging. Recall, that

in the advancing branch the contact angle in a de-pinning event

changes only slightly. The standard deviations were averaged

similarly.

Effect of cavity size d
The size of the inverse opals in the calculations, which is linked

to experimental sizes by the width of the interface, invariably is

much smaller than the size of inverse opals used in experiments.

To study the effect of size of the structures on the (double) aver-

aged advancing contact angle , droplets on inverse opals

with cavity diameters ranging from 9 to 52 have been recorded.

The trend observed for this series of sizes, can be extrapolated

to even bigger sizes without the need to calculate those. In these

calculations the spacing between the cavities was set to d − 1,

that is, the cavities were slightly overlapping so that a small

hole connects the cavities. The cut-off fraction is kept at c = 0.8.

As shown in Figure 11, the  is an increasing function of the

cavity diameter d. For d > 40  reaches a plateau. The level-

ling off hence implies that it is not necessary to increase the

cavity sizes even more to reach the experimental limits.

The fact that  can increase above θY is attributed to the

pinning of the contact line around the cavities. For very small

cavities we observed that the average angle can be smaller than

θY (grey horizontal line in Figure 11). Small cavity sizes are

similar to the small confinements D used in the one-gradient

slits of Figure 5. From these slit calculations we know that

small values of D need only a small oversaturation to fill the slit

with the liquid. Similarly, very small cavities can easily be
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Figure 11: Advancing averaged contact angle  and standard devia-
tion as a function of the cavity diameter d (in lattice units) for a hexago-
nally ordered inverse opal with cut-off fraction c = 0.8, distance be-
tween cavities s = d − 1 and slightly hydrophilic surface properties
χS = −0.3. The grey line is contact angle θY on a smooth surface.

filled with the liquid. We refer to this situation as the impreg-

nated wetting state (Figure 1). Indeed the inverse opal with

d < 10 are in the impregnated state and it is natural to expect

that for this case  < θY: the effective top surface in front of

the water front consists of the solid with patches of liquid, just

as is the case for a receding droplet. The advancing contact

angle  found for these structures (see Figure 11) corre-

sponds to the receding contact angles presented in Figure 10B.

For the structure with d = 15 the situation is rather complex. It

appears that some, but not all, cavities in front of the droplet are

filled with liquid. In the process of advancing the liquid front,

we add more and more of the liquid. As soon as an additional

cavity is filled, the volume for the droplet decreases and this

reduces the curvature and the corresponding oversaturation in

the vapour phase. This decrease in oversaturation after filling

subsequent cavities prevents other cavities to fill up. The num-

ber of cavities filled in front of the water front, depends on the

size of the droplets on top of the inverse opal: the smaller the

droplet, the higher the curvature, thus the more oversaturation.

The more cavities are filled, the lower is the advancing contact

angle  as the surface becomes effectively hydrophilic. The

droplet size dependence will imply small changes in the depen-

dence of  as a function of d in Figure 11. For the drop sizes

used to compute Figure 11  = θY occurs approximately at

d = 20.

For the inverse opals with d ≥ 20 only cavities directly under

the droplet are filled (Wenzel wetting state). The water front en-

counters the same fraction of flat solid top surface, ΦS for all

cavity sizes, but the increase in  with d depends on the

strength of the pinning effects and this allows  to increase

with d above θY.

Effect of the S/L interaction parameter χS
Let us next focus on the interaction of the liquid with the sub-

strate via the S/L interaction parameter χS. The more negative

this parameter the more hydrophilic (solvophilic) the surface is.

When the χS is positive we may refer to the surface as hydro-

phobic (solvophobic). We select for this study hexagonally

ordered inverse opals with a cavity size d = 39. As shown in

Figure 11 such cavity sizes give wetting features in the plateau

region where the size dependence was essentially lost. We

consider here the case that the cut-off fraction is c = 0.9. This

c-value is chosen to mimic the inverse opal in [10]. The dis-

tance between the cavities was set to s = d − 1 (cavities are

connected to each other by small openings).

In Figure 12 the grey curve represents the contact angle θY on

the smooth surface as a function of χS and this result is repro-

duced from Figure 5 for ease of comparison. The average

advancing contact angle  increases with decreasing

hydrophilicity (solvophilicity) of the substrate. However, for

χS > −0.6 the advancing contact angle is systematically above

θY, whereas it is systematically below θY when χS < −0.6.

Figure 12: Advancing contact angle  and the corresponding fluctu-
ations (measured along the x-direction) indicated as error bars, as a
function of the affinity of the solvent for the substrate phase χS for a
hexagonal inverse opal with cavity sizes d = 39, cut-off fraction c = 0.9
and spacing between the cavities s = d − 1 = 38. The contact angle on
a smooth surface is shown with a grey line (copied from Figure 4).
Stars indicate that the cavities under the water front remain empty
(Cassie–Baxter wetting state).

The wetting transition, which is the point for which θ becomes

0, occurs at a value of χS which is slightly less hydrophilic for

the inverse opal as for the smooth surface. In the low contact

angle cases all cavities under the droplets are filled (impreg-

nating wetting state). The filled cavities render the surface

slightly more hydrophilic than the smooth surface (see

Equation 1) and this caused the early wetting transition for the

inverse opal as compared to the smooth surface.
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The inverse opal remains in the impregnating wetting state for

small but finite contact angles χS = −0.7. In these cases the

advancing contact angle is lower than the corresponding θY.

The wetting switches to the Wenzel state by increasing the

hydrophilicity further to χS = −0.5. Now the advancing contact

angle is larger than θY. Eventually, the wetting switches to a

Cassie–Baxter wetting state for higher values of χS. These cases

are labelled by the asterisk in Figure 12. Again the advancing

contact angle is larger than θY, and the difference  − θY is

roughly constant, that is, it does not depend whether there is the

Wenzel or the Cassie–Baxter state. This result suggests that for

the advancing angle, it does not matter whether air is entrapped

underneath (observed for χS ≥ −0.3) the droplet or not (ob-

served for χS ≥ −0.5). This implies that the increase in observed

 compared to θY cannot be explained in terms of wetting

state. Rather, pinning of the contact line and the de-pinning

transition should be considered. The immobilization of the con-

tact line on the kinks in the surface (as explained in Figure 2) on

this hexagonally packed inverse opal induces the contact line to

curve and extend (Δy > 0), which is energetically unfavourable.

The contact line is even further extended after a de-pinning

transition (increase in Δy), indicating that in the stress perpen-

dicular to the surface has increased. However,  decreased

locally to values close to θ on a smooth surface, showing that

stress in the vertical direction is released after the transition.

The average  is still higher than θY directly after the

de-pinning transition. This is caused by the build-up of stress at

the other cavity (we consider two rows of cavities).

The interplay between curvature perpendicular to the surface

(here discussed in terms of ) and parallel to the surface (here

discussed in terms of Δy of the contact line) results in an overall

high . Whether the cavity under the moving water front fills

with liquid or remains filled with air depends on χS: Air is

entrapped for more hydrophobic materials, but the cavities fill

for a more hydrophilic material. The pinned water front on a

surface with higher χS can withstand higher  before stress

starts to build up and the de-pinning transition occurs.

Effect of cut-off height c at constant spacing s
Experimentally one can control the inverse opal structure by the

cut-off height h, or equivalently to the cut-off fraction c. It is of

interest to consider the effect of the cut-off height from a com-

putation point of view. We can study this for a fixed spacing s

between the cavities (in this section) or with a fixed fraction of

solid in the top of the substrate ΦS (next section). In both cases

we choose slightly hydrophilic substrates with χS = −0.3. This

value of χS gives θY = 68°. Similarly as in the previous para-

graph we fix d = 39 and s = d − 1. Obviously the limits c = 0

and c = 1 are the same as the smooth surface. In between these

two limits the surface structure is characterised by a top surface

layer with a fraction of ΦS of the sites being the solid. The top

layers are given in two-gradient contour plots in Figure 13C.

When c = 0.5 the amount of S (dark blue colour) is minimal:

both in the limits c = 0 and c = 1 the cross-sections are com-

pletely blue (not shown).

Correspondingly, the contact line fluctuations, as monitored by

Δy, are averaged over ten “snapshots” while increasing the drop

volume. The result is given by . In both limits c = 0 and

c = 1 the surface is ideally smooth and the three-phase contact

line will not fluctuate in the x-direction. In between these limits

 > 0 because the contact line becomes pinned.

The advancing contact angle  together with the standard de-

viation of this angle (measured in the x-direction) is presented

in Figure 13A as a function of the parameter c = h/d. The corre-

sponding fluctuations of the three-phase contact line 

(measured in the x-direction at a height z = h + 3) are given in

Figure 13B.

Inspection of Figure 13A shows that by far the most interesting

region is for 0.5 < c < 1. For c < 0.5 the average advancing con-

tact  hardly differs from θY. However, for small values of

the cut-off fraction the contact line is already significantly

curved (Figure 13B) and the surface structure alters θ(x)

locally to hydrophobic values θ > 90°. The average  for

0.51 < c < 0.95 is higher than θY on a smooth surface, though

locally, θ(x) may be smaller. The variation of θ along the

x-direction (depicted as vertical line) extends to values θ < 68°

for most values of c. A maximum in  is found at c ≈ 0.80,

with  = 110 ± 30°. A local minimum in Δy at this value of c

is found, which likely is coupled to the need to keep the overall

curvature in the drop constant.

Two parameters of the surface structure that are important for

contact line pinning are changed when c is varied: the fraction

flat solid top surface ΦS, which is the fraction of flat solid at the

top of the surface (dark blue in Figure 13C) and the angle of the

kink, θkink (see section S2 of Supporting Information File 1 for

calculation of θkink and section S3 of Supporting Information

File 1 and Equation 16 for the calculation of ΦS). Both, ΦS·100

and θkink are plotted in Figure 13A. The value of ΦS·100 equals

100 in both limits of c and has a minimum at c = 0.5. θkink is

180° at c = 0, and decreases to 0 at c = 1. The latter parameter is

considered important for hydrophilic materials to obtain hydro-

phobic contact angles. It has been suggested that only for

θY < θkink pinning can occur, and a barrier for the water front to

enter the cavities is obtained, resulting in air entrapment and the

possibility of obtaining higher contact angles θ. However, in our

case, θkink is smaller than θY for most values of c, and no

jump in  is observed between c = 0.51 (θkink > θY) and
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Figure 13: A) Advancing contact angle  and the corresponding standard deviation as measure of variation in the x-direction as function of the cut-
off fraction c. The horizontal grey line is the contact angle θY on a smooth surface, the grey dashed line is the angle of the kink θkink at different values
of c and the grey dotted line is ΦS∙100. Stars indicate that the cavities under the water front are filled with vapour (Cassie–Baxter wetting state).
B) Corresponding average variation in y-position  at z = h + 3 as function of the cut-off fraction c. The hexagonally ordered inverse opal has
cavity diameter d = 39, spacing between the cavities s = d − 1 =38, and χS = −0.3. C) The distribution of solid S at the top layer of the substrate, that
is φS(x, y, h). The dark blue colour implies density of the solid is unity. The red colour indicates that the opening of the cavity is filled by the solvent.
The light blue colour means that the cavity opening is filled with vapour. Orange colour implies that the solvent density is in between the liquid and the
vapour. The value of c is indicated.

c = 0.59 (θkink < θY), and no air entrapment is found for

0.59 < c < 0.85.

For c = 0.26, θkink is too large for pinning to occur according to

the argument presented Figure 2. However, an advancing water

front is immobilized at the front of a cavity, and moves in one

step to a position in front of the next cavity. Hence, despite of

the small θkink in our calculations a true de-pinning transition is

found.

In our case the pinning of the contact line is due to the complex

3D-structure of the surface: the cavities are placed close to each

other, and the contact line thus encounters multiple cavities on a

short distance. If the water front was not pinned at the front of a

cavity, but rather partly filled the cavity, this would result in a

larger L–S interface and a longer contact line. This is appar-

ently energetically more unfavourable than pinning the contact

line in front of a cavity. Hence, the contact line pinning is

governed by the 3D-structure, and not by the simple 1D-argu-

ment presented in Figure 2.

When looking at the top surface (Figure 13C) for c = 0.26, we

see that some cavities on the left are filled (red), while the last

1.5 cavities are not filled (light blue). The last upper cavity is

just in front of the contact line. Some liquid (red colour) is

present at this value of z. Moreover, the situation for c = 0.74,

which has a similar top surface but a different θkink, is

comparable.

For c close to 0.5, the substrate is not a continuous structure, but

consists of discrete triangular “pillars” (see Figure 13C). Con-

tact line pinning also occurs for discrete shapes [19,46].

Assuming that pinning is mainly found on the top surface in

line with observations for c = 0.26, the length over which

pinning can take place is limited. However, also in this case a

de-pinning transition is observed for an advancing water front.

Hence the pinning is not limited to the flat part of the top sur-

face (the dark blue surfaces in Figure 13C) for all values of c,

but pinning occurs over the 3D structure.

Decreasing or increasing c from c = 0.5 results in a continuous

top layer. The contact line can hereby be pinned at the front of

every cavity. For higher values of ΦS, the contact line is ex-

pected to be exclusively located on the top surface (and thus at

constant z). Higher values of ΦS (thus smaller cavities) also

result in a surface that is more similar to a smooth surface.

In Figure 13C, the liquid-filled cavities are shown in red,

whereas vapour-filled cavities are light blue. This is observed

for all c up to c = 0.85. However, for c = 0.90 and c = 0.95, we

observe a colour in between red and light blue for cavities under

the droplet (left hand side). This suggests that at that height,
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Figure 14: A) The advancing contact angle  and standard deviation as function of cut-off fraction c for fixed value of the solid fraction in the top-
layer of the substrate ΦS = 0.43. The grey line is θY on a smooth surface and the grey dashed line is the angle of the kink at different c. Stars indicate
that the cavity under the liquid front are vapour-filled (Cassie–Baxter wetting state). B) Variation in y-position  as function of cut-off fraction c for d
= 39 and χS = −0.3.

neither a liquid, nor a vapour phase is present, and thus that the

interface is located at that value of z.

Effect of cut-off height c at constant ΦS
One may argue that the true effect of the cut-off height is seen

for cases where h (or equivalently c) is varied at a fixed amount

of S in the top layer of the substrate, that is for fixed value of

ΦS. To do so, one has to vary the inter-cavity spacing s simulta-

neously when the cut-off height is changed. Note that the true

limits c = 0 and c = 1 are hard to reach with fixed ΦS as it

requires odd distances between the cavities.

The behaviour of the advancing contact angle as well as the

contact line fluctuations are recorded for this scenario in

Figure 14. Here we have chosen ΦS = 0.43, which corresponds

to c = 0.79 (near the maximum) of Figure 13. Note that all the

top surfaces used in Figure 14 are similar to the result shown in

Figure 13C for c = 0.79.

It is natural to compare results between Figure 13 and

Figure 14. For values of c < 0.79, the average contact angles

differ very little. In Figure 14 the average angle appears slightly

larger. There is one dramatic difference between Figure 13 and

Figure 14. Compare, for example, the top surface for c = 0.51.

While in the case of fixed distance between the cavities s there

are individual posts with ΦS ≈ 0.1 (Figure 13C), there is a con-

tinuous solid phase in Figure 14 as ΦS = 0.43. Nevertheless, the

average contact angles were hardly affected.

At c > 0.79,  at constant ΦS (Figure 14) keeps growing with

the increase in c, while at fixed s the contact angles decrease

again. The decrease in  for c > 0.79 in the case of constant s

(Figure 13) can thus be attributed to the top surface: Higher c

result in smaller cavities and thus in a surface that is more simi-

lar to a smooth surface. The increase in  found for increas-

ing c at constant ΦS implies that, assuming a constant line

tension, a higher θkink for a hexagonally packed surface struc-

ture gives rise to a higher barrier for a de-pinning transition to

occur and thus higher average contact angles can be maintained.

The higher average contact angles are produced with lower and

lower fluctuations of the shape of the contact line. Eventually,

at the limit of c = 1 the fluctuations must vanish by definition.

Interestingly, it is found that the cavities under the water front

remain empty for c = 0.85 (and up) at ΦS = 0.43, whereas the

cavities were filled for c = 0.85 at s = 38 (ΦS = 0.55). Bringing

the openings of the cavities closer to each other thus prevents

water from entering the cavity.

Summary and Outlook
We have implemented a regular solution lattice model to study

the wetting on a structurally complex surface. The interaction

between vacancies and liquid is parameterised in a regular solu-

tion model by the Flory–Huggins parameter χ. This parameter

controls the width of the interface between liquid and vapour.

The model allows for a detailed description of the solid phase

and the liquid–solid interaction parameter χS is the only param-

eter to control the hydrophilic/hydrophobic (solphophilic/solvo-

phobic) character of the substrate. We find very complex and

interesting wetting states when this model is applied to hexago-

nally ordered cavities in an inverse opal. It is found that the

three-phase contact line is curved and becomes pinned at the

cavity openings. Under the droplet the cavities can either be

filled with water (impregnated; Wenzel) or filled with the

vapour (Cassie–Baxter). No discontinuity in the contact angle θ

is observed for water fronts that are either in the Wenzel state or

Cassie–Baxter state, implying that the water front shape is not

influenced by air entrapment under the water front, but is rather

determined by the surface encountered by the contact line. The

pinning of the contact line cannot solely be discussed in terms

of the kink that a surface structure makes with respect to the top

surface, θkink. Also, for θkink > θY, de-pinning transitions are
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found, and the spacing between the cavities influence whether a

cavity under a water front is solvent-filled or vapour-filled.

Hence, the full 3D-structure, rather than one parameter (θkink)

should be taken into account. We found a large difference be-

tween advancing and receding contact angles, which are also at-

tributed to pinning of the three-phase contact line. More specifi-

cally, it was found that while the smooth surface has a contact

angle much lower than 90° the advancing contact angles in the

inverse opal can be much larger than 90°. That is, slightly

hydrophilic substrates can give hydrophobic contact angles.

Our method can readily be extended to mimic experimental

conditions more closely. An interesting case is the wetting of an

inverse opal of polypyrrole [10]. The inverse opal of polypyr-

role does not have a smooth top surface. Rather, the top surface

showed a positive slope radiating from the position of the sacri-

ficial particle. This more complex surface structure can be

implemented easily by a more elaborated way to represent the

substrate. Furthermore, polypyrrole is a hydrophilic material.

The angle θY on a polypyrrole surface was measured to be

about 20°. However, the inverse opal was made using sacrifi-

cial polystyrene particles. The particles were removed by

dissolving them. This removal was expected to be incomplete,

and the contact angle θ changed to about 80° for the polypyr-

role surface. Polystyrene chains thus must have remained, e.g.,

in an adsorbed state onto the polypyrrole surface. These

adsorbed polymers have a different hydrophilicity, but also

changes the local roughness of the surface structures, resulting

in both chemical and structural heterogeneities. These hetero-

geneities on molecular scale can be studied using the approach

presented in this paper when the Scheutjens–Fleer machinery is

more fully implemented. For example, we can easily consider

polymer chains pinned at random locations along the surface of

the inverse opal. It is even possible to consider polymer brushes

on such substrates which may, e.g., preferentially change

wetting characteristics of the top surface or the insides of the

cavities [47]. Such decorated substrates may feature dramatic

hysteresis effects in the contact angle, because the polymers can

stabilize the three-phase contact line while the shape of the

cavities induces pinning of the contact line. Hence polymers

may introduce a second length scale in inverse opal surface

structures.

In the current work we have solved the regular solution model

using the self-consistent field (SCF) machinery. Only low

memory costs were required to find SCF solutions that are

linearly proportional to the volume, that is, the number of lattice

sites in the system (Mx, My, Mz). Also the CPU time scales only

linearly with the volume. Here we focused on very small

systems and used a desktop PC to find accurate results in a few

minutes CPU time. Alternatively, the complete set of equations

can be solved on a GPU and using CUDA technology the

results may be generated 10 to 100 times faster [48]. As a result

systems which are 10 times larger in each direction should still

be feasible, while keeping the wall-time for the computations at

less than an hour. In this case the regular solution model

captures the macroscopically relevant sizes and we do not need

to rely on extrapolations.

Conclusion
Regular solution theory is used to study the wetting behaviour

of a simplistic molecular model on a complex inverse opal sur-

face topology. The model features molecular input parameters

and gives interfacial energies, contact angles and three-phase

contact line shapes. As a result, advancing as well as receding

wetting front scenarios were considered. It was found that there

is a large contact angle hysteresis in these systems, which was

attributed to contact line pinning. We have seen that the cavi-

ties can be filled by the liquid or remain dry, i.e., filled by

vapour. Cavities in front of the droplet may be filled by a capil-

lary condensation effect, while receding contact angles typical-

ly do not empty the liquid filled cavities. Interestingly, when the

substrate is slightly hydrophilic it is possible that advancing

contact angles have contact angles larger than 90°.

Supporting Information
Supporting Information File 1
Detailed mathematical calculations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-7-129-S1.pdf]
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